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Abstract

Translation-based approaches to planning allow for solv-
ing problems in complex and expressive formalisms via the
means of highly efficient solvers for simpler formalisms. To
be effective, these translations have to be constructed appro-
priately. The current existing translation of the highly expres-
sive formalism of HTN planning into the more simple formal-
ism of classical planning is not on par with the performance
of current dedicated HTN planners. With our contributions in
this paper, we close this gap: we describe new versions of the
translation that reach the performance of state-of-the-art ded-
icated HTN planners. We present new translation techniques
both for the special case of totally-ordered HTNs as well as
for the general partially-ordered case. In the latter, we show
that our new translation generates only linearly many actions,
while the previous encoding generates and exponential num-
ber of actions.

Introduction
Hierarchical Task Network (HTN) planning has attracted
increased interest in the last couple of years (Bercher, Al-
ford, and Höller 2019), yet the amount of research in solv-
ing HTN problems is still lacking behind the vast amount of
research done in classical planning. The sophisticated solv-
ing techniques in classical planning have spawned many
techniques that reuse or extend them in the field of HTN
planning. Some extend them, e.g. for grounding and reach-
ability analysis (Behnke et al. 2020), or when encoding
problems as propositional logic (Behnke, Höller, and Bi-
undo 2019; Behnke 2021b) or IP/LP (Höller, Bercher, and
Behnke 2020); others apply them directly, e.g. to calculate
heuristics (Höller et al. 2018). There are also approaches to
translate HTN planning problems to classical planning prob-
lems directly (Alford, Kuter, and Nau 2009; Alford et al.
2016; Höller 2021). That way, solvers from classical plan-
ning can be applied. To overcome the differences in expres-
siveness (Höller et al. 2014; 2016), there are two different
approaches: the work by Alford et al. (2016) bounds the
HTN problem before the translation based on the progres-
sion bound (Alford et al. 2012; Alford, Bercher, and Aha
2015) – the maximum number of tasks that a task network
could possibly contain when performing progression search.
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This restricts possible task networks to a fixed size, which
can be represented in the state of a classical problem. Höller
(2021) over-approximates the set of solutions to the HTN
problem and verifies whether a solution generated by the
classical system is actually an HTN solution.

We follow Alford et al. (2016), whose approach we call
HTN2STRIPS. While recent results show that it is compet-
itive with the winner of the track on totally-ordered HTN
planning of the recent International Planning Competition in
terms of coverage (Höller 2021), there are some drawbacks.

• First, the size of the target model highly depends on the
progression bound. When it is chosen too low, the classi-
cal planner will not find a solution: and the whole process
needs to be redone with a higher bound. A larger bound
increases the size of the classical model and may make
it harder to solve. However, the bound can be influenced
by model transformations prior to translation.

• Second, HTN2STRIPS performs the translation on the
lifted model and outputs a lifted classical planning prob-
lem. The resulting problem may be hard to ground for the
classical grounder. This is even more of a problem since
grounding is redone for different bounds.

• Third, when translating partially-ordered HTN problems,
the classical model gets harder to solve.

In this paper, we show how to make bound-based classi-
cal encodings of HTN planning problems competitive with
other solvers from the literature both for totally-ordered and
partially-ordered problems. We first show that it is beneficial
to apply the translation on the model grounded by an HTN
grounder. Using a grounder that’s specifically designed to
HTN planning problems exploits the (hierarchical) problem
structure, which not only makes the process much faster, but
also generates much smaller models. Grounding also does
not need to be redone when increasing the bound. Further,
having a ground model enables us to perform several steps
that decrease the size of the classical model as well as the
progression bound that would be much harder on the lifted
model. Second, we show that a recently-introduced transfor-
mation of the HTN model decreases the progression bound
without changing the set of solutions to the HTN model.
Third, we introduce improved translations for the case of
partially-ordered HTN models that make the translated prob-
lem simpler to solve for the classical planner.
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Preliminaries
This section describes our formal framework. We combine
the SAS+ formalism by Bäckström and Nebel (1995) with
the HTN formalism by Geier and Bercher (2011).

Classical Planning and SAS+

In the SAS+ formalism, states are described based on a set
of variables V . Each variable v ∈ V has an associated (fi-
nite) domain Dv with 2 ≤ |Dv| < ∞. A partial state p is a
partial assignment of variables v to values p(v) ∈ Dv . We
write s = [v1 7→ x1, . . . , vn 7→ xn] to denote a partial state
with s(v1) = x1, . . . , s(vn) = xn. For two partial states
s1, s2 we denote with s3 = s1 ◦ s2 the partial state such that
s3(v) = s2(v) iff s2 defines a value for v and s3(v) = s1(v)
iff s1 defines a value for v, but not s2. A complete state (or
state for short) is a partial state that assigns a value for each
variable. An action a = ⟨prea, eff a⟩ is a pair of a partial
state prea and a set of conditional effects eff a. A conditional
effect is a formula of the type p▷ e, where p and e are partial
states. If p is empty, we will as a simplification just write e as
the (non-conditional) effect. Two effects of the same action
may not set different values for the same variable, i.e. we re-
quire the effects of an action to be well-defined. The action
a is applicable in a state s iff prea ⊆ s, i.e., if s(vi) = xi,
∀[vi 7→ xi] ∈ prea. If a is applicable, applying a in s yields
a new state γ(s, a) = s ◦ {e | p ▷ e ∈ eff a, p ⊆ s}. The
initial state s0 is a complete state while the goal definition g
is a partial state. A plan π = ⟨a1, . . . , an⟩ is a sequence of
actions such that a sequence of states σ = ⟨s0, . . . , sn⟩ ex-
ists where: (1) g ⊆ sn, (2) ∀i ∈ {1, . . . n}, ai is applicable
in si−1, and (3) si = γ(si−1, ai) for 0 < i ≤ n.

Hierarchical Task Networks
In HTN planning, we distinguish two types of tasks: the set
of actions A (also called primitive tasks) and the set of ab-
stract tasks C (or compound tasks). We assume state transi-
tion semantics for actions as given in the SAS+ formalism.

