The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Online Search With Best-Price and Query-Based Predictions

Spyros Angelopoulos', Shahin Kamali’, Dehou Zhang?

! Centre National de la Recherche Scientifique (CNRS)
2 University of Manitoba, Winnipeg, Manitoba, Canada
spyros.angelopoulos @lip6.1r, shahin.kamali @umanitoba.ca, zhangd37 @myumanitoba.ca

Abstract

In the online (time-series) search problem, a player is pre-
sented with a sequence of prices which are revealed in an
online manner. In the standard definition of the problem,
for each revealed price, the player must decide irrevocably
whether to accept or reject it, without knowledge of future
prices (other than an upper and a lower bound on their ex-
treme values), and the objective is to minimize the competi-
tive ratio, namely the worst case ratio between the maximum
price in the sequence and the one selected by the player. The
problem formulates several applications of decision-making
in the face of uncertainty on the revealed samples.

Previous work on this problem has largely assumed extreme
scenarios in which either the player has almost no information
about the input, or the player is provided with some power-
ful, and error-free advice. In this work, we study learning-
augmented algorithms, in which there is a potentially erro-
neous prediction concerning the input. Specifically, we con-
sider two different settings: the setting in which the predic-
tion is related to the maximum price in the sequence, as well
as well as the setting in which the prediction is obtained as
a response to a number of binary queries. For both settings,
we provide tight, or near-tight upper and lower bounds on the
worst-case performance of search algorithms as a function of
the prediction error. We also provide experimental results on
data obtained from stock exchange markets that confirm the
theoretical analysis, and explain how our techniques can be
applicable to other learning-augmented applications.

Introduction

The online (time series) search problem formulates a fun-
damental setting in decision-making under uncertainty. In
this problem, a player has an indivisible asset that wishes
to sell within a certain time horizon, e.g., within the next d
days, without knowledge of d. On each day i, a price p; is
revealed, and the player has two choices: either accept the
price, and accrue a profit equal to p;, or reject the price, in
which case the game repeats on day ¢ + 1. If the player has
not sold by day d (i.e., has rejected all prices p1,...,p4i—1),
then the last price pg is accepted by default.

This problem was introduced and studied in (El-Yaniv
et al. 2001) by means of competitive analysis. Namely, the
competitive ratio of the player’s strategy (or algorithm) is

Copyright (©) 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9652

defined as the worst case ratio, over all price sequences, of
the maximum price in the sequence divided by the price ac-
cepted by the player. Thus, the competitive ratio provides
a worst-case guarantee that applies even to price sequences
that are adversarially generated. Since the problem formu-
lates a basic, yet fundamental transaction setting, a player
that follows a competitively efficient algorithm has a safe-
guard against any amount of volatility with respect to prices.

(El-Yaniv et al. 2001) gave a simple, deterministic algo-
rithm that achieves a competitive ratio equal to /M /m,
where M, m are upper and lower bounds on the maximum
and minimum price in the sequence, respectively, and which
are assumed to be known to the algorithm. This bound is
tight for all deterministic algorithms. Randomization can
improve the competitive ratio to an asymptotically tight
bound equal to O(log(M/m)). See also the surveys (EI-
Yaniv 1998; Mohr, Ahmad, and Schmidt 2014).

Online search is a basic paradigm in the class of online fi-
nancial optimization problems. Several variants and settings
have been studied through the prism of competitive anal-
ysis; see, e.g., (Damaschke, Ha, and Tsigas 2009; Lorenz,
Panagiotou, and Steger 2009; Xu, Zhang, and Zheng 2011;
Clemente et al. 2016). The problem has also been studied as
a case study for evaluating several performance measures of
online algorithms, including measures alternative to compet-
itive analysis (Boyar, Larsen, and Maiti 2014; Ahmad, Pir-
ron, and Schmidt 2021). Extensions of online search such as
one-way trading and portfolio selection have also been stud-
ied extensively both within competitive analysis; e.g., (El-
Yaniv et al. 2001; Fujiwara, Iwama, and Sekiguchi 2011;
Borodin, El-Yaniv, and Gogan 2000), as well as from the
point of view of regret minimization; e.g., (Hazan and Kale
2015; Uziel and El-Yaniv 2020; Das, Johnson, and Banerjee
2014). We refer also to the survey (Li and Hoi 2014).

Previous work on competitive analysis of online financial
optimization problems, including online search, has largely
assumed a status of almost complete uncertainty in regards
to the input. Namely, the algorithm has either no knowledge,
or very limited knowledge concerning the input. This mod-
els a scenario that is overly pessimistic: indeed, in everyday
financial transactions, the players have some limited, albeit
potentially erroneous information on the market.

This observation illustrates the need for a study of on-
line financial optimization problems using the framework

of learning-enhanced competitive algorithms (Lykouris and
Vassilvitskii 2018; Purohit, Svitkina, and Kumar 2018).
Such algorithms have access to some machine-learned in-
formation on the input which is associated with a prediction
error 1. The objective is to design algorithms whose compet-
itive ratio degrades gently as the prediction error increases,
but also quantify the precise tradeoff between the perfor-
mance and the prediction error. Several online optimiza-
tion problems have been studied in this setting, including
caching (Lykouris and Vassilvitskii 2018; Rohatgi 2020),
ski rental and non-clairvoyant scheduling (Purohit, Svitk-
ina, and Kumar 2018; Wei and Zhang 2020; Angelopou-
los et al. 2020), makespan scheduling (Lattanzi et al. 2020),
rent-or-buy problems (Banerjee 2020; Anand, Ge, and Pan-
igrahi 2020; Gollapudi and Panigrahi 2019), secretary and
matching problems (Antoniadis et al. 2020b; Lavastida et al.
2021), bin packing (Angelopoulos et al. 2020; Angelopou-
los, Kamali, and Shadkami 2021), and metrical task sys-
tems (Antoniadis et al. 2020a). See also the survey (Mitzen-
macher and Vassilvitskii 2020).

