
Unsupervised Causal Binary Concepts Discovery with VAE
for Black-Box Model Explanation

Thien Q. Tran, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma
1 University of Tsukuba

2 Riken AIP
thientquang@mdl.cs.tsukuba.ac.jp, {fukuchi,akimoto,jun}@cs.tsukuba.ac.jp

Abstract

We aim to explain a black-box classifier with the form: ‘data
X is classified as class Y because X has A, B and does not
have C’ in which A, B, and C are high-level concepts. The
challenge is that we have to discover in an unsupervised man-
ner a set of concepts, i.e., A, B and C, that is useful for ex-
plaining the classifier. We first introduce a structural genera-
tive model that is suitable to express and discover such con-
cepts. We then propose a learning process that simultaneously
learns the data distribution and encourages certain concepts
to have a large causal influence on the classifier output. Our
method also allows easy integration of user’s prior knowledge
to induce high interpretability of concepts. Finally, using mul-
tiple datasets, we demonstrate that the proposed method can
discover useful concepts for explanation in this form.

Introduction
Deep neural network has been recognized as the state-of-
the-art model for various tasks. As they are being applied
in more practical applications, there is an arising consensus
that these models need to be explainable, especially in high-
stake domains. Various methods are proposed to solve this
problem, including building a model with interpretable com-
ponents and post-hoc methods that explain trained black-box
models. We focus on the post-hoc approach and propose a
novel causal concept-based explanation framework.

We are interested in the symbolic explanation: ‘data X is
classified as class Y because X has A, B and does not have
C’ where A, B, and C are high-level concepts. From the lin-
guistic perspective, such an explanation communicates us-
ing nouns and their part-whole relation, i.e., the semantic re-
lation between a part and the whole object. In many classifi-
cation tasks, especially image classification, the predictions
rely on binary components; for example, we can distinguish
a panda from a bear by its white patched eyes or a zebra from
a horse by its stripe. This is also a common way humans
use to classify categories and organize knowledge (Garden-
fors 2014). Thus, an explanation in this form should excel
in providing human-friendly and organized insights into the
classifier, especially for tasks that involve higher-level con-
cepts such as checking the alignment of the black-box model

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Binary concept middle stroke and some global
variants. Border color indicates the classifier output.

with experts. From now on, we refer to such a concept as bi-
nary concept. However, we also note that binary concepts
might be insufficient for representing useful concepts with
continuous domain, such as color or length.

Our method employs three different notions in the ex-
planation: causal binary switches, concept-specific variants
and global variants. We illustrate these notions in Figure 1.
First, causal binary switches and concept-specific variants,
that come in pair, represent different binary concepts. In par-
ticular, causal binary switches control the presence of each
binary concept in a sample. Alternating this switch, i.e., re-
moving or adding a binary concept to a sample, affects the
prediction of that sample (e.g., removing the middle stroke
turns E to C). In contrast, concept specific variants, whose
each is tied to a specific binary concept, express different
variants within a binary concept that do not affect the pre-
diction (e.g., changing the length of the middle stroke does
not affect the prediction). Finally, global variants, which are
not tied to specific binary concepts, represent other variants
that do not affect the prediction (e.g., skewness).

Our goal is to discover a set of binary concepts that can
explain the classifier using their binary switches in an un-
supervised manner. Similar to some existing works, to con-
struct conceptual explanations, we learn a generative model
that maps each input into a low-dimensional representation
in which each factor encodes an aspect of the data. There are
three main challenges in achieving our goal. (1) It requires
an adequate generative model to express the binary concepts,
including the binary switches and the variants within each
concept. (2) The discovered binary concepts must have a
large causal influence on the classifier output. We want to
avoid finding confounding concepts that correlate with but
do not cause the prediction. For example, the sky concept ap-
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(a) Saliency methods

(b) VSC model (c) O’Shaughnessy et al. (2020) (d) Proposed (causal factors) (e) Proposed (non-causal factors)

Figure 2: Explanation methods for a letter classifier. The border color indicates the prediction. (a) Saliency-based methods.
(b) Disabling the most active latents of class E in VSC model (Tonolini, Jensen, and Murray-Smith 2020). (c) Controlling the
causal and non-causal factors in O’Shaughnessy et al. (2020). (d, e) Proposed method: (d) Encoded binary relation of discovered
concepts and their intervention results; (e) the variants within each concept and other variants of the whole letter.

pears frequently in plane’s images but may not cause the pre-
diction of plane. (3) The explanation must be interpretable
and provide useful insights. For example, a concept that en-
tirely replaces a letter E with a letter A has a large causal
effect. However, such a concept does not provide valuable
knowledge due to a lack of interpretability.