Task Networks (TNs) are partially-ordered multi-sets of
tasks. A TN (T , α,≺) consists of a set T of task identifiers,
a function α mapping the task ids to tasks α : T → A ∪ C,
and a partial order ≺ on T . Decomposition methods are used
to decompose abstract tasks. A method (c, tn) describes that
the abstract task c can be decomposed into the TN tn – the
method’s subtasks. The set of methods is denoted with M .
Applying a method to an abstract task c in a TN replaces c
with the method’s subtasks. These subtasks inherit the rel-
ative ordering of c with respect to other tasks in the TN. A
method m = (c, tn) decomposes a TN tn1 = (T1,≺1, α1)
including a task t ∈ T1 with α1(t) = c into a TN tn2 de-
fined as follows. Let tn ′ = (T ′,≺′, α′) be a TN that is equal
to tn but using ids not contained in the decomposed network
(i.e. T1 ∩ T ′ = ∅).

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)

≺D = {(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪
{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 ̸= t ∧ t2 ̸= t}

When tn1 can be decomposed into tn2 by using 0 or more
(sequential) method applications, we write tn1 →∗ tn2.

An HTN planning problem is defined as P = (F, C, A,
M, s0, g, tI). The two elements s0 and tI define the initial
state and the initial TN tnI – which is a task network solely
containing the task tI . A solution to the problem is a TN
tn = (T , α,≺) with:
• tnI →∗ tn , i.e. it can be obtained by decomposing the

initial task network.
• ∀t ∈ T : α(t) ∈ A, i.e. all tasks are primitive.
• There is a sequence ti1ti2 . . . tin of all task identifiers

in T that satisfies the ordering relation ≺ such that
α(ti1)α(ti2) . . . α(tin) is a plan leading from s0 to a state
s′ in which the goal g holds, i.e., g ⊆ s′.

An HTN planning problem is totally-ordered iff the or-
dering relations of the subtasks of all methods are total, i.e.
the orderings are linear paths.

Translations to Classical Planning
We build on the work by Alford et al. (2016), which de-
scribes a bound-based translation of HTN planning prob-
lems to classical planning – HTN2STRIPS. It is based on
the following observation: HTN planning problems are com-
monly solved by a progression search in which a current
TN and a current state are maintained – both of which get
updated during search. One can then either apply a decom-
position method to any of the first abstract tasks of the TN
(those not preceded by any other task) or apply any of the
first primitive actions to the current state (thus progress-
ing/updating it) and remove the action from the TN. We have
solved the problem once the current TN is empty – the plan
is then the sequence of actions that lead to that empty net-
work. Since HTN planning is in general undecidable (Erol,
Hendler, and Nau 1996), the progression search space (or
any other) can be infinitely large and thus cannot be trans-
lated into an equivalent classical planning problem. Alford
et al. (2012) proved that if the problem’s task hierarchy is
of a certain structure (called tail-recursive), then we know
that there is a maximum size that task networks may grow
to under progression. This is what is referred to as the max-
imum progression bound. Note that even when a problem
is not tail-recursive, we can still easily enforce a bound on
progression and increase it if it was not sufficient. Assume
that we bound the number of tasks in the current TN by a
number pb – the progression bound. The number of non-
isomorphic task networks that can be derived via progres-
sion search becomes finite and can thus be represented in the
state of a classical planning problem. Such a state consists
of two parts: one describing the current original state of the
problem and one describing the current TN, i.e., the tasks
that still need to be processed and their ordering relation.
HTN2STRIPS translates the rest of the instance as follows:
First, the original actions get new preconditions such that
they are only applicable when they are in the current TN and
have no predecessors in the ordering relation. Second, the
methods from the original model are translated to new ac-
tions that model the process of decomposition on the TN
representation. In addition to the HTN2STRIPS encoding
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for partially-ordered models, HTN2STRIPS also features a
specialized encoding for totally-ordered HTN planning.

By iteratively increasing a progression bound, the trans-
lation process can be used to solve arbitrary HTN planning
problems. For satisficing planning, we can stop as soon as
we have found a solution. For each particular solution, we
call the smallest progression bound necessary to derive it its
minimum progression bound. Ideally, we would try only the
minimum progression bound of any solution. Unfortunately,
determining this number is hard, which is the cause for
the bound iteration. Alford et al. (2016) have presented an
under-approximation of this minimum progression bound,
which we use for all planners in this paper. If we can bound
the maximum progression bound from above, we only need
to check this bound to see if the problem is solvable. For
problems with a large maximum progression bound, solu-
tions may be found for significantly smaller bounds and as
such – similar to SAT-based planning – iteration may be
more effective. Further, maximum progression bounds do
not always exist. We know only for tail-recursive problems
that they must have a maximum progression bound, which
can be computed or (over-)estimated from the problem.

Recently, a second translation from (totally-ordered) HTN
problems to classical problems has been introduced (Höller
2021), which approximates the set of solutions. The transla-
tion completely blends the hierarchy into the state, i.e., there
are no additional actions that mimic method application, and
no state features that directly correspond to tasks.

When and How to Ground?
The translations of HTN2STRIPS (Alford et al. 2016) were
described and implemented in a lifted-to-lifted fashion. The
(lifted) HTN input problem is translated into a lifted clas-
sical planning problem. The employed classical planner
grounds the (classical) problem and attempts to solve it. If
multiple progression bounds pb are tested, the problem is
grounded multiple times – once for each pb. The problems
for the different pbs are however extremely similar as they
differ only in the number of ID objects in the instance. Con-
sequently, the groundings of the problems are very similar,
but still have to be re-calculated for each pb, each grounding
a potentially expensive operation (Gnad et al. 2019).

Classical grounders seem to be ill-equipped for ground-
ing some of the translated HTN planning problems. The
problem lies in that (most) classical grounders like the one
of Fast Downward (Helmert 2006) only perform a forward
pass, i.e., they consider all actions that can be reached
under delete-relaxation from the initial state. A translated
HTN problem however usually has many dead-end actions
– not appearing in any solution, which are not pruned by
such an approach. Fortunately, there are dedicated HTN
grounders (Ramoul et al. 2017; Behnke et al. 2020). Thus
our first main change compared to HTN2STRIPS is that
we start by grounding the HTN planning problems with the
HTN grounder by Behnke et al. (2020). Only thereafter, we
translate the problem into SAS+ problems.

To increase the utility of the HTN grounder for this setup,
we have added an option to infer SAS+ variables. For this
we used the lifted FAM-groups computed by Fišer (2020).

We create SAS+ variables via a greedy procedure. We first
compute all possible SAS+ variables based on the FAM-
groups and sort them by size. We then take the variable v
with the largest Dv and remove all variables from consider-
ation that have a non-empty intersection with Dv . We then
repeat the process until all variables have been created. For
remaining facts, we generate boolean variables.

