
Certified Robustness of Nearest Neighbors against Data
Poisoning and Backdoor Attacks

Jinyuan Jia, Yupei Liu, Xiaoyu Cao, Neil Zhenqiang Gong
Duke University

{jinyuan.jia, yupei.liu, xiaoyu.cao, neil.gong}@duke.edu

Abstract
Data poisoning attacks and backdoor attacks aim to corrupt
a machine learning classifier via modifying, adding, and/or
removing some carefully selected training examples, such
that the corrupted classifier makes incorrect predictions as the
attacker desires. The key idea of state-of-the-art certified de-
fenses against data poisoning attacks and backdoor attacks is to
create a majority vote mechanism to predict the label of a test-
ing example. Moreover, each voter is a base classifier trained
on a subset of the training dataset. Classical simple learn-
ing algorithms such as k nearest neighbors (kNN) and radius
nearest neighbors (rNN) have intrinsic majority vote mecha-
nisms. In this work, we show that the intrinsic majority vote
mechanisms in kNN and rNN already provide certified robust-
ness guarantees against data poisoning attacks and backdoor
attacks. Moreover, our evaluation results on MNIST and CI-
FAR10 show that the intrinsic certified robustness guarantees
of kNN and rNN outperform those provided by state-of-the-art
certified defenses. Our results serve as standard baselines for
future certified defenses against data poisoning attacks and
backdoor attacks.

Introduction
Data poisoning attacks and backdoor attacks (Barreno et al.
2006; Nelson et al. 2008; Biggio, Nelson, and Laskov 2012;
Biggio, Fumera, and Roli 2013; Xiao et al. 2015b; Steinhardt,
Koh, and Liang 2017; Gu et al. 2019; Chen et al. 2017; Liu
et al. 2018; Shafahi et al. 2018) aim to corrupt the training
phase of a machine learning system via carefully poison-
ing its training dataset including modifying, adding, and/or
removing some training examples. Specifically, in data poi-
soning attacks, the corrupted downstream classifier makes
incorrect predictions for clean testing inputs; and in backdoor
attacks, the corrupted downstream classifier makes incorrect
predictions for testing inputs embedded with a certain trig-
ger. Data poisoning attacks and backdoor attacks pose severe
security concerns to machine learning in critical application
domains such as autonomous driving (Gu et al. 2019), cy-
bersecurity (Rubinstein et al. 2009; Suciu et al. 2018; Chen
et al. 2017), and healthcare analytics (Mozaffari-Kermani
et al. 2014).

Multiple certifiably robust learning algorithms (Ma, Zhu,
and Hsu 2019; Rosenfeld et al. 2020; Levine and Feizi 2021;
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Jia, Cao, and Gong 2021) against data poisoning attacks and
backdoor attacks were recently developed. A learning al-
gorithm is certifiably robust against data poisoning attacks
and backdoor attacks if it can learn a classifier on a training
dataset that achieves a certified accuracy on a testing dataset
when the number of poisoned training examples is no more
than a threshold (called poisoning size). The certified accu-
racy of a learning algorithm is a lower bound of the accuracy
of its learnt classifier no matter how an attacker poisons the
training examples with the given poisoning size.

The key idea of state-of-the-art certifiably robust learning
algorithms (Jia, Cao, and Gong 2021; Levine and Feizi 2021)
is to create a majority vote mechanism to predict the label of
a testing example. In particular, each voter votes a label for a
testing example and the final predicted label is the majority
vote among multiple voters. For instance, Bagging (Jia, Cao,
and Gong 2021) learns multiple base classifiers (i.e., voters),
where each of them is learnt on a random subsample of the
training dataset. Deep Partition Aggregation (DPA) (Levine
and Feizi 2021) divides the training dataset into disjoint par-
titions and learns a base classifier (i.e., a voter) on each
partition. We denote by a and b the labels with the largest
and second largest number of votes, respectively. Moreover,
sa and sb respectively are the number of votes for labels
a and b when there are no corrupted voters. The corrupted
voters change their votes from a to b in the worst-case sce-
nario. Therefore, the majority vote result (i.e., the predicted
label for a testing example) remains to be a when the number
of corrupted voters is no larger than ⌈ sa−sb

2 ⌉ − 1. In other
words, the number of corrupted voters that a majority vote
mechanism can tolerate depends on the gap sa − sb between
the largest and the second largest number of votes.