To our knowledge, there is no previous work on compet-
itive analysis of online financial optimization problems in
the learning-enhanced model. Note that this is in contrast
to analysis based on regret minimization, which inherently
incorporates predictions as “experts” (Cover and Ordentlich
1996; Hazan and Megiddo 2007).

Contribution

We present the first results on competitive online search in
a setting that provides predictions related to the price se-
quence. We show that the obtained competitive ratios are
optimal under several models. We also introduce new tech-
niques for leveraging predictions that we argue can be appli-
cable to other learning-augmented online problems. More
precisely, we study the following two settings:

The prediction is the best price Here, the prediction is
the best price that the player is expected to encounter. We
further distinguish between the model in which no other in-
formation on this prediction is available to the player, which
we call the oblivious model, and the model in which an up-
per bound to the prediction error is known, which we call the
non-oblivious model. In the latter, the player knows that the
error is bounded by some given value H, i.e., n < H. The
oblivious model is more suitable for markets with very high
volatility (e.g., cryptocurrencies), whereas the non-oblivious
model captures less volatile markets (e.g., fiat currencies), in
which we do not expect the prices to fluctuate beyond a (rea-
sonable) margin. For both models, we give optimal (tight)
upper and lower bounds on the competitive ratio as function
of the prediction error. A novelty in the analysis, in com-
parison to previous work, is that we perform an asymmetric
analysis in regards to the error, namely we distinguish be-
tween positive and negative error, depending on whether the
best price exceeds the prediction or not. This distinction is
essential in order to prove the optimality of our results.

The prediction is given as response to binary queries In
this model, the prediction is given as a response to n binary
queries, for some fixed n. For example, each query can be

9653

of the form “will a price at least equal to p appear in the
sequence?”’. This model captures settings in which the pre-
dictions define ranges of prices, as opposed to the single-
value prediction model, and was introduced recently in the
context of a well-known resource allocation problem in Al,
namely the contract scheduling problem (Angelopoulos and
Kamali 2021). The prediction error is defined as the number
of erroneous responses to the queries, and we assume non-
oblivious algorithms which know an upper bound H < n
on the error. Online search was previously studied under an
error-free query model in (Clemente et al. 2016), however
their proposed solution is non-robust: a single query error
can force the algorithm to accept a price as bad as the small-
est price in the sequence.

We present two different algorithms in this model, and
prove strict upper bounds on their competitive ratios, as
functions of n and H. The first algorithm uses the n queries
so as to choose a price from n suitably defined intervals,
then accepts the first price in the sequence that is at least
as high as the chosen price; moreover, its performance is
guaranteed as long as at most half of the query responses are
correct. We then present an algorithm based on robust binary
search, which allows to select a suitable price from a much
larger space of 2" intervals, thus leading to improved perfor-
mance, at the expense of a relatively smaller (but still high)
tolerance to errors (i.e., the theoretical analysis assumes that
H < n/4). We expect that this result can find applications
in many other settings in which we must identify a “win-
ner” from a large set of candidates, in the presence of errors.
We complement the robust binary-search upper bound with
a theoretical lower bound on the competitive ratio in this
query model.

For both models, we evaluate experimentally our algo-
rithms on real-world data, in which the prices are the ex-
change rates for cryptocurrencies or fiat currencies. Our ex-
perimental results demonstrate that the algorithms can bene-
fit significantly from the predictions,in both models, and that
their performance decreases gently as the error increases.

Due to space limitations, we omit several technical proofs.

All omitted details can be found in (Angelopoulos, Kamali,
and Zhang 2021)

Notation and Definitions

Let 0 = (0;)%, be a sequence of prices revealed on days
1,d. Given an algorithm A, A(o) is the profit of A on o;
since o and A are often implied from context, we simply re-
fer to the profit of the algorithm as its accepted price. We
denote by p* the optimal price in the input. Given an algo-
rithm A, we denote its competitive ratio by CR(A). Recall
that m, M are the known lower and upper bounds on the
prices in the sequence, respectively. We denote by ON* the
optimal online algorithm without predictions, i.e., the algo-
rithm of competitive ratio /M /m.

A reservation algorithm with price ¢ is an algorithm that
accepts the first price in the sequence that is at least q. For
example, it is known that ON* can be described as a reser-

vation algorithm with price /M /m.

Algorithms with Best-Price Prediction

In this setting, the prediction is the highest price that will
appear in the sequence. In the remainder of the section, we
denote this prediction with p € [m, M], and recall that p*
is the optimal price. The prediction p is associated with an
error 7, defined as follows. If p* < p, we define 7 to be
such that 1 — n = p*/p, and we call this error negative, in
the sense that the best price is no larger than the predicted
price. Note also that the negative error ranges in [0, (M —
m)/M], that is, n < 1, in this case. If p* > p, we define 7
to be such that 1 + 1 = p*/p, and we call the error positive,
in the sense that the best price is larger than the predicted
price. Since 1 < p*/p < M /m, the positive error ranges in
(0, (M — m)/m)]. Naturally, the online algorithm does not
know neither the error value, nor its parity. The parity is a
concept that we introduce for the benefit of the analysis.