In Figure 2d and 2e, we demonstrate an explanation dis-
covered by the proposed method for a classifier for six let-
ters: A,B,C,D,E and F. Our method successfully discovered
the concepts of bottom stroke, middle stroke and right stroke
which effectively explains the classifier. In Figure 2d, we
show the encoded binary switches and their interventions
result. From the top figure, we can explain that: this letter
is classified as E because it has a bottom stroke (otherwise
it is F), a middle stroke (otherwise it is C), and it does not
have a right stroke (otherwise it is B). We were also able
to distinguish the variant within each concept in (Figure 2e
top) with the global variant (Figure 2e bottom). A full result
with explanation for other letters is shown the experiment
section.

To the best of our knowledge, no existing method can
discover binary concepts that fulfill these requirements.
Saliency methods such as Guided Backprop (Springenberg
et al. 2014), Integrated Gradient (Sundararajan, Taly, and
Yan 2017) or GradCam (Selvaraju et al. 2017) only show
feature importance but do not explain why (Figure 2a). Some
generative models which use binary-continuous mixed la-
tents for sparse coding, such as VSC (Tonolini, Jensen,
and Murray-Smith 2020), IBP-VAE (Gyawali et al. 2019),
PatchVAE (Gupta, Singh, and Shrivastava 2020), can sup-
port binary concepts. However, they do not necessarily dis-
cover binary concepts that are useful for explanation in
both causality and interpretability (Figure 2b). Recently,
O’Shaughnessy et al. (2020) proposed a learning framework
that encourages the causal effect of certain latent factors on
the classifier output to learn a latent representation that has
causality on the prediction. However, their model can not
disentangle binary concepts and can be hard to interpret, es-

pecially for multiple-class tasks. For example, a single con-
cept changes the letter E to multiple other letters (Figure 2c),
which would not give any interpretation of how this latent
variable affects prediction. Our work has the following con-
tributions:
• We introduce the problem of discovering binary concepts

for the explanation. Then, we propose a structural gener-
ative model for constructing binary concept explanation,
which can capture the binary switches, concept-specific
variants, and global variants.

• We propose a learning process to simultaneously learn
the data distribution while encouraging the causal influ-
ence of the binary switches. Although VAE models typi-
cally encourage the independence of factors for meaning-
ful disentanglement, such an assumption is inadequate
for discovering useful causal concepts that are often mu-
tually correlated. Our learning process, which considers
the dependence between binary concepts, can discover
concepts with more significant causality.

• To avoid the concepts with causality but no interpretabil-
ity, the proposed method allows an easy way to imple-
ment users’ preferences and prior knowledge as a regu-
larizer to induce high interpretability of concepts.

• Finally, we demonstrate that our method successfully dis-
covers interpretable binary concepts with causality useful
for the explanation task.

Related Work
Our method can be categorized as a concept-based method
that explains using high-level aspects of data. The defini-
tion of concept are various, e.g., a direction in the activation
space (Kim et al. 2018; Ghorbani et al. 2019), a prototypi-
cal activation vector (Yeh et al. 2020) or a latent factor of a
generative model (O’Shaughnessy et al. 2020; Goyal et al.
2020). We remark that this notion of concept should depend
on the data and the explanation goal. Some works defined
the concepts beforehand using additional data and focused
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on evaluating these concepts. When this side-information
is not given, one needs to discover useful concepts for the
explanation, e.g., Ghorbani et al. (2019) used segmentation
and clustering, Yeh et al. (2020) retrained the classifier with
a prototypical concept layer, O’Shaughnessy et al. (2020)
learned the generative model with a causal objective.