However, state-of-the-art certifiably robust learning algo-
rithms achieve suboptimal certified accuracies due to two
key limitations. First, each poisoned training example leads
to multiple corrupted voters in the worst-case scenarios. In
particular, modifying a training example corrupts the voters
whose training subsamples include the modified training ex-
ample in bagging (Jia, Cao, and Gong 2021) and corrupts two
voters (i.e., two base classifiers) in DPA (Levine and Feizi
2021). Therefore, given the same gap sa − sb between the
largest and the second largest number of votes, the major-
ity vote result is robust against a small number of poisoned
training examples. Second, they can only certify robustness

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9575

00 0

0

22 2

2

1

0

1

2

11

1 1

1

0

22 2

2

11

without attack joint certificationindividual certification

training example testing example poisoned example

r

r0 0 0
1

2
2 2

1
2

1

0

2

Figure 1: An example to illustrate individual certification vs.
joint certification. Suppose rNN correctly classifies the two
testing examples without attack. An attacker can poison 3
training examples. The attacker can make rNN misclassify
each testing example individually. However, the attacker can-
not make rNN misclassify both testing examples jointly.

for each testing example individually because it is hard to
quantify how poisoned training examples corrupt the voters
for different testing examples jointly. Suppose the classifier
learnt by a learning algorithm can correctly classify testing
inputs x1 and x2. An attacker can poison e training examples
such that the learnt classifier misclassifies x1 or x2, but the
attacker cannot poison e training examples such that both x1

and x2 are misclassified. When the poisoning size is e, exist-
ing certifiably robust learning algorithms would produce a
certified accuracy of 0 for the two testing examples. However,
the certified accuracy can be 1/2 if we consider them jointly.
We note that Steinhardt, Koh, and Liang (2017) derives an
approximate upper bound of the loss function under data
poisoning attacks. However, their method cannot certify the
learnt model predicts the same label for a testing example.

k nearest neighbors (kNN) and radius nearest neighbors
(rNN) (Fix and Hodges 1951; Cover and Hart 1967) are
well-known classic learning algorithms. With good feature
representation (e.g., those learnt via self-supervised learning),
kNN and rNN can achieve classification accuracy comparable
to those of complex learning algorithms such as neural net-
works (He et al. 2020). kNN and rNN have intrinsic majority
vote mechanisms. Specifically, given a testing example, kNN
(or rNN) predicts its label via taking a majority vote among
the labels of its k nearest neighbors (or neighbors within
radius r) in the training dataset. Our major contribution in
this work is that we show the intrinsic majority vote mecha-
nisms in kNN and rNN make them certifiably robust against
data poisoning attacks. Moreover, kNN and rNN address the
limitations of state-of-the-art certifiably robust learning algo-
rithms. Specifically, each poisoned training example leads to
only one corrupted voter in the worst-case scenario in kNN
and rNN. Thus, given the same gap sa−sb, the majority vote
result (i.e., predicted label for a testing example) is robust
against more poisoned training examples in kNN and rNN.

Furthermore, we show that rNN enables joint certification
of multiple testing examples. Figure 1 illustrates an example
of individual certification and joint certification with two test-
ing examples in rNN. When we treat the two testing examples
individually, an attacker can poison 3 training examples such
that rNN misclassifies each of them. However, when we treat

them jointly, an attacker cannot poison 3 training examples to
misclassify both of them. We propose such joint certification
to derive a better certified accuracy for rNN. Specifically, we
design methods to group testing examples in a testing dataset
such that we can perform joint certification for each group of
testing examples.