Depending on the volatility of the market, the positive and
negative error can fluctuate within a certain range. Let H,,,
H,, denote upper bounds on the negative and positive errors,
respectively, i.e., H, < (M —m)/M, and H, < (M —
m)/m. We distinguish between non-oblivious and oblivious
algorithms, namely between algorithms that know H,, and
H,,, and algorithms that do not, respectively.

Oblivious Algorithms

We first study oblivious algorithms, and show match-
ing upper and lower bounds on the competitive ratio.
Given algorithm A with prediction p, define the function
sa(p,m,M) € [m,M] as the smallest price revealed on
day 1 (i.e., the smallest value of p;) such that A accepts that
price on day 1. Define also r4 = sa(p, m, M)/p. We first
show a lower bound on the competitive ratio.

Theorem 1. For any algorithm A with prediction p,

(I=n)/ra, fn<l-ra
CR(A) >
(){(1—17)M/m, ifn>1—ra,
if the error is negative, and
(L+m)/ra, fn>ra—1
CR(A) >
()_{M/m, fn<ra—1,

if the error is positive.

Proof. Case 1: 1 is negative, i.e., p* = p(1 —n). The adver-
sary chooses p* = (1 — n) M, which implies that p = M.

Suppose first that 74 < 1 — n, hence r4 - p < p*. The
adversary presents the sequence r 4 - p, p*, ..., p* . From the
definition of r 4, A accepts the price on day 1, and CR(A) >
p*/(ra-p)=(1—=n)/ra.

Next, suppose thatr4 > 1 —7. Wehavers-p > (1—n)-
p = p*. The adversary presents the sequence p*,m, ..., m.
By definition, A rejects the price on day 1, hence its profit is
m, and CR(A) > p(1 —n)/m = (1 —n)M/m.
Case 2: n is positive, i.e., p* = p(1l + n). The adversary
chooses p* = M, which implies that p = M /(1 + n).

Suppose first that 4 < 1+, thatis, r4 -p < p*. The ad-
versary chooses the sequence of prices 74 - p, p*, p*, ..., p*.
By definition, A accepts on day 1, therefore CR(A) >

p*/(ra-p)=(1+mn)/ra.

9654

Next, suppose that 4 > 1 + 7, which implies r4 - p >
(14 1n)-p = p* = M. The intuition here is that A does
not accept on day 1 a price equal to M, which is clearly a
bad decision. The adversary chooses the sequence of prices
M,m,...,m, and thus CR(A) > M/m. O

Next, we show a class of algorithms whose competitive
ratio matches Theorem 1. For any r > 0, define the oblivious
reservation algorithm, named ORA, as the algorithm with
reservation price r - p, given the prediction p.

Theorem 2. The algorithm ORA, (with reservation price
r - p) has competitive ratio

(1_77)/7’7 lf77§1—7“
CR(ORA,) < ’
()_{(177)M/m, ifn>1-r,
if the error is negative, and
(1+77)/7’7 lfT?ZTfl
CR(ORA,) <
(){M/mv lf77<7n_17

if the error is positive.

Figure 1 illustrates the competitive ratio of ORA,,
CR(ORA,.), as function of 7, for different values of the pa-
rameter r. First, we observe that there is no value of 7* such
that ORA,.» dominates ORA,. with r # r*. More precisely,
for any pair of 71 and ro, there are some values of 7 for
which ORA,, has a better competitive ratio while for other
values of 17, ORA,, has a better competitive ratio.

For positive error, the competitive ratio degrades linearly
in the error with slope 1/r. Note however that if r = 1.5,
we have CR(ORA,) = M/m forn < r —1 = 0.5, since
for positive error in (0,0.5), ORA,. does not trade at day 1
even if the trading price is M. For other values of r, we have
r < n+ 1 for which CR(ORA,) < (1 +n)/r, and hence the
algorithm performs better when r becomes larger.

For negative but small values of error, we have that
CR(ORA,) = (1 — n)/r, thus the performance improves
linearly in error, again with slope 1/r. For larger values, i.e.,
if p > 1 — r, there is a “jump” in the competitive ratio,
which increases from 1 to (1 — 7)M/m. This is because
when 17 > 1 — r, the reservation price becomes larger than
the best price, and the algorithm is forced to trade for the
minimum price at the last day in the worst case. Follow-
ing this jump, CR(ORA,.) improves linearly with the error,
this time with slope M /m. This improvement corresponds
to the smaller upper bound value of the best price (the opti-
mal profit) as the negative error increases.

Even though ORA, is optimal according to Theorems 1
and 2, its competitive ratio may be worse than ON* for cer-
tain ranges of error (namely, for small negative or large pos-
itive error). However, this is unavoidable: the next corollary
shows that there is no oblivious algorithm with best-price
prediction that improves upon ON* for all values of the er-
ror, i.e., cannot dominate ON* for all values of error.

Corollary 1. For any oblivious algorithm A with best-price
prediction, there exists some range of error 1 for which
CR(A) > /M/m.

=-r=05
12+

r=0.75

r=1

competitive ratio

0 : : : :
0.5 0.0 05
negative «<— n — positive

Figure 1: The competitive ratio of ORA,. as function of the
error 7, and the parameter r. Here we choose M/m = 10,
and thus the ranges of negative and positive error are [0, 0.9]
and (0, 9), respectively.

Non-oblivious Algorithms

In this section, we show upper and lower bounds on the com-
petitive ratio, in the setting in which the algorithm knows
upper bounds H,, and H,, on the negative and positive error,
respectively.