A generative model such as VAE can provide a concept-
based explanation as it learns a latent presentation z that cap-
tures different aspects of the data. However, Locatello et al.
(2019) shows that disentangled representations in a fully
unsupervised manner are fundamentally impossible with-
out inductive bias. A popular approach is to augment the
VAE loss with a regularizer (Higgins et al. 2017; Burgess
et al. 2018). Another approach is to incorporate structure
into the representation(Choi, Hwang, and Kang 2020; Ross
and Doshi-Velez 2021; Tonolini, Jensen, and Murray-Smith
2020; Gupta, Singh, and Shrivastava 2020). Although these
methods can encourage disentangled and sparse represen-
tation, the learned representations are not necessarily inter-
pretable and have causality on the classifier output.

We pursue an explanation that has causality. A causal
explanation is helpful as it can avoid attributions and con-
cepts that only correlate with but do not cause the predic-
tion. Previous works have attempted to focus on causality
in various ways. For example, Schwab and Karlen (2019)
employed Granger causality to quantify the causal effect
of input features, Parafita and Vitrià (2019) evaluated the
causality of latent attributions with a prior known causal
structure, Narendra et al. (2018) evaluated the causal effect
of network layers, and Kim and Bastani (2019) learned an
interpretable model with a causal guarantee. Some works
first train a generative model and then search for counterfac-
tual samples on latent space(Joshi et al. 2019; Dhurandhar
et al. 2018). Although these methods can provide a coun-
terfactual explanation for each input sample, their genera-
tive models do not necessarily disentangle useful concepts.
Some works introduce the causal structure into the genera-
tive models(Yang et al. 2020; Kocaoglu et al. 2017). These
methods are not applicable in our setting because they re-
quire additional knowledge, e.g., causal graphs or concept
labels. To the best of our knowledge, no existing works can
explain using concepts that fulfill our three requirements.

Preliminaries
Variational Autoencoder
Our explanation is build upon the VAE framework proposed
by Kingma and Welling (2014). VAE model assumes a gen-
erative process of data in which a latent z is first sampled
from a prior distribution p(z), then the data is generated
via a conditional distribution p(x | z). Typically, due to
the intractability, a variational approximation q(z | x) of
the intractable posterior is introduced and the model is then
learned using the evidence lower bound (ELBO) as

LVAE(x) =− Ez∼q(z|x)[log p(x | z)] +KL[q(z | x) ‖ p(z)].

Here, q(z | x) is the encoder that maps the data to the la-
tent space and p(x | z) is the decoder that maps the latents
to the data space. Commonly, q(z | x) and p(x | z) are

(a) Causal DAG (b) VAE model

Figure 3: Proposed VAE model and the causal DAG

parameterized as neutral networks Q(z | x) and G(x | z),
respectively. The common choice for q(z | x) is a factor-
ized Gaussian encoder q(z | x) =

∏P
p=1N (µi, σ

2
i ) where

(µ1, . . . , µP , σ1, . . . , σP , ) = Q(x). The common choice
for the p(z) is a multi-variate normal distribution N (0, I)
with zero mean and identity covariant. Letting x̂ be the re-
construction of input x, the VAE objective can be written as
follows and optimized via the reparameterization trick:

LVAE(x) = ‖x̂− x ‖2 +KL[q(z | x) ‖ N (0, I)]. (1)

Information Flow
Next, we introduce the measure we use to quantify the causal
influence of the learned representation on the classifier out-
put. We adopt Information Flow, which defines the causal
strength using Pearl’s do calculus (Pearl 2009). Given a
causal directional acyclic graph G, Information Flow quan-
tify the statistical influence using the conditional mutual in-
formation on the interventional distribution:
Definition 1 (Information flow from U to V in a directed
acyclic graph G(Ay and Polani 2008)). Let U and V be dis-
joint subsets of nodes. The information flow I(U → V ) from
U to V is defined by∫

U

p(u)

∫
V

p(v|do(u)) log
p(v|do(u))∫

u′ p(u′)p(v|do(u′))du′
dV dU, (2)

where do(u) represents an intervention in a causal model
that fixes u to a value regardless of the values of its parents.

O’Shaughnessy et al. (2020) argued that compared to
other metrics such as average causal effect (ACE) (Holland
1988), analysis of variance (ANOVA) (Lewontin 1974), in-
formation flow is more suitable to capture complex and non-
linear causal dependence between variables.