To summarize, this approach results in the following ad-
vantages: (1) We ground once, regardless of how many
bounds are tried, (2) We can use a grounder specialized to
HTN planning that is faster and generates a smaller model.
There is also another advantage, as will be discussed in the
next sections. Since the ground model is much simpler, it al-
lows us to describe some optimizations – like method com-
pression – clearly, while they are extremely complicated in
the lifted setting as we e.g. have to deal with corner cases.

TO-HTN Translations
As the main contribution of this paper, we formally describe
the grounded HTN-to-SAS+ translation and significant per-
formance improvements. We start with the simplest case:
totally-ordered HTN (TO-HTN) planning problems. This
sub-class of HTNs has received significant attention in past
research (e.g. Nau et al.; Schreiber (1999; 2021)) and was
even featured in a separate track at the 2020 International
Planning Competition (Behnke, Höller, and Bercher 2021).

Basic Encoding
We start by describing the basic HTN2STRIPS encoding for
TO-HTNs developed by Alford et al. (2016). We intertwine
this description already with discussing how to translate a
grounded TO-HTN into an SAS+ problem.

The HTN2STRIPS encoding for TO-HTN problems rep-
resents the current TN as a stack with a limited size. In
the grounded representation we do the same. Given the pro-
gression bound pb, we create pb positions for the stack. At
each stack position, there can be either one specific task or
none. Further, the top of the stack is any one of the possible
positions. These structures naturally form SAS+ variables
(posi and stack, resp.). Performing the translation on the
grounded level allows us to create appropriate SAS+ vari-
ables for the encoding without relying on them being auto-
matically discovered by a SAS+ inference mechanism of the
grounder. Note that this also improves the general readabil-
ity of the translation. In the original lifted translation, the
stack and its top had to be represented with boolean predi-
cates which can be quite unnatural to read.

This is especially important as current automatic infer-
ence mechanisms for SAS+ variables fail to properly detect
these variables. Fast Downward’s SAS+ inference (Helmert
2006) fails to detect any of the SAS+ groups pertaining to
the positions on the stack. The inference method based on
the lifted FAM groups by Fišer (2020) partially detects the
SAS+ groups, but fails if they contain more than 100 ele-
ments in the default configuration. This might be problem-
atic as several classical planning techniques, like merge and
shrink (Helmert et al. 2014) or decoupled search (Gnad and
Hoffmann 2018), that require a good SAS+ representation
of the problem to achieve good performance.
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Encoding the TO-HTNs actions and methods then works
as follows. An action a can be executed if a is the top ele-
ment of the stack, which it removes, and moves the top one
position down. A method m can be applied if the top element
of the stack is the task it decomposes. It then removes that
task from the stack, pushes its task sequences, and moves
the top of the stack to the last pushed task (i.e. the first task
of the method). Initially, the stack contains only tI and we
reach the goal if the stack is empty and we have reached the
state-based goal.

Consider that we are given a grounded TO-HTN prob-
lem P = (F, C, A, M, s0, g, tI , prec, add , del) and a
progression bound pb. We then construct an SAS+ problem
P pb = (Vpb,Apb, spb0 , gpb) as follows. With ∪̇ we denote a
disjoint union.

• Vpb = F ∪̇ {stack} ∪̇ {posi | 1 ≤ i ≤ pb}
Dstack = {topi | 0 ≤ i ≤ pb}
Dposi = {c | c ∈ C ∪̇A ∪̇ {noTask}}

• spb0 = s0 ◦ [stack 7→ top1, pos1 7→ tI ]
◦ [posi 7→ noTask | 2 ≤ i ≤ pb]

• gpb = g ◦ [stack 7→ top0]

• Apb = {ai | a ∈ A, 1 ≤ i ≤ pb} ∪
{mi | m = (c, (T,≺, α)) ∈ M,

1 ≤ i ≤ min{pb, pb− |T |+ 1}}
– preai = prea ◦ [stack 7→ topi, posi 7→ a]
eff ai

= eff a ◦ [stack 7→ topi−1, posi 7→ noTask]

– for m = (c, (T,≺, α)) ∈ M with |T | = 0 we get the
following preconditions and effects for the mi:

* premi = [stack 7→ topi, posi 7→ c]

* effmi
= [stack 7→ topi−1, posi 7→ noTask]

– for the actions mi with m = (c, (T,≺, α)) ∈ M ,
0 < |T | = k ≤ pb, let t1, ..., tk be the task identifiers
in T as arranged by the total order ≺. Then:

* premi
= [stack 7→ topi, posi 7→ c]

* effmi
=[stack 7→ topi+k−1]
◦ [posi+j 7→ α(tk−j) | 0 ≤ j ≤ k − 1]

Since this is the grounding of the translation by Alford et al.
(2016), soundness and completeness follow directly.

Encoding Size Lastly, we discuss, for this encoding and
any following encoding we present, the size of the produced
encoding relative to progression bound pb and the size of the
original model. The most interesting element is the number
of actions. For this encoding, we generate pb new actions
per action in the HTN model and up to pb many instances (if
|T | ≤ 1). Note that fewer instances of method actions might
be generated for methods with more subtasks. As such, the
encoding can contain up to pb · (|A|+ |M |) actions, which is
linear in both the size of the original HTN problem and the
progression bound.

Compressing Methods
After adapting the Base encoding to the grounded case, we
next strive for making it empirically as effective as other
HTN planners. For doing so, let’s consider the encoding of
a decomposition method mi which decomposes the abstract

∅

C

⇒
a

B

⇒
∅

B

∅

C

⇒
∅

B

Figure 1: We see two examples for how the stacks behave af-
ter a method application. Left: Progression without method
contraction; Right: Progression with method contraction

task C into the action a followed by the abstract task B. If
the task C is at position i of the stack, the action mi will
cause B to be put to position i of the stack, a to position
i+ 1, and the top of the stack to be moved to position i+ 1.
In the resulting state at most one action is applicable: either
the (original) preconditions of a are satisfied – then ai+1

is executable, or not – then we are in a dead-end. The first
case is depicted on the left of Fig. 1. Effectively, the method-
compilation mi adds the action a to the stack though we
know that we have to remove it as the next step anyway. In-
stead, we could have applied a directly at the time at which
we applied mi without the detour of pushing it to the stack.
This is depicted on the right of Fig. 1. Performing this appli-
cation seems to be useless at first glance – recent classical
planners will detect that only ai+1 is applicable and apply it
immediately. This compression however has two other side-
effects: (1) the overall plan becomes shorter, which might be
beneficial for the planner and (2) the minimum progression
bound of all solutions might decrease. The second point is
quite significant as a lower minimum progression bound for
solutions implies both that the minimum and the maximum
progression bound might decrease. As such, solutions can
be found with smaller progression bounds, requiring fewer
calls to the classical planner – notably while omitting the
runs with the largest models. To see that the maximum pro-
gression bound can actually decrease, consider our example
method. If we do not compress mi and ai+1 we need two
positions on the stack, while for the compressed version one
is enough. We study this in our evaluation.