We call an algorithm A robust if for all values of M and
m, and for all values of 7 (negative or positive), CR(A) <

v/ M /m. In light of Corollary 1, without knowing H,, and
H,,, no online algorithm can be robust. In what follows, we
will show that there exist robust non-oblivious algorithms.
In particular, we define the algorithm ROBUST-MIX which

works as follows. If H,, > 1 — y/m/M then ROBUST-MIX
ignores the prediction and applies ON*. Otherwise, i.e., if

H, < 1-—+/m/M, ROBUST-MIX is an algorithm with
reservation price equal to p’ = p(1 — H,,).

Theorem 3. The algorithm ROBUST-MIX (with reservation
price r - p) has competitive ratio at most

{(1_77)/(1_Hn)a lan <1- \/m/M
M/m, ifH, >1—+/m/M,

if the error is negative, and at most

(1+m)/(1—Hy), ifH, <1—\/m/M
M/m, if Hy > 1 — /m/M,
if the error is positive.

We also prove the following matching lower bound.

Theorem 4. Any robust non-oblivious algorithm has com-
petitive ratio at least

min{(1 —7)/(1 — H,),/M/m}, fornegative error

min{(1+7n)/(1 — H,),/M/m}, for positive error.
Proof. Let A denote a robust non-oblivious algorithm.
Let s4(p,m,M,H,,H,) € [m,M] be the smallest

price for which A accepts on day 1. Define r4
Sf4(p7m7M7HnaHp)/p'

9655

We use the assumption that A is robust to establish that
ra < 1 — H,. By way of contradiction, suppose that
H,, > 1 — r4. Fix a value of positive error 7, and let € > 0
be any small positive value such that e < min{H, — 1 +
ra,Npy/m/M}. By Theorem 1, for a value of negative er-
ror equal to 77, = 1 — 74 + ¢, the competitive ratio of A must
be at least (1 — 0,)M/m = (ra — €)M /m. Given that A is
robust, (r4 —e)M/m < /M /m,thatis,r4 < \/m/M+e
Now by Theorem 1, for the positive error 7,,, we have

CR(A) > min{(1 +n,)/ra, M/m}

> min{(1+n,)/(v/m/M +¢), M/m}
M/m.

Since r4 < 1 — H,, for any values of negative error 7,
we have n < 1 — r4 and by Theorem 1, CR(4) > (1 —

n)/ra > (1 —n)/(1 — Hy). For values of positive error 7,
CR(A) = min{(1+n)/ra, M/m} > (14+n)/(1=Hy). [

>

Query-Based Predictions

In this section, we study the setting in which the prediction
is in the form of responses to n binary queries Q1, ..., Qn,
for some fixed n. Hence, the prediction P is an n-bit string,
where the i-th bit is the response to ();. We assume that the
algorithm knows an upper bound H on 7). Therefore, the re-
sponses to least k — H queries are guaranteed to be correct,
and the responses to at most H queries may be incorrect (or
wrong). We assume the setting of non-oblivious algorithms
in this model. This is because without an upper bound on the
error, the algorithm is in a state of complete lack of knowl-
edge concerning the truthfulness of the queries, and it is not
obvious how to use them in a meaningful way.

We present two algorithms, both of which use compari-
son queries concerning the best price p*. That is, the queries
are in the form of “Is p* < b, for some given value b?”. In
our first algorithm, the values of b form a strictly increasing
sequence, which allows us to narrow p* within an interval
(range) from a candidate set of n intervals. The second algo-
rithm implements a robust version of binary search, in which
the candidate set of intervals is exponential in n, hence we
can narrow p* within an interval of much smaller size, and
thus obtain a much better estimate on p*.

Robust Linear Interval Search Algorithm

Define m = ag,as,...,a, = M so that r, = ay/ag
as/ay = an/an 1, which implies that r,
(M/m)*/™, Deﬁne the n intervals E4, ..., E,, where E;
[m,a;) (we have 1 < ¢ < n). Query @; asks whether the
best price p* is in F; or not, and the response denoted by
“1” or “0”, respectively.

Consider the n-bit string P formed by responses to
Q1,...,Qy. If all responses were correct, then P would
consist of j Os followed by (n — j) 1s for some j € [1,n].
This would prove that p* is in the range [a;, a;41). The algo-
rithm then could use a; as its reservation price, which yields
a competitive ratio of at most “L£L = (M /m)Y/™.

We describe the algorithm Robust Linear Interval Search
(RL1S), that works in the presence of error. From the way

queries are defined, it may be possible to detect and correct
some of the wrong responses in P as follows. Suppose the
response to (Q; is 1, while the response to at least H + 1
queries (); that come after); (that is, j >) are 0. Given
that the number of incorrect responses cannot exceed H, we
infer that the response to (); must be incorrect. With a simi-
lar argument, if the response to @; is O and the responses to
at least H + 1 queries that come before (); are 1, then the re-
sponse to (); must be incorrect. Thus RLIS starts with a pre-
processing phase which corrects these two types of incorrect
responses. This results in an updated prediction string P’ in
which every 1-bit is followed by at most H 0-bits and every
0-bit is preceded by at most H 1-bits.

If all responses in P’ are 0, RLIS sets its reservation price
to a,,—pg+1. Otherwise, let 7; denote the index of the first 1
in P’, and let « < H be the number of Os after index ;.
Define I = max{0,i; — (H + 1 — «)}, then RLIS sets its
reservation price to a;.