Proposed Method
We aim to discover a set of binary concepts M =
{m0,m1, . . . ,mM} with causality and interpretability that
can explain the black-box classifier f : X → Y . Inspired
by O’Shaughnessy et al. (2020), we employs a generative
model to learn the data distribution while encouraging the
causal influence of certain latent factors. In particular, we as-
sume a causal graph in Figure 3a, in which each sample x is
generated from a set of latent variables, includingM pairs of
a binary concept and a concept-specific variant {γi,αi}Mi=1,
and a global variants β. As we want to explain the classifier
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output (i.e., node y in Figure 3a) using the binary switches
{γi}, we expect that {γi} has a large causal influence on y.

Our proposed learning objective consists of three compo-
nents, which corresponds to our three requirements: a VAE
objective LVAE for learning the data distribution p(x), a
causal effect objective LCE(X) for encouraging the causal
influence of {γi} on classifier output y, and an user-
implementable regularizer LR(x) for improving the inter-
pretability and consistency of discovered concepts:

L(X) =
1

|X|
∑
x∈X

[LVAE(x) + λRLR(x)] + λCELCE(X). (3)

VAE Model with Binary Concepts
To represent the binary concepts, we employ a structure in
which each binary concept mi is presented by a latent vari-
able ψi, which is further controlled by two factors: a bi-
nary concept switch latent variable γi (concept switch for
short) and a continuous latent variable representing concept-
specific variants αi (concept-specific variant for short) as

ψi = γi ·αi,where γi =
{

1, if concept mi is on
0, otherwise.

(4)

Here, the concept switch γi controls if the concept mi is
activated in a sample, e.g., controlling if the bottom stroke
is appeared in a image (Figure 2d). On the other hand, the
concept-specific variant αi controls the variant within the
concept mi, e.g., the length of the bottom stroke (Figure 2e,
top). In addition to the concept-specific variants {αi}whose
effect is limited to a specific binary concept, we also allow
a global variant latent β to capture other variants that do
not necessarily have causal influence, e.g., skewness (Figure
2e, bottom). Here, disentangling the concept-specific variant
and the global variant is important as it can assist users in
understanding discovered binary concepts.

The way we represent binary concepts is closely related
to the spike-and-slab distribution, which is used in Bayesian
variable selection (George and McCulloch 1997) and sparse
coding (Tonolini, Jensen, and Murray-Smith 2020). Unlike
these models, our model uses only a small number of binary
concepts and a multi-dimensional global variant β. Our in-
tuition is that the classification is likely made by combining
a small number of binary concepts.

Input encoding. Letting A = (α1,α2, . . . ,αM ), we use
a network Qd(x) and Qc(x) to parameterize the variational
posterior distribution of the discrete components q(γ | x)
and the continuous components q(A,β | x), respectively.

q(γ | x) =
M∏
i=1

q(γi | x) =
M∏
i=1

Bern(γi;πi) (5)

where (π1, . . . , πM ) = Qd(x)

and q(A,β | x) =

[
M∏
i=1

q (αi | x)

]
q(β | x) (6)

q(αi | x) = N fold
δ (αi;µi, diag(σi))

q(β | x) = N fold
δ (β;µβ, diag(σβ))

where (µ1, . . . , µM , µβ, σ1, . . . , σM , σβ) = Qc(x).

Here, we employ the δ-Shifted Folded Normal Distribution
N fold
δ (µ, σ2) for continuous latents, which is the distribu-

tion of |x| + δ with a constant hyper-parameter δ > 0
where x ∼ N (µ, σ2). In all of our experiments, we adopted
δ = 0.5. We choose not the standard Normal Distribution
but the δ-Shifted Folded Normal Distribution because it is
more appropriate for the causal effect we want to achieve.
We discuss in detail this design choice and its efficacy in our
extended version (Tran et al. 2021).

Output decoding. Next, given q(γ | x) and q(A,β | x), we
first sample the concept switches {d̂i}, the concept variants
{α̂i} and the global variants β from their posterior, respec-
tively. Using these sampled latents, we construct an aggre-
gated representation ẑ = (ψ1, . . . ,ψM , β̂) using the binary
concept mechanism in Eq. (4) in whichψi is the correspond-
ing part for conceptmi, i.e.,ψi = γi×αi. That is, if concept
mi is on, we let d̂i = 1 so that ψi can reflect the concept-
specific variant α̂i. Otherwise, when the concept mi is off,
we assign d̂i = 0. We refer to ẑ as the conceptual latent
code. Finally, a decoder network takes ẑ as the input and
generate the reconstruction x̂ as

x̂ ∼ G(x | ẑ) where ẑ = (ψ1, . . . ,ψM , β̂). (7)