Next, we formally describe the compression. We not
only compress the first primitive action, but the full pre-
fix of primitive actions this method contains. Given m =
(c, (T ,≺, α)) with tasks α(t1), ..., α(t|T |) ordered accord-
ing to ≺. Further, let the first ℓ tasks be primitive. We cal-
culate the macro action a = ⟨prea, effa⟩ that simulates the
successive application of α(t1), ..., α(tℓ). Its correctness fol-
lows as it simulates the application of a sequence of actions.
• prea = [(v 7→ val) | ∃i : (v 7→ val) ∈ preα(ti) and
∀j :1≤j<i≤ ℓ, x ∈ Dv : (v 7→ x) /∈ preα(tj)∪effα(tj)]

• effa = [(v 7→ val) | ∃i : (v 7→ val) ∈ effα(ti) and
∀j : 1 ≤ i < j ≤ ℓ, x ∈ Dv : (v 7→ x) /∈ effα(tj)]

• if for some i < j : (v 7→ x) ∈ effα(ti), (v 7→ y) ∈
preα(tj), x ̸= y and not (v 7→ y) ∈ effα(tl) for some i <
l < j then the sequence of actions is not applicable. In
this case m is never part of a solution and can be pruned.

The third item correctly detects inapplicable actions as irre-
spective of the state prior to α(t1), v 7→ y cannot hold when
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α(tj) is executed. It was set by action α(ti) to the differ-
ent value v 7→ x and was not reset to y by any intermediate
action. Now we can apply a immediately together with our
translated method action mi. This results in m′

i with:
• prem′

i
= premi ◦ prea

• if |T | = ℓ:
effm′

i
= effa ◦ [stack 7→ topi−1, posi 7→ noTask]

• if |T | = k > ℓ: effm′
i
= effa ◦ [stack 7→ topi+k−1−ℓ]

◦ [posi+j 7→ α(tk−j) | 0 ≤ j ≤ k − 1− ℓ]

Encoding Size Compressing methods can only reduce the
number of actions in the encoding. It is possible that no com-
pression can be performed at all, i.e. the size bound for the
compressed model is the same as for the Base encoding.

Two-Regularization
Since the overall number of calls to the classical planner as
well as the size of the translated problems have presumably
a high influence on the overall runtime, we have considered
means to further decrease the maximum progression bound:
We use 2-Regularisation as recently introduced by Behnke
and Speck (2021). A TO-HTN problem is 2-regular if all
methods have at most two subtasks. A given TO-HTN prob-
lem can be translated into a 2-regular one in linear time by
introducing additional intermediate abstract tasks. We de-
ploy this normal form due to the following advantage:

Theorem 1. 2-Regularisation cannot increase the minimum
and maximum progression bounds, but it may decrease them.

Proof. Consider a sequence of progression steps from tnI

to the empty task network. Consider any two consecutive
task networks tn1 and tn2 such that tn2 is created from tn1

by decomposing its first task c. Let this result in the tasks
t1, . . . , tn. If n ≤ 2 we have nothing to show. If n > 2, tn2

has n− 1 > 1 more tasks than tn1. In the 2-Regularisation,
we can apply the method decomposing c into t1, c1 to the
first task c of tn1. This yields the task network tnc1 , which
has the size |tn1|+1 < |tn2|. We now apply all progressions
up to the point where c1 is the first task in the task network as
we did to tn2. Compared to the non 2-Regularised problem,
these TNs contain the same tasks, apart from t2, . . . , tn be-
ing replaced by c1. As such, these TNs cannot contain more
tasks. When reaching with c1, we apply its method decom-
posing c1 to t2, c2. For the resulting task network, the same
reasoning as for tnc1 applies. We can inductively extend this
argument up to and including the last decomposition of cn−1

into tn−1, tn.
To see that 2-Regularisation may actually improve pro-

gression bounds, consider a planning problem where the
initial task tI decomposes into a sequence of three actions
a, b, c. Without 2-Regularisation, its min and max progres-
sion bounds are 3. With 2-Regularisation they are only 2, as
we will have at most one primitive action and one abstract
task on the stack at the same time.

Note that 2-Regularisation will increase the size of
the grounded model. More specifically, it will in-
crease the number of abstract tasks and methods by
summed total size of methods exceeding two (formally

Basic Encoding Push Encoding

ID1
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ID4 ID5
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Figure 2: Encoding of the TN containing the tasks A, B, c,
and D with the orders B ≺ A, c ≺ B and the subsequent
encodings if first c is progressed and then B is decomposed
into the tasks e, F , and G with F ≺ e and G ≺ e.

∑
(c,(T,≺,α))∈M max{0, |T |−2}). Since this is only a linear

increase, the overall encoding remains linear in size.

PO-HTN Translations
In the previous section, we have discussed only encodings
that exploit the fact that the task networks of all methods
contained in the problem describe sequences of tasks. In this
section, we turn toward general encodings, i.e. encodings
that can deal with arbitrary partially-ordered task networks.

Basic Encoding
The base encoding of HTN2STRIPS (Alford et al. 2016)
uses the propositional state of the classical problem to en-
code a task network. As in the TO encoding, the size of
the task network is bounded by pb. Each possible task ID
(task1, . . . , taskpb) can either carry a task or not. The par-
tial order ≺ of the task network is represented by memoris-
ing individual ordering constraints. For each pair of IDs i
and j, we memorise whether we know that taski is ordered
before taskj in a variable constr i<j . HTN2STRIPS uses a
mechanism to avoid computing the transitive closure of the
memorised ordering after each decomposition: Ensure that
every method has a unique last task, i.e. a task that is or-
dered strictly after all other tasks in that method. If no such
task exists, we add a no-op as an artificial last task. In Fig. 2,
we show TNs encoded in this manner. The left column de-
picts the Base encoding. The top row encodes a TN with the
tasks A, B, c, and D, were c ≺ B and B ≺ A. We encode
the order with constr3<2 7→ yes and constr2<1 7→ yes.
From the first to the second row, we progress through the
primitive c and set constr3<2 7→ no, thus allowing to de-
compose B. In doing so, we place the method’s last task e
at the ID at which B was previously. By transitivity, the new
tasks F and G, who precede e, also must precede A.