Theorem 5. Algorithm RLIS has competitive ratio at most
(M /m)QH / n

Proof. First suppose all responses in P’ are 0. There can
only be a suffix of at most H O-responses in P’ which are in-
correct, that is, p* is in the range [a,,_ gz —1), M]. Given that
RLIS has reservation price a,,_(g—1), and p* < M, its com-
petitive ratio is at most M /a,,_ 1y = (M/m)H-1/",

Next, suppose that P’ contains a 1-bit. We consider two
cases, depending on the presence or absence of a 0-bit in P’
after index ;. If there is no O-response after index ¢; (that is
a = 0), then p* < a;, 1 y—1 (because at most H queries can
be wrong), while the profit of RLIS is at least a;. The com-
petitive ratio is thus at most a;, 1 7 1/a; < (M /m)>/™.

Next, suppose that there is a O-response after index i1,
and let jo > 41 denote the index of the last such 0 in P’.
We will show that p* > a;, where a; is the reservation price
of RLIS. Suppose first that the response to ();, is incorrect.
Then, p* > a;,. Suppose next that the response to ();, is
correct. In this case, the o O-responses after index ¢; must be
wrong. Since there can be up to H errors, at most (H —) 0-
responses that immediately precede index ¢; can be wrong.
Therefore, p* > a; where | = max{0,i; — (H +1 — o)}
This also implies that RLIS has profit at least a;.

To finish the proof, we need an upper bound on p*. If
the response to @)}, is incorrect, then p* < a;,. Otherwise,
there are jo — 71 — a wrong l-responses before jj, from
the definition of jy. Therefore, up to H — (jo — i1 — «) 1-
responses that follow jy can also be wrong. That is, p* can be
as large as a;j/, where j' = min{n, jo+H —(jo—i1—a)} =
min{n, H + i1 + «o}. Given that the reservation price is a;,
the competitive ratio of the algorithm is therefore at most
ay far < (r)?H = (M/m)?HI". O

Robust Binary Interval Search Algorithm

Algorithm RLIS uses the queries so as to select a reservation
price from n candidate intervals. We will now show how
to increase this number to 2" using a new Robust Binary
Search algorithm (RBIS). Partition the interval [m, M| into
2™ intervals Ly, Lo, ..., Lon, where L; = (a;—1, a;], ag =

9656

m, and agn = M. We define the a;’s so that p = a1 /ag =
az/a1 = ... = agn [agn-1, where p = (M /m)'/?".

Suppose that Ly, ..., Lon correspond to the 2" leaves of
a binary tree T of height n, and that the best price p* is in the
interval L, for some z € [1,2"]. With perfect queries (zero
error), it is possible to find L, using binary search on T,
which leads to a competitive ratio a,/a,_1 = (M/m)'/?",
by choosing a reservation price equal to a,_;. This is the
approach of (Clemente et al. 2016). Unfortunately this sim-
ple approach is very inefficient even if a single error occurs
(e.g., if Q1 receives a wrong response, the search will end in
aleaf L,,, where |z — y| is as large as 2"/2.)

Searching with erroneous queries is a well-studied topic,
see e.g., the book (Cicalese 2013). A related problem to ours
was studied in (Rivest et al. 1980) and (Disser and Kratsch
2017), however there are important differences with respect
to our setting. First, these works consider a “dual” problem
to ours in which the objective is to minimize the number
of queries so as to locate an exact leaf in the binary tree.
Second, there are certain significant implementation issues
that need to be considered. Specifically, (Disser and Kratsch
2017) assumes that when reaching a leaf, an oracle can re-
spond whether this is the sought element or not (in other
words, the algorithm receives an error-free response to a
query of the form “is an element exactly equal to =”"). For
our problem and, arguably, for many other problems with
query-based predictions, this assumption cannot be made.
We propose a new algorithm using some ideas of (Disser
and Kratsch 2017) that is applicable to our problem, and has
an efficient implementation.

Algorithm Description Recall that 7" is a binary search
tree with leaves Ly, Lo, ..., Lo~ and that we search for the
leaf L. We denote by [(v), r(v) the left and right child of
v, respectively, and by T, the subtree rooted at v.

We describe the actions of the algorithm. Suppose the al-
gorithm is at node v at the beginning of iteration ¢ (in the
first iteration, v is the root of 7). The algorithm first asks a
main query, defined as follows: “Is x < ¢?”, where ¢ is such
that L, is the rightmost leaf of the left subtree of v. We de-
note by main (v) the response to this query. As we discuss
shortly, the search may visit the same node multiple times,
so we emphasize that main (v) is the response to the most
recent main query at v. Next, the algorithm finds the first an-
cestor of v in T, say w, for which main (w) #main (v).
We denote this ancestor of v by anc(v), if it exists, and de-
fine anc(v) = (), otherwise. The algorithm continues by ask-
ing a checkup query which is a repetition of the main query
asked for w. We denote the response to the checkup query
as check (v). The algorithm continues by taking one of
the following actions, after which iteration ¢ + 1 begins:

e Move-down: If anc(v) @ or check (v)
main (anc(v)), RBIS moves one level down in T'. That
is, if main (v) is Yes (respectively No), RBIS moves to
I(v) (respectively r(v)).

e Move-up: If check (v) #main (anc(v)), RBIS moves
one level up to the parent of v. In this case, RBIS incre-
ments a counter mu, which is originally set to 0.

**ON* ==M @r=050 4r=0.75

22500 T

r=1.00

r=1.25

r=1.50

20000 -

17500 -

15000 -

average profit

12500 -

10000

-0.4 -0.2 0.0 0.2

negative « n — positive

Figure 2: Average profit of ORA, as a function of the error
1 and the parameter 7.