Learning process. We use the maximization of evidence
lower bound (ELBO) to jointly train the encoder and de-
coder. We assume the prior distribution for continuous la-
tents to be δ-shifted Folded Normal distribution N fold

δ (0, I)
with zero-mean and identity covariance. Moreover, we
assume the prior distribution for binary latents to be a
Bernoulli distribution Bern(πprior) with prior πprior. The
ELBO for our learning process can be written as:

LVAE(x) = −Eẑ∼Q{c,d}(z|x) [logG (x | ẑ)]

+ λ1 KL
(
q (β | x) ‖ N fold

δ (0, I )
)

+ λ1

[
1

M

M∑
i=1

KL
(
q (αi | x) ‖ N fold

δ (0, I )
)]

+ λ2

[
1

M

M∑
i=1

KL (q (γi | x) ‖ Bern (πi))

]
.

(8)

The first term can be trained using L2 reconstruction
loss, while other KL-divergence terms are trained using the
reparameterization trick. For the Bernoulli distribution, we
use its continuous approximation, i.e., the relaxed-Bernoulli
(Maddison, Mnih, and Teh 2017) in the training process.

Encouraging Causal Effect of Binary Switches
We expect the binary switches γ to have a large causal in-
fluence so that they can effectively explain the classifier. To
measure the causal effect of γ on the classifier output Y ,
we employ the causal DAG in Figure 3a and adopt infor-
mation flow (Definition 1) as the causal measurement. Our
DAG employs an assumption that is fundamentally different
from standard VAE models. Specifically, the standard VAE
model and also O’Shaughnessy et al. (2020) assumes the in-
dependence of latent factors, which is believed to encourage
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meaningful disentanglement via a factorized prior distribu-
tion. We claim that because useful concepts for explanation
often causally depend on the class information and thus are
not independent of each other, such an assumption might be
inadequate for discovering valuable causal concepts. For ex-
ample, in the letter E, the middle and the bottom strokes are
causally related to the recognition of the letter E, and corre-
sponding binary concepts are mutually correlated. Thus, em-
ploying the VAE’s factorized prior distribution to estimate
information flow might lead to a large estimation error and
prevent the discovery of valuable causal concepts.

Instead, we employ a prior distribution p∗(γ) that allows
the correlation between causal binary concepts. Our method
iteratively learns the VAE model and use the current VAE
model to estimates the prior distribution p∗(γ) which most
likely generates the user’s dataset. p∗(γ) is then used to eval-
uate the causal objective in Eq. (3). Assuming X is a set of
i.i.d samples from p(x), we estimate p∗(γ) as

p∗(γ) ≈
∫
x

p∗(γ | x)p(x)dx ≈ 1

|X|
∑
x∈X

p(γ | x)

≈ 1

|X|
∑
x∈X

M∏
i=1

q(γi | x) (9)

In the last line, p(γ | x) is replaced with the variational
posterior q(γ | x) of VAE model. Here, the factorized varia-
tional posterior q(γ | x) only assumes the independence be-
tween latents conditioned on each sample but does not imply
the independence of binary switches in p∗(γ). We note that
here we do not aim to learn the dependence between con-
cepts but only expect that p∗(γ) properly reflects the depen-
dence between binary concepts that appears in the datasetX
for a better evaluation of the causal effect. We will experi-
mentally show that using the estimation of p∗(γ) results in a
better estimation for the causal effect on datasetX and more
valuable concepts for the explanation.

As we want to maximize I(γ → Y ), we rewrite it as
a loss term LCE = −I(γ → Y ) and optimize it together
with the learning of VAE model. We also showed that in the
proposed DAG, information flow I(γ → Y ) coincides with
mutual information I(γ;Y ).
Proposition 1 (Coincident of Information Flow and Mutual
Information in proposed DAG). The information flow from
γ to Y in the DAG of Figure 3a coincides with the mutual
information between γ and Y . That is,

I(γ → Y ) = I(γ;Y ) = Eγ,Y

[
p∗(γ)p(Y | γ)
p∗(γ)p(Y )

]
(10)

The proof and the detailed algorithm for estimating
I(γ;Y ) is described in our extended version(Tran et al.
2021).