One complication in this encoding is the fact that when
executing a decomposition, we do not know which task
IDs are used and which ones are free a priori – in con-
trast to the TO encoding where we knew that all IDs after
the decomposed one are free. We thus have to generate ac-
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tions representing methods for each possible combination
of free IDs. E.g. in Fig. 2, we place the new tasks F and
G at the IDs 3 and 6, but cannot use ID 5. Since the or-
der of the free IDs does not matter, we can map them to
the subtasks of the applied method in sorted order to reduce
symmetries. To describe this selection, we use the function
βk : {1, . . . , pb} × {0, . . . ,

(
pb−1
k−1

)
− 1} → {1, . . . , pb}k,

which shall be an injective function such that for the se-
quence βk(i, j) = (a0, a1, . . . , ak−1) it holds that: a0 = i,
a0 ̸= aj for j > 1, and a1 < a2 < · · · < aj−1 < pb.
As in the TO encoding, we treat methods whose task net-
works contain no tasks as actions without preconditions and
effects. We thus omit their explicit description from here on.

• Vpb = F ∪̇ {taski | 1 ≤ i ≤ pb} ∪̇
{constr i<j | 1 ≤ i, j ≤ pb, i ̸= j}

D(taski) = {c | c ∈ C ∪̇A ∪̇ {noTask}}
D(constr i<j) = {yes, no}

• spb0 = s0 ◦ [task1 7→ tI ] ◦ [constr i<j 7→ no | 1 ≤ i, j ≤
pb] ◦ [taski 7→ noTask | 2 ≤ i ≤ pb]

• gpb = g ◦ [taski 7→ noTask | 1 ≤ i ≤ pb]

• Apb = {ai | a ∈ A, 1 ≤ i ≤ pb}∪{mj
i | (c, (T,≺,α)) ∈

M, |T | = k, 1 ≤ i ≤ pb, 0 ≤ j <
(
pb−1
k−1

)
}

– preai
= prea ◦ [taski 7→ a] ◦

[constr j<i 7→ no | 1 ≤ j ≤ pb, j ̸= i]
eff ai

= eff a ◦ [taski 7→ noTask]
◦ [constr i<j 7→ no | 1 ≤ j ≤ pb]

– for the actions mj
i with m = (c, (T,≺, α)) ∈ M ,

|T | > 0, let T = {t0, . . . , t|T |−1} be fixed for m such
that ∀0 < l ≤ |T | − 1 : tl ≺ t0 (i.e. t0 is the last task),
and βk(i, j) = (a0, . . . , a|T |−1) we set:

* premj
i
= [taski 7→ a]◦[constrk<i 7→ no | 1 ≤ k ≤

pb, k ̸= i] ◦ [taskl 7→ noTask | l ∈ {a1, . . . , ak−1}]
* effmj

i
= [taskal

7→ α(tl) | 0 ≤ l ≤ k − 1] ◦
[constral<am 7→ yes | tl ≺ tm]

Encoding Size The Basic encoding for partially-ordered
task networks generates one instance of each original action
per value of the progression bound, i.e. pb · |A| in total. It
further generates for every original method m ∈ M actions
of the type mj

i . Here i is a value from 1 to pb. The second
parameter j encodes the selection of a subset of size k of
the remaining pb − 1 IDs, where k is the number of sub-
tasks of that method. We generate one action for every such
j ∈ {0, . . . ,

(
pb−1
k−1

)
− 1}. As such, this encoding generates

in total pb ·
(
pb−1
k−1

)
translated method actions for one ground

method with k subtasks. For any fixed k, the value of
(
pb−1
k−1

)
increases exponentially in pb.

(
pb−1
k−1

)
is bounded from above

by pb!, which in turn is by Stirling’s approximation in the

order of
√
pb

(
pb
e

)pb

. So to simplify, we can state that for

each method, we generate O(pb
3
2+pb) actions. This leads to

O(pb · |A|+ |M | · pb
3
2+pb) many encoded actions in total.

Push Encoding
In its original (lifted) variant, the size of the previous Base
encoding was, as the TO encoding, linear in the size of the
(lifted) model. The encoding, however, produces an expo-
nential amount of ground actions representing methods –
since

(
pb−1
k−1

)
scales exponentially in pb. This causes the Base

encoding to quickly become impossible to use.
The main problem with the base HTN2STRIPS encoding

is that we do not know which IDs are free when applying
a decomposition method and can thus be used for the tasks
that are added by that method. To reduce the complexity of
the model, we would like to assume that if the method adds
k − 1 new tasks (i.e. it has k subtasks), the highest k − 1
IDs (taskpb−k+1, . . . , taskpb) are always free and can be
used for these new tasks. This way, we eliminate the choice
of which IDs to use from the method actions. As such, we
only need one encoded action per method and ID of the de-
composed task – i.e. only a linear amount. To allow for this
assumption, we add new push actions which allow for com-
pressing the currently stored TN representation. Since we
have to move the ordering constraints as well, we (unfortu-
nately) either require an exponential blow up or – what we
chose to do – use conditional effects as shown below. We
only need |A ∪C| · pb, i.e. linearly many, such push actions
– one for each task and ID apart from ID 1. The idea of this
encoding is shown in Fig. 2. The TN in the second row has
ID 4 occupied by the task D. In the Base encoding, we can
use IDs 3 and 6 for the tasks F and G. In the Push encoding,
we are forced to use IDs 5 and 6. ID 5 however is not free, to
we need to move the task D from ID 5 to ID 4, which we do
prior to applying the method – as shown in the right column.

In adding the push actions, we have introduced a new
source of ambiguity in plans: the order in which push ac-
tions are applied. Consider pushing a task from position i to
i − 1. In the next state, it may be possible to push this task
again from i − 1 to i − 2, but it might now also be possi-
ble to push the task at i + 1 to i. No matter in which order
we apply these two actions, we end up in the same state,
i.e. applying these actions is commutative. To avoid these
redundancies, we perform in-model partial-order reduction.
If we have pushed a task from position i to i − 1 and if the
next position i− 2 is also free, then we should immediately
push the task from i−1 to i−2. To ensure this, we mark the
position i− 1 to have priority and only allow a push from a
position i if no other position has priority.