The algorithm continues as described above until it ex-
hausts its number n of queries. Suppose the search stops at
some node u, and let a,, denote the (H —mu,,q4)-th ancestor
of u (or the root, if such an ancestor does not exist), where
MUenq 18 the content of mu at the end of the search. Let
L; be the leftmost leaf in T}, i.e the subtree rooted at a,.
Then RBIS returns this leftmost leaf in 7}, . In particular, for
the online search problem, the algorithm sets its reservation
price to a;—1.

Analysis We first show the following useful lemma.

Lemma 1. The following hold: (i) Node a,, is at depth at
least |n/2| — 2H in T; and (ii) L, is a leaf of T,,.

Theorem 6. For every H < n/4, RBIS has competitive ra-
H—n
tio at most (M /m)?" .

Proof. Let L; = [aj—1,a;) and L, = [a,_1,a,) denote the
leftmost and rightmost leaves in the subtree rooted at a,,. Re-
call that the algorithm selects a;_; as its reservation price,
while Lemma 1 guarantee ensures that L,, and thus p* is
located in the subtree rooted at a,,, that is, p* < a,.. There-
fore, the competitive ratio of RBIS is at most a,/a;_;
p" ~!*+1. Moreover, by Lemma 1, since a,, is at depth at least
d = |n/2| — 2H of T, the number of leaves in the sub-
tree rooted at a,, is at least 2"~%¢ < 27/2+2H 444 thus RBIS
has competitive ratio at most p2"~* < (M/m)2"* " /2" =

(M/m)" "

O

Lower bounds We can complement Theorem 6 with the
following impossibility result, assuming comparison-based
queries over a binary search tree.

Theorem 7. The competitive ratio of any online search al-
gorithm with n comparison-based queries over a binary tree
. 22H7n

is at least (M /m)

Experimental Evaluation
In this section we present an experimental evaluation of the
performance of our algorithms.!

"https://github.com/DehouZhang/Online- Search- with-
Predictions and https://github.com/shahink84/OnlineSearchRBIS

9657

ON* ==M ®H=01 AH=02 =H=03 ¢H=04 ®H=05
22500 T
20000 :_"_—_—_"";"\::i; B S Y B
S 7500 T x\ﬁ\
Q
15000 T k_;
)
% 12500 + o
10000 1+ ; ; ;
-0.50 0.25 0.00 0.25 0.50

negative < n — positive

Figure 3: Average profit of ROBUST-MIX as a function of
the error 7 and the bound H.

Benchmarks and Input Generation

We evaluate our algorithms on benchmarks generated from
real-world currency exchange rates, which are publicly
available on several platforms. Specifically, we rely on (EA
Trading Academy 2021). We used two currency exchange
rates (Bitcoin—-to-USD and Ethereum-to-USD) and
two fiat currency exchange rates (Euro-to-USD and
Yen-to-CAD). In all cases, we collected the closing daily
exchange rates for a time horizon starting on January 1st,
2018 and ending on September 1st, 2021, which we use
as the daily prices. Due to space limitations, we report re-
sults on the Bitcoin—-to-USD Benchmark, and we refer
to (Angelopoulos, Kamali, and Zhang 2021) for additional
benchmarks.

For each benchmark, 20 instances Iy, Is, ..., I5g of the
online search problem are generated as follows. We select
20 starting days from the time horizon so that consecutive
starting days are evenly distanced. Each starting day and the
199 days that follow it form an instance (of length 200) of
the search problem. For each such instance, we select m and
M to be respectively the minimum and maximum exchange
rates. In all experiments, the reported profits are the average
taken over these 20 instances. In particular, we use the aver-
age profit of the optimal online algorithm ON* (without any
prediction) as the baseline for our comparisons. Similarly,
the average value of the best prices (over all instances) is
reported as an upper bound for attainable profits.

Algorithms with Best-Price Prediction

We test our algorithms using several values of prediction er-
ror. We select 500 values of negative error equally distanced
in [0,0.5], as well as 500 equally-distanced values of posi-
tive error in [0, 0.5]. For each selected value, say 7, and for
each instance I, of the problem, we test our algorithms for
prediction error equal to 7, that is, the predicted value is
generated by applying the error 7y on the best price in I,.
The average profit of the algorithm over all instances is re-
ported as its average profit for 79. Choosing < 0.5 implies
that the prediction p is at least half and at most twice the best
price. For real data, such as currency exchange prices, this
range of error is sufficient to capture all instances.

““ON* ==M @RLIS(H=3) 4RLIS(H=5)

RLIS (H=13)

RLIS (H=8) & RLIS (H = 10)

25000

20000

15000

average profit

10000

5000 t t t t t t

6
error (n)

Figure 4: Average profit of RLIS as a function of error (we
have n < H).

Oblivious Algorithms We evaluate ORA, with different
values of the parameter » € {0.5,0.75,1.0,1.25,1.5} (re-
call that rp is the reservation price of an algorithm in this
class). Figure 2 illustrates the average profit for instances
generated from the Bitcoin-to-USD benchmark. The
findings are consistent with Theorem 2. Specifically, for pos-
itive error, for all reported values of r, ORA,. degrades with n
(consistently with the linear increase in the competitive ratio
in Theorem 2). For small values of negative error, the aver-
age profit increases by 7, followed by a “drop” when 7 takes
a certain larger value (e.g., when 7 becomes 0.251 for the al-
gorithm with » = 0.75). This follows precisely Theorem 2,
as illustrated in Figure 1. For larger values of negative error,
the algorithms gain a fixed profit (15890 in the figure), which
is the average value of the last-day price. For these values of
error, the algorithm sets a reservation price that is too large,
and results in the player accepting the last-day price. Last,
we note that, as predicted by our competitive analysis, no
algorithm dominates another in terms of collected profit.