Integrating User Preference for Concepts
Finally, we discuss the necessity of users’ preferences or
prior knowledge for inducing high interpretability of con-
cepts. A problem in discovering meaningful latent factors
using deep generative models is that the learned factors can
be hard to interpret. Although causality is strongly related

and can contribute to interpretability, due to the high expres-
siveness of the deep model, a large causal effect does not
always guarantee an interpretable concept. For example, a
concept that entirely replaces a letter E with a letter D will
significantly affect the prediction. However, it does not pro-
vide valuable knowledge and is hard to interpret. To avoid
such concepts, we allow users to implement their preference
or prior knowledge as an interpretability regularizer to con-
strain the generative model’s expressive power. Our method
looks for useful binary concepts with large causality under
the constrained search space.

The integration can easily be done via a scoring function
r(xγi=0,xγi=1) which evaluates the usefulness of concept
mi. Here, xγi=0 and xγi=1 are obtained from the genera-
tive model by performing the do-operation do(γi = 0) and
do(γi = 1) on input x, respectively. In this study, we in-
troduce two regularizers which are based on the following
intuitions. First, an interpretable concept should only affect
a small amount of input features (Eq. (11)). This desiderata
is general and can be applied to many tasks. The second one
is more task-specific in which we focus on the gray-scale im-
age classification task. An intervention of a concept should
only add or substract the pixel value, but not both at the same
time (Eq. (12)). Furthermore, we desire that γi = 1 indicates
the presence of pixels and γi = 0 indicates the absence of
pixels. We formulate these regularizers as follows

Lcompact(x) =
1

M

M∑
i=1

1

P
‖x̂− x̂[i]‖, (11)

Ldirectional(x) =
1

M

M∑
i=1

1

P

P∑
p=1

l(x̂p, x̂
[i]
p , γi), (12)

l(x̂p, x̂
[i]
p , γi) =1[x̂[i]

p > x̂p]× |x̂p − x̂[i]
p | × γ̂i

+1[x̂[i]
p ≤ x̂p]× |x̂p − x̂[i]

p | × (1− γ̂i),

where M is the number of concepts, P is the dimension of
the input and x̂[i] is the reconstruction after reversing the
latent code γ̂i of concept mi. We give a brief interpretation
for Eq. (12). Consider a conceptmi in a sample x. If concept
mi is activated, i.e., γ̂i = 1, then x̂[i] corresponds to the
turn off intervention do(γi = 0). In this case, we expect
that this intervention only removes some pixels in x̂. Thus,
we penalize the difference |x̂p − x̂[i]

p | for positions p where
the pixel value increases, i.e., where x̂[i]

p > x̂p. Finally, we
combine these regularizers as

LR(x) = λ3Lcompact(x) + λ4Ldirectional(x). (13)

Using these interpretability regularizers, we observed a sig-
nificant improvement in the interpretability of discovered bi-
nary concepts.

Experiment
Experiment Setting
In this section, we demonstrate our method using three
datasets: EMNIST(Cohen et al. 2017), MNIST(Lecun et al.
1998) and Fashion-MNIST(Xiao, Rasul, and Vollgraf 2017).
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(a) Sweep α0 (bottom) (b) Sweep α1 (middle) (c) Sweep α2 (right) (d) Sweep β0 (width) (e) Sweep β1 (skewness)

Figure 4: Visualization of the learned concept-specific and global variants. The proposed method captured the variant within
each causal concept, i.e., the change of shape of (a) the bottom stroke, (b) the middle stroke and (c) the right stroke. (d, e) Our
method was also able to disentangle the concepts variants with other variants that does not affect the prediction.

(a) Controlling switch γ0 of concept m0 (bottom stroke)

(b) Controlling switch γ1 of concept m1 (middle stroke)

(c) Controlling binary γ2 of concept m2 (right stroke)

Figure 5: The binary explanation with the intervention for
each concept. (1st row) The encoded concept switch γ̂i (yel-
low/gray for 1/0). (2nd row) the original reconstruction x̂.
(4th row) The reconstruction after alternating switch γi.