• Vpb = F ∪̇ {taski | 1 ≤ i ≤ pb} ∪̇ {constr i<j | 1 ≤
i, j ≤ pb, i ̸= j} ∪̇ {nexti | 1 ≤ i ≤ pb}
D(taski) = {c | c ∈ C ∪̇A ∪̇ {noTask}}
D(constr i<j) = {yes, no}
D(nexti) = {indiff , prio}

• spb0 = s0 ◦ [task1 7→ tI ] ◦ [constr i<j 7→ no | 1 ≤ i, j ≤
pb]◦[nexti 7→ indiff | 1 ≤ i ≤ pb]◦[taski 7→ noTask |
2 ≤ i ≤ pb]

• gpb = g ◦ [taski 7→ noTask | ∀i : 1 ≤ i ≤ pb]

• Apb = {ai | a ∈ A, 1 ≤ i ≤ pb}∪{mi | (c, (T,≺, α)) ∈
M, 1 ≤ i ≤ pb−|T |+1}◦{pusha

i | a ∈ A, 1 < i ≤ pb}
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– preai = prea ◦ [taski 7→ a] ◦
[constr j<i 7→ no | 1 ≤ j ≤ pb, j ̸= i]

eff ai
= eff a ◦ [taski 7→ noTask]

◦ [constr i<j 7→ no | 1 ≤ j ≤ pb]

– for the actions mi with m = (c, (T,≺, α)) ∈ M ,
|T | > 0, let T = {t0, . . . , t|T |−1} be fixed for m such
that ∀0 < l ≤ |T | − 1 : tl ≺ t0 (i.e. t0 is the last task).

* premi
= [taski 7→ a]◦ [constr j<i 7→ no | 1 ≤ j ≤

pb, j ̸= i]◦[taskl 7→ noTask | pb−|T |+1 ≤ l ≤ pb]

* effmi
= [task0 7→ α(t0)] ◦ [taskpb−l+1 7→ α(tl) |

1 ≤ l ≤ k − 1]
◦ [constrpb−l+1<pb−m+1 7→ yes | tl ≺ tm,m ̸= 0]
◦ [constr i<pb−j+1 7→ yes | 1 ≤ j ≤ k − 1]

– prepusha
i
= [taski 7→ a] ◦ [taski−1 7→ noTask] ◦

[nextj 7→ indiff | j ̸= i]
eff pusha

i
= [taski 7→ noTask] ◦ [taski−1 7→ a]◦

[constr i<j 7→yes ▷ constr i−1<j 7→yes |1 ≤ j ≤ pb]◦
[constr j<i 7→yes ▷ constr j<i−1 7→yes |1 ≤ j ≤ pb]◦
[nexti 7→ indiff ] ◦ [taski−2 7→ noTask ▷nexti−1 7→
prio]◦ [constr i<j 7→ no, constr j<i 7→ no |1≤j≤pb]

Encoding Size In the Push encoding, we generate three
types of actions. As for all the previous encodings, we gen-
erate pb · |A| many actions for the original actions of the
HTN model. We further generate one push action per origi-
nal task and value of the progression bound except for 1, i.e.
another (pb − 1) · |A ∪ C| actions. Lastly, for each method
m, we generate actions mi for i ∈ {0, . . . , pb}. As we fix
these actions to use the |T | − 1 highest IDs for new tasks,
there is no variability in selecting the IDs for these subtasks.
The only component that varies is the position of the task
we decompose as expressed by the parameter i. We only
generate pb many actions for each method. This leads to
pb·(|A|+|M |)+(pb−1)·|A∪C| many actions in total. This
is linear in pb and not exponential as for the Base encoding.

Theorem 2. The Push encoding generates exponentially
fewer actions than the Base encoding in pb. □

Parallel Sequences
Höller and Behnke (2021) have observed that most of the
available partially-ordered HTN domains – and in particular
those of the IPC 2020 – have a very specific structure: No-
tably, all methods except one are totally-ordered. The sole
partially-ordered one decomposes the initial task tI and con-
tains no ordering constraints at all. As such, any task net-
work that can be derived from tI consists of a set of se-
quences of actions that are fully parallel, i.e. that do not have
any ordering constraints between them.

If the method decomposes the initial task into k tasks, we
interpret the resulting progressions as k independent stacks.
As such, we can apply the encoding for the totally-ordered
case for each of these stacks individually by duplicating the
stack positions k times. For simplicity, we scale in this en-
coding by the size of each individual stack – i.e. each stack
has pb many positions. Apart from this, the encoding works
exactly as for the totally-ordered case. The sole exception
is that we directly apply the initial method to “prime” the
stacks with the correct tasks.

Lastly, we observed that in practice we can also apply this
encoding in cases where the domain is not of the parallel-
sequences type. In this case we have to guess for each
method that is partially-ordered a linearisation and replace
the original method with this linearisation. Note that this
transformation may in theory eliminate solutions (i.e., it is
incomplete), but it seems to be an acceptable approximation
in practice (measured by the IPC 2020 benchmark set).1

Encoding Size Since this encoding is just multiple totally-
ordered encodings without any additional elements, we gen-
erate pb · (|A| + |M |) many actions per stack and thus
k · pb · (|A|+ |M |) in total.

Empirical Evaluation
We have compared our proposed encodings, which we call
HTN2SAS2 with a wide variety of other planners, includ-
ing the IPC 2020 competitors, on the IPC 2020 benchmark
set (Behnke, Höller, and Bercher 2021). Each planner was
given 8GiB of RAM and 30 minutes of single-core run-
time on an Xeon Gold 6242 CPU per instance. Runtime in-
cludes the time for grounding, encoding, and solving by the
back-end planner. We compared multiple classical planners
as back-ends. We found that the best performing back-end
was Fast Downward (Helmert 2006), first performing en-
forced hill climbing and then lazy greedy search, both with
the FF heuristic (Hoffmann and Nebel 2001) and FF pre-
ferred operators. We denote this configuration with FF. We
have also tested the runner-up of the agile track of the most
recent (classical) International Planning Competition (IPC
2018): Saarplan (Fickert et al. 2018), denoted as Saar. We
were not (yet) able to use the agile track winner LAPKT-
DUAL-BFWS (Frances et al. 2018) as its off-the-shelf ver-
sion does not allow for providing a SAS+ input directly. We
also tested the winner of the satisficing track Fast Downward
Stone Soup 2018 (FDSS) (Seipp and Röger 2018). In its de-
fault satisficing configuration, FDSS will use all the time
allotted to it to find the shortest possible solution. We abort
FDSS’s portfolio if either a plan has been found or one com-
ponent planner has shown unsolvability. We did the same for
LAMA (Richter and Westphal 2010), the winner of the IPC
2008 satisficing track.