The results demonstrate that predictions about best price
lead to profit gains even for oblivious algorithms. In par-
ticular, for all values of error in the reported range (for all
n < 0.5), algorithms with » € {0.75,1.00, 1.25,1.50} re-
sult in better profit when compared to ON*.

Non-oblivious Algorithms We tested ROBUST-MIX with
upper bound H on both the positive and negative error,
that is, H = H,, = H, for H € {0.1,0.2,0.3,0.4,0.5}.
For each such value of H, and for each selected error 7,
we report the average profit over the 20 instances from the
Bitcoin-to-USD benchmark (Figure 3). Since the set-
ting is non-oblivious, we only report profits for n < H.

We observe that all algorithms improve as the negative er-
ror increases and they degrade as the positive error increases.
This is consistent with Theorem 3. Algorithms with smaller
H have an advantage over those with larger H, again consis-
tently with Theorem 3. These results demonstrate that non-
oblivious algorithms can benefit from best-price predictions.

Query-Based Algorithms

In our experiments, we set the number of queries to n = 25.
We test RLIS and RBIS with H taken from {3, 5, 8,10, 13},
and for all values of 7 € [0, H]. Let Alg denote any of our

9658

< ON* ==M ®RBIS (H=3) 4 RBIS (H=5)

RBIS (H=13)

RBIS (H=8) + RBIS (H=10)

25000

20000

15000

10000

average profit

5000

error (n)

Figure 5: Average profit of RBIS as a function of error (we
have n < H).

algorithms (RLIS or RBIS for a certain value of H). For each
instance [, from our benchmarks and each selected value of
7o, the following process is repeated 1000 times for Alg.
First, the (correct) responses to the 25 queries asked by Alg
are generated; then out of these 25 responses, 7 of them are
selected uniformly at random, and flipped. This is the predic-
tion P that is given to Alg; we run Alg with this prediction,
and record its profit. After running 1000 tests, the average
value of the reported profits is recorded as the average profit
of Alg for I, for a value of error equal to 7.

Figures 4 and 5 depict the average profit (as a function
of) for RLIS and RBIS, respectively, for inputs generated
from the Bitcoin-to-USD benchmark. Since this is a
non-oblivious setting, the profit is only reported for values
of n < H. We observe that both algorithms attain profit
significantly better than ON* for reasonable values of error,
and their profit degrades gently with the error. In particular,
RBIS with H € {3, 5} accrues an optimal profit. For a fixed
value of 7, smaller values of H yield to better profit for both
algorithms. This is consistent with Theorems 5 and 6, which
bound the competitive ratios as an increasing function of H.
We also observe that RBIS performs better than RLIS, which
is again consistent with Theorems 5 and 6. We also observe
that even if H is relatively large (e.g., H = 8), RBIS results
in better profit in comparison to ON*.

Conclusion

We gave the first theoretical study, with supporting experi-
mental evaluation over real data, of a fundamental problem
in online decision making, and in a learning-augmented set-
ting. Despite the simplicity of the problem in its standard
version, the learning-augmented setting is quite complex and
poses several challenges. Future work should expand the
ideas in this work to generalizations of online search such
such as one-way trading and online portfolio selection.

Our robust binary search algorithm can be useful in other
query-based optimization settings, with or without predic-
tions, since it addresses a broad setting: select a “good” can-
didate, using noisy queries, while maximizing the size of the
candidate space (exponential in the number of queries).

Acknowledgments

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) [fund-
ing reference number DGECR-2018-00059]. This work was
also partially funded by the grant ANR-19-CE48-0016 from
the French National Research Agency (ANR), the CNRS
Emergence project ONFIN, and the FMJH Program PGMO.

References

Ahmad, L.; Pirron, M.; and Schmidt, G. 2021. Analysis
of threat based algorithm using different performance mea-
sures. RAIRO: Recherche Opérationnelle, 55: 2393.

Anand, K.; Ge, R.; and Panigrahi, D. 2020. Customizing ML
Predictions for Online Algorithms. In International Confer-
ence on Machine Learning (ICML), 303-313. PMLR.

Angelopoulos, S.; Diirr, C.; Jin, S.; Kamali, S.; and Renault,
M. P. 2020. Online Computation with Untrusted Advice.
In Proceedings of the 11th Innovations in Theoretical Com-
puter Science Conference (ITCS), 52:1-52:15.

Angelopoulos, S.; and Kamali, S. 2021. Contract Schedul-
ing With Predictions. In 35th AAAI Conference on Artificial
Intelligence, 11726-11733. AAAI Press.

Angelopoulos, S.; Kamali, S.; and Shadkami, K. 2021. On-
line Bin Packing with Predictions. arXiv 2102.03311.

Angelopoulos, S.; Kamali, S.; and Zhang, D. 2021. Online
Search With Best-Price and Query-Based Predictions. arXiv
2112.01592.

Antoniadis, A.; Coester, C.; Elids, M.; Polak, A.; and Simon,
B. 2020a. Online metric algorithms with untrusted predic-
tions. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 345-355.

Antoniadis, A.; Gouleakis, T.; Kleer, P.; and Kolev, P. 2020b.
Secretary and Online Matching Problems with Machine
Learned Advice. In Proceedings of the 33rd Conference on
Neural Information Processing Systems (NeurIPS).

Banerjee, S. 2020. Improving Online Rent-or-Buy Algo-
rithms with Sequential Decision Making and ML Predic-
tions. In Proceedings of the 33rd Conference on Neural In-
formation Processing Systems (NeurIPS).