For each dataset, we select several classes and train a classi-
fier on the selected classes. In particular, we select the letters
‘A, B, C, D, E, F’ for EMNIST, digits ‘1, 4, 7, 9’ for MNIST,
and ‘t-shirt/top, dress, coat’ for the Fashion-MNIST dataset.
We note that our setting is more challenging than the com-
mon test setting in existing works (e.g., classifier for MNIST
3 and 8 digits) since a larger number of classes and concepts
are involved in the classification task. Due to the space limit,
here we mainly show the visual explanation obtained for the
EMNIST dataset in which we use M = 3 concepts. The
dimension of αi and β are K = 1 and L = 7, respec-
tively. The explanation results of other datasets and further
detailed experiment settings can be found in our extended
version (Tran et al. 2021).

Qualitative Results
In Figure 5, we showed three discovered binary concepts for
the EMNIST dataset. In each image, we show in the first row
the encoded binary switch of concept mi for different sam-
ples, in which yellow indicates γ̂i = 1 and gray indicates
γ̂i = 0. The second row shows the original reconstructed

(a) bottom stroke (b) middle stroke (c) right stroke

Figure 6: The transition graph of prediction output.

image x̂ while the fourth row shows the image reconstructed
when we reverse the binary switch x̂[i]. The border color in-
dicates the prediction result of each image. Finally, the third
row show the difference of x̂ and x̂[i].

From Figure 5, we observed that the proposed method was
able to discover useful binary concepts for explaining the
classifier. First, the binary switches of these concepts have
a large causal effect on the classifier output, i.e., alternating
the switch affects the prediction. For example, Figure 5a ex-
plains that adding a bottom stroke to the letter A has a signif-
icant effect on the classifier output. Each concept captured a
group of similar interventions and can be easily interpreted,
i.e., concept m0 represents the bottom stroke, concept m1

represents the right stroke, and concept m2 represents the
inside (middle) stroke.

The explanation in Figure 5 can be considered as a lo-
cal explanation which focus on explaining specific samples.
Not only that, the proposed method also excels in provid-
ing organized knowledge about the discovered concepts and
prediction classes. In particular, we can aggregate the causal
effect in Figure 5 for each concept and class to assess how
the each a binary switch change the prediction. The transi-
tion probability from y = u to y = v for a concept mi using
the do operation do(γi = d) (d ∈ {0, 1}) can be obtained as

wdo(γi=d)u,v = Pr[y = v | y = u, do(γi = d)]

=
1

|Xu|
∑

x∈Xu

1[f(x̂do(γi=d)) = v]
(14)

where Xu = {x ∈ X | f(x̂) = u}. In Figure 6, we show
the calculated transition probabilities for each concept as a
graph in which each note represents a prediction class. A
solid arrow (dashed arrow) represents the transition when
activating (deactivating) a concept and the arrow thickness
shows the transition probability wdo(γi=1)

u,v (wdo(γi=0)
u,v ). We

neglect the transition which transition probability is less than
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(a) Intervention by decreasing α0

(b) Intervention by increasing α0

Figure 7: A causal factor by O’Shaughnessy et al. (2020).
Low interpretability results are framed (More details in text)

0.1 For example, from Figure 6a, one can interpret that the
bottom stroke is important to distinguish (E,F) and (A,B).

Finally, in Figure 4 (a,b,c), we show the captured vari-
ants within each concept and other global variants that have
a small effect on the classifier output. In contrast to binary
switches, these variants explain what does not change the
prediction. We first activate the concept mi using the do-
operation do(γi = 1), then plot the reconstruction while al-
ternatingαi. We observed thatα0 captured the length of the
bottom stroke,α1 captured the shape of the right stroke, and
α2 captured the length of the inside (middle) stroke, respec-
tively. Especially, our method was also able to differentiate
the concept-specific variants from other global variants β
such as skewness, height, or width (Figure 4 d,e).

Comparing with Other Methods.
We compare our method to other baselines shown in Figure
2. First, saliency-map-based methods, which use a saliency
map to quantify the importance of (super)pixels, although it
is easy to understand, do not explain why highlighted (su-
per)pixels are important (Figure 2a). Because they only pro-
vide one explanation for each input, they can not explain
how these pixels distinguish the predicted class from other
classes. Our method, with multiple concepts, can perform
different interventions to obtain multiple explanations.