We start with the TO benchmark set of the IPC 2020.
We have compared our approach against the five IPC com-
petitors (HyperTensioN (Magnaguagno, Meneguzzi, and
de Silva 2021), Lilotane (Schreiber 2021), PDDL4J (Pellier
and Fiorino 2021), SIADEX (Fernandez-Olivares, Vellido,
and Castillo 2021), pyHiPOP (Lesire and Albore 2021))
as well as against the original encoding HTN2STRIPS,
the translation-based approach by Höller (2021) (TOAD),
and the most recent versions of progression search (Greedy
RC (Höller et al. 2020; Höller and Behnke 2021)) and SAT-
based HTN planning (pandaPisatt-1iB (Behnke 2021a)).

1See the evaluation for details. Also note that whenever a user
chooses that technique of our planner, it outputs a warning that it is
technically incomplete to make sure comparisons remain fair.

2The code is integrated into the pandaPI system and can be
found at https://github.com/panda-planner-dev/pandaPIengine.
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HTN2SAS 2R C FF

Greedy RC ADD

Greedy RC FF

pandaPIsatt-1
iB

HTN2SAS C FF

TOAD
HTN2SAS 2R FF

HyperTensioN

HTN2SAS 2R C Saar

HTN2STRIPS FF

Greedy RC LMC

Lilotane
HTN2SAS FF

HTN2SAS 2R C FDSS

HTN2SAS 2R C Lama

PDDL4J
SIADEX

pyHiPOP

Assembly 30 30 30 30 6 30 30 5 3 30 24 7 5 5 30 4 2 0 1
Barman-BDI 20 14 17 20 19 11 16 14 20 13 12 15 17 10 12 10 11 20 0
BW-GTOHP 30 27 28 28 25 21 22 25 16 22 21 25 23 23 16 20 16 13 1
BW-HPDDL 30 21 28 25 6 21 21 20 30 20 25 14 1 20 24 7 0 0 0
Childsnack 30 26 23 21 23 23 24 25 30 21 20 20 28 16 23 0 21 22 0
Depots 30 22 22 27 28 24 23 22 24 22 22 24 24 22 20 18 23 22 0
Elevator-Learned 147 147 146 146 147 147 147 142 147 147 117 146 147 142 108 147 2 11 2
Entertainment 12 12 12 12 12 12 12 12 8 12 4 12 4 12 12 10 5 0 1
Factories-simple 20 6 9 7 8 6 5 5 3 6 6 5 4 5 3 5 0 0 1
Freecell-Learned 60 0 18 19 10 11 0 0 0 0 0 0 12 4 0 0 0 0 0
Hiking 30 23 25 25 22 22 22 19 25 12 24 20 23 20 3 8 17 0 0
Logistics-Learned 80 79 48 49 80 35 48 31 22 38 52 75 45 26 29 33 0 0 0
Minecraft-Player 20 3 4 4 4 1 1 2 5 1 4 1 4 1 0 1 1 3 0
Minecraft-Regular 59 43 43 43 40 41 41 49 58 42 55 41 37 45 43 41 23 35 0
Monroe-FO 20 20 18 18 20 20 0 20 20 0 2 12 20 19 2 0 20 7 0
Monroe-PO 20 15 8 12 20 13 0 13 0 0 1 8 20 12 1 0 1 0 0
Multiarm-BW 74 72 72 27 19 69 74 47 8 60 74 17 4 37 70 20 0 1 0
Robot 20 20 20 20 11 20 20 17 20 20 20 19 11 17 20 11 6 0 1
Rover-GTOHP 30 18 26 22 24 18 9 17 30 17 10 18 23 17 8 8 27 30 6
Satellite-GTOHP 20 20 20 17 20 10 10 19 20 10 7 12 15 10 9 6 20 0 7
Snake 20 20 20 20 20 20 15 19 20 18 20 20 20 19 13 17 20 7 2
Towers 20 16 13 13 8 15 9 14 16 12 16 13 9 13 14 15 14 11 2
Transport 40 33 32 30 40 23 35 32 40 32 24 24 34 23 25 26 33 1 18
Woodworking 30 25 28 28 28 19 30 25 7 17 7 19 30 19 19 14 6 3 4
Coverage 892 712 710 663 640 632 614 594 572 572 567 567 560 537 504 421 268 186 46
Normalised Coverage 18.6 18.8 18.2 17.0 16.6 15.0 16.0 15.7 14.2 13.8 14.6 14.9 14.2 12.9 9.7 10.0 6.1 1.6
IPC Score 13.6 15.0 14.4 13.7 11.7 11.8 11.0 15.0 9.0 8.3 10.3 12.5 8.8 7.8 6.7 7.5 4.9 0.9

Table 1: Results on IPC 2020 TO-HTN benchmark set. 2R represents 2-Regularization and C represents compression.

In Tab. 1, we show standard and normalized coverage
and the IPC score of the several TO-HTN planners on
the IPC 2020 benchmark set. The base version HTN2SAS
does – surprisingly – not outperform HTN2STRIPS (537
vs 567 in coverage). We suppose that this is caused by
the different way we handle method preconditions. In
HTN2STRIPS, they are compiled directly into method ac-
tions, while HTN2SAS compiles them into separate primi-
tive actions. This increases the minimum progression bound
by one and can make the problem harder to solve. However,
the Base encoding of HTN2SAS already has a higher IPC
score (8.8) than HTN2STRIPS (8.3). Since the IPC score
is a time-score, this shows that the switch from lifted to
grounded pays off: we can solve problems faster.

With respect to the three alternative back-end planners,
Saarplan solves 572 instances with an IPC Score of 9.0 and
a normalised coverage of 14.2. For FDSS, we get 504 solved
instances, an IPC Score of 7.8, and a normalised coverage
of 12.9, and for LAMA 421, 6.7, and 9.7. This comparably
bad performance is interesting. It might open an avenue for
future research for the classical planning community where
it might help to improve heuristics and search techniques.
With respect to the time needed for generating the encoding,
out of the 3804 translations performed by R2 C FF, only
120 took longer than 10 seconds with a maximum of 15.981
seconds. The classical planner always took longer solving
the translation than the time needed to generate it.