Borodin, A.; El-Yaniv, R.; and Gogan, V. 2000. On the com-
petitive theory and practice of portfolio selection. In Latin
American symposium on theoretical informatics, 173—196.
Springer.

Boyar, J.; Larsen, K. S.; and Maiti, A. 2014. A compari-
son of performance measures via online search. Theoretical
Computer Science, 532: 2—13.

Cicalese, F. 2013. Fault-Tolerant Search Algorithms - Re-
liable Computation with Unreliable Information. Mono-
graphs in Theoretical Computer Science. An EATCS Series.
Springer.

Clemente, J.; Hromkovi¢, J.; Komm, D.; and Kudahl, C.
2016. Advice complexity of the online search problem. In
International Workshop on Combinatorial Algorithms, 203—
212. Springer.

9659

Cover, T. M.; and Ordentlich, E. 1996. Universal portfolios
with side information. IEEE Transactions on Information
Theory, 42(2): 348-363.

Damaschke, P.; Ha, P. H.; and Tsigas, P. 2009. Online search
with time-varying price bounds. Algorithmica, 55(4): 619—
642.

Das, P.; Johnson, N.; and Banerjee, A. 2014. Online portfo-
lio selection with group sparsity. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 28.

Disser, Y.; and Kratsch, S. 2017. Robust and Adaptive
Search. In Vollmer, H.; and Vallée, B., eds., Proceedings
of the 34th Symposium on Theoretical Aspects of Computer
Science, STACS, volume 66 of LIPIcs, 26:1-26:14.

EA Trading Academy. 2021. Currency exchange rates.
https://eatradingacademy.com/software/forex-historical-
data/. Accessed: 2021-09-05.

El-Yaniv, R. 1998. Competitive solutions for online financial
problems. ACM Computing Surveys (CSUR), 30(1): 28-69.

El-Yaniv, R.; Fiat, A.; Karp, R. M.; and Turpin, G. 2001.
Optimal search and one-way trading online algorithms. Al-
gorithmica, 30(1): 101-139.

Fujiwara, H.; Iwama, K.; and Sekiguchi, Y. 2011. Average-
case competitive analyses for one-way trading. Journal of
combinatorial optimization, 21(1): 83-107.

Gollapudi, S.; and Panigrahi, D. 2019. Online algorithms for
rent-or-buy with expert advice. In Proceedings of the 36th

International Conference on Machine Learning (ICML),
2319-2327.

Hazan, E.; and Kale, S. 2015. An online portfolio selection
algorithm with regret logarithmic in price variation. Mathe-
matical Finance, 25(2): 288-310.

Hazan, E.; and Megiddo, N. 2007. Online learning with prior
knowledge. In International Conference on Computational
Learning Theory, 499-513. Springer.

Lattanzi, S.; Lavastida, T.; Moseley, B.; and Vassilvitskii, S.
2020. Online scheduling via learned weights. In Proceed-
ings of the 14th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 1859-1877.

Lavastida, T.; Moseley, B.; Ravi, R.; and Xu, C. 2021.
Learnable and Instance-Robust Predictions for Online
Matching, Flows and Load Balancing. In Mutzel, P.; Pagh,
R.; and Herman, G., eds., Proceedings of the 29th Annual
European Symposium on Algorithms (ESA), volume 204 of
LIPIcs, 59:1-59:17. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik.

Li, B.; and Hoi, S. C. 2014. Online portfolio selection: A
survey. ACM Computing Surveys (CSUR), 46(3): 1-36.

Lorenz, J.; Panagiotou, K.; and Steger, A. 2009. Optimal
algorithms for k-search with application in option pricing.
Algorithmica, 55(2): 311-328.

Lykouris, T.; and Vassilvitskii, S. 2018. Competitive
Caching with Machine Learned Advice. In Proceedings

of the 35th International Conference on Machine Learning
(ICML), 3302-3311.

Mitzenmacher, M.; and Vassilvitskii, S. 2020. Algorithms
with Predictions. In Roughgarden, T., ed., Beyond the Worst-
Case Analysis of Algorithms, 646—-662. Cambridge Univer-
sity Press.

Mohr, E.; Ahmad, I.; and Schmidt, G. 2014. Online algo-
rithms for conversion problems: a survey. Surveys in Oper-
ations Research and Management Science, 19(2): 87-104.

Purohit, M.; Svitkina, Z.; and Kumar, R. 2018. Improving
Online Algorithms via ML Predictions. In Proceedings of
the 31st Conference on Neural Information Processing Sys-
tems (NeurIPS), volume 31, 9661-9670.

Rivest, R. L.; Meyer, A. R.; Kleitman, D. J.; Winklmann, K.;
and Spencer, J. 1980. Coping with Errors in Binary Search
Procedures. J. Comput. Syst. Sci., 20(3): 396-404.

Rohatgi, D. 2020. Near-optimal bounds for online caching
with machine learned advice. In Proceedings of the 14th
ACM-SIAM Symposium on Discrete Algorithms (SODA),
1834-1845.

Uziel, G.; and El-Yaniv, R. 2020. Long-and Short-Term
Forecasting for Portfolio Selection with Transaction Costs.
In International Conference on Artificial Intelligence and
Statistics, 100—-110. PMLR.

Wei, A.; and Zhang, F. 2020. Optimal Robustness-
Consistency Trade-offs for Learning-Augmented Online Al-
gorithms. In Proceedings of the 34th Annual Conference on
Neural Information Processing Systems (NeurIPS).

Xu, Y.; Zhang, W.; and Zheng, F. 2011. Optimal algorithms
for the online time series search problem. Theoretical Com-
puter Science, 412(3): 192-197.

9660