Next, we compare to O’Shaughnessy et al. (2020), in
which we used a VAE model with ten continuous factors
and encouraged three factors to have causal effects on pre-
dicted classes. In Figure 7, we visualize α0 which achieved
the largest causal effect. In Figure 7a (7b), we decrease (in-
crease) α0 until the its prediction label changes and show
that intervention result in the third row. First, we observed
that it failed to disentangle different causal factors as α0 af-
fects all the bottom, middle and right strokes. For example,
in Figure 7a, decreasing αt changed the letter D in the 10th
column to letter B (middle stroke concept), while changed
the letter D in the 11th column to letter C (left stroke con-
cept). A similar result is also observed in Figure 7b for let-
ter E. Second, it failed to disentangle the concept-specific
variant, which does not affect the prediction. For example,
for the letter A and B (1st to 6th column) in Figure 7b, in-
creasing α0 does not only affect the occurrence of the middle

(a) p(γ) vs p∗(γ) vs no causal (b) λR = 0 (c) λR = 1

Figure 8: (a) (MNIST) Train-time MI and test-time TTE of
ten runs when LCE is based on p(γ) (red), p∗(γ) (blue),
and when trained without LCE (green). (b) Discovered bi-
nary concepts when trained with and without LR.

stroke, but also changes the shape of the right stroke.
Our method overcomes these limitations with a carefully

designed binary-discrete structure coupled with the pro-
posed causal effect and interpretability regularizer. By en-
couraging the causal influence of only the binary switches,
our method can disentangle what affects the prediction and
the variant of samples with the same prediction. Thus, it en-
courages that a binary switchmi only changes the prediction
from a class yk to only one other class yk′ , resulting in a
more interpretable explanation. We also emphasize that the
binary-continuous composite structure alone is not enough
to obtain valuable concepts for explanation (Figure 2b).

Quantitative Results
We evaluate the causal influence of a concept set using the
total transition effect (TTE), which is defined as

TTE =
1

M

∑
i∈[M ]

∑
u,v∈[T ]

[wdo(γi=1)
u,v + wdo(γi=0)

u,v ]. (15)

where M and T are the number of concepts and classes, re-
spectively. Here, a large value of TTE indicates a significant
overall causal effect by the whole discovered concept set on
all class transitions. Compared to information flow, TTE can
evaluate more directly and faithfully the causal effect of bi-
nary switches on dataset X . Moreover, it is also easier for
end-user to understand.

In Figure 8a, we show the test-time mutual information
and the TTE values when the causal objective LCE uses the
prior p∗(γ) (Eq. (9)), VAE model’s prior p(γ) and when
trained without LCE. The interpretability regularizers are in-
cluded in all settings. We observed that when p(γ) is used,
there are cases where the estimated mutual information is
high, but the total transition effect is small. On the other
hand, the mutual information obtained with estimated p∗(γ)
aligns better with the TTE value. We claim that this is be-
cause of the deviation between p(γ) and p∗(γ). By estimat-
ing p∗(γ) on the run, our method can better evaluate and
optimize the causal influence of γ on y. Moreover, we fail
to discover useful concepts without the causal objective.

Next, we evaluate how LR helps to increase the inter-
pretability of concepts. In Figure 8b, we show an example
of concepts when train without LR. This concept (top) only
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replaces the digits 4, 7, and 9 with the digit 1. Although
this concept has a large causal effect, it does not provide
any proper explanation why the image is identified as 1.
With the interpretability regularizers, we can discover binary
concepts with high interpretability that adequately explain
that digit seven can be distinguished from digit one based
on the existence of the top stroke (Figure 8c). In principle,
our method can be applied to other data domains if one can
train a generative model. However, obtaining interpretable
concepts can be more challenging for more complicated do-
mains. In the future, we will explore more challenging tasks,
e.g., medical image classification or domains such as text or
table data.

Conclusion
We introduced the problem of discovering binary concepts
for explaining a black-box classifier. We first proposed a
structural generative model that can properly express binary
concepts. Then, we proposed a learning process that simul-
taneously learns the data distribution and encourages the bi-
nary switches to have a large causal effect on the classifier
output. The proposed method also allows integrating users’
preferences and prior knowledge for better interpretability
and consistency. We demonstrated that the proposed method
could discover interpretable binary concepts with a large
causal effect which can effectively explain the classification
model for multiple datasets.
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