Performing either 2-Regularisation (2R) or method com-
pression (C) already pays off significantly in coverage (567
vs 594/632) and even more so in the IPC score (8.3 vs

11.0/11.7). Combining both techniques leads to a higher
coverage than any other planner (712). It is slightly worse
in normalised coverage (18.6 vs 18.8 by Greedy RC ADD).
In terms of IPC score (13.6), it is not yet one the level of
the absolutely best planners (15.0), but would have scored
2nd place if it would have participated in the IPC 2020, be-
ing only beaten by HyperTensioN. In the supplement, we
present a cactus plot of the planners’ runtime. There we can
see the reason for this behaviour: HTN2SAS has a relatively
slow start – which is punished by the IPC score.

Next, we consider the influence of 2-Regularisation and
method compression on the minimum progression bounds,
i.e. the bounds actually needed to solve the problems.
Method compression has only a small influence over the
necessary progression bound, but decreases the value by at
least one in 449 out of 536 cases. It decreases by at least
two in 144, by at least three in 69, and by at least four in 35
cases. The maximum decrease is seven in eight instances.
For 2-Regularisation (without method compression), out of
the 532 instances solve by both variants, the bound decreases
in 496. It (at least) halves the bound in 338 instances and
reduces it to at most a third in 200 instances. The overall
maximum is reduced from 129 to 26 and all but 20 (solved)
instances can be solved with a bound of less than 10, while
381 previously required a bound of at least 10. On average
the bound is reduced to 42.7% of the original, with a me-
dian of 40%. If we consider contracting methods in already
2-Regularised domains, we can still observe a decrease in
the progression bound. Out of the 590 instances solved by
both configurations, in 379 the necessary progression bound
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Figure 3: Comparison of the size of the partial-order encod-
ings Base and Push. We plot the number of actions.
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Barman-BDI 20 3 2 8 4 2 20 1 3 0
Monroe-FO 25 24 22 0 10 10 8 2 0 0
Monroe-PO 25 19 20 0 7 7 2 4 0 0
PCP 17 14 14 13 9 14 0 3 5 0
Rover 20 11 4 16 8 4 14 4 4 2
Satellite 25 25 24 25 19 24 25 24 23 6
Transport 40 12 8 23 15 8 1 8 12 3
UM-Translog 22 22 22 22 22 22 22 21 22 21
Woodworking 30 12 9 17 11 9 3 11 6 6
Coverage 224 142 125 124 105 100 95 78 75 38
Normalised Coverage 5.9 5.3 5.1 4.3 4.3 4.2 3.1 3.1 1.6
IPC Score 4.9 3.7 3.1 3.0 3.4 4.0 2.6 2.0 1.2

Table 2: Results on IPC 2020 PO-HTN benchmark set.

is still decreased by one and in one instance by two.
Next, we turn to the partially-ordered instances. Here, we

compare only against HTN planners that can handle partial
order: a progression planner (GA* FF th+gi, (Höller and
Behnke 2021)), a SAT-based planner (Behnke, Höller, and
Biundo 2019), and two IPC competitors (SIADEX and py-
HiPOP). Out of the 224 IPC 2020 instances, 173 have – after
grounding – the parallel-sequences structure. Of the remain-
ing 51 instances with more complex partial order, one is an
instance of the UM-Translog domain, while the remaining
50 are the instances of both Monroe domains. We present
two versions of HTN2SAS employing the parallel sequences
encoding. The first (PSeq*) always uses the encoding and is
thus potentially incomplete. The second (PSeq) uses the par-
allel sequences encoding only if the instance actually has the
property, else we use the Push encoding.

HTN2SAS’s Base encoding already outperforms
HTN2STRIPS’s encoding both in terms of coverage (78
vs 75) and IPC score (2.6 vs 2.0), cf. Tab. 2. The Push
encoding provides a further boost to 105 coverage and an
IPC score of 3.0. The complete PSeq configuration lacks
behind the Push encoding, but only in coverage (105 vs
100) while it increases the IPC score from 3.0 to 3.4. The

incomplete configuration PSeq* performs still better, and
notably takes the clear lead in the two Monroe domains
which are not of the parallel sequences type. This is due
to the fact that both domains are almost parallel sequences
with only a few methods that introduce partial order, which
in most cases can be handled by guessing a linearisation
already in them model (which is exactly what PSeq* does).
We do not fully reach the currently best performing planner
GA* FF th+gi, but are close.

Lastly, we have investigated the impact of the Push and
Parallel Sequences encodings on the size of the encoding.
We have extracted for every encoding that was performed
during the evaluation runs on the 2020 IPC domains the
number of actions in the produced model. Note that this
yields multiple data points per instances as each planner en-
codes the problems for multiple progression bounds. There
were 839 formulae that were both constructed by the Base
and the Push encoding. We show their sizes in Fig. 3. In 115
cases, the Push encoding generated more actions, but 65 out
of these generated less than 7,500 actions in both models.
The remaining 50 instances are the encodings for each of
the 50 Monroe instances at progression bound pb = 3. Here
the Base encoding generated between 437,220 and 480,366
actions, while Push encoding created between 468,220 and
512,928. This can be explained by the size of the grounded
HTN model, which contains approx. 60,000 actions, 4,000
compound tasks, and 52,000 methods. In an encoding for a
low progression bound (3 in this case), the number of actions
dominates the encoding due to the additionally needed push
actions. Of the remaining 717 cases, were we get a reduc-
tion, the highest absolute reduction is in Rover instances Nr.
11 at pb = 24, where we reduce from 15,121,320 actions to
32,938. In 216 cases we reduce by more than one order of
magnitude, in 53 by more than two, and in 10 cases by more
than three. Next, we compare the base and the PSeq∗ en-
codings, based on the 821 translations both performed. The
PSeq∗ encoding is larger in only 28 cases, which a maximum
number of actions of 23,760 in once instance and 3,740 for
the remaining 27. Of the remaining 755 cases, the reduction
is at least one order of magnitude in 142 cases, two in 40, and
three in 10. If we compare Push and PSeq∗ directly, we can
use 1,039 data points. In 637 cases the Push encoding was
smaller and in 395 cases the PSeq∗ encoding. In 7 cases both
models were exactly equal in size. The difference between
both models was never larger than one order of magnitude.

Conclusion
We have presented translations of grounded HTN planning
problems into (classical) SAS+ planning problems and de-
scribed several optimisations w.r.t. the current state of the
art. With our contributions, translation-based HTN planners
are now on par with the performance of dedicated HTN plan-
ners and the IPC 2020 planners, while lacking behind before.
Future work might investigate (partial) 2-Regularisation for
partially-ordered domains and more compact encodings for
the partial-order case. The impact of different classical plan-
ning techniques should be studied further, which might lead
to dedicated techniques and heuristics for the encodings.
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