We evaluate our methods on MNIST and CIFAR10
datasets. We use ℓ1 distance metric to calculate nearest neigh-
bors. First, our methods substantially outperform state-of-
the-art certifiably robust learning algorithms. For instance,
in data poisoning attacks, when an attacker can arbitrarily
poison 1,000 training examples on MNIST, the certified ac-
curacy of rNN with r = 4 is 22.9% and 40.8% higher than
those of bagging (Jia, Cao, and Gong 2021) and DPA (Levine
and Feizi 2021), respectively. Second, our joint certification
improves certified accuracy. For instance, our joint certifica-
tion improves the certified accuracy of rNN by 15.1% when
an attacker can arbitrarily poison 1,000 training examples
on MNIST for data poisoning attacks. Third, we show that
self-supervised learning can improve the certified accuracy of
kNN and rNN. For instance, when an attacker can arbitrarily
poison 500 training examples on CIFAR10 in data poisoning
attacks, the certified accuracy of kNN improves by 43.0% if
we use CLIP (Radford et al. 2021), a feature extractor pre-
trained via self-supervised learning, to extract features for
each training or testing input.

In summary, we make the following contributions:
• We derive the intrinsic certified robustness guarantees of

kNN and rNN against data poisoning attacks and backdoor
attacks.

• We propose joint certification of multiple testing examples
to derive a better certified robustness guarantee for rNN.
rNN is the first method that supports joint certification of
multiple testing examples.

• We evaluate our methods and compare them with state-of-
the-art on MNIST and CIFAR10.

Problem Setup
Learning setting: Assuming we have a training dataset
Dtr with n training examples. We denote by M a learning
algorithm. Moreover, we denote by M(Dtr,x) the label
predicted for a testing input x by a classifier learnt by M on
the training dataset Dtr. For instance, given a training dataset
Dtr and a testing input x, kNN finds the k training examples
in Dtr that are the closest to x as the nearest neighbors, while
rNN finds the training examples in Dtr whose distances to
x are no larger than r as the nearest neighbors. The distance
between a training input and a testing input can be measured
by any distance metric. Then, kNN and rNN use majority
vote among the nearest neighbors to predict the label of x.
Specifically, each nearest neighbor is a voter and votes its
label for the testing input x; and the label with the largest
number of votes is the final predicted label for x.
Data poisoning attacks: We consider data poisoning at-
tacks (Rubinstein et al. 2009; Biggio, Nelson, and Laskov
2012; Xiao et al. 2015a; Li et al. 2016; Muñoz-González
et al. 2017; Jagielski et al. 2018) that aim to poison (i.e.,
modify, add, and/or remove) some carefully selected training

9576

examples in Dtr such that the corrupted classifier has a low
accuracy for testing inputs (either indiscriminate clean testing
inputs or attacker-chosen ones).
Backdoor attacks: In backdoor attacks (Gu et al. 2019; Liu
et al. 2018; Chen et al. 2017), an attacker also poisons the
training dataset, but the corrupted classifier makes incorrect,
attacker-chosen predictions for testing inputs embedded with
a certain trigger. For instance, the attacker can embed the
trigger to some training inputs in Dtr and relabel them as the
attacker-chosen label. The classifier built based on such poi-
soned training dataset predicts the attacker-chosen label for
any testing input embedded with the same trigger. However,
the predictions for clean testing inputs without the trigger are
unaffected, i.e., the corrupted classifier and the clean clas-
sifier are highly likely to predict the same label for a clean
testing input.
Poisoned training dataset: Both data poisoning attacks
and backdoor attacks poison the training dataset to achieve
their goals. For simplicity, we use D∗

tr to denote the poi-
soned training dataset. Note that D∗

tr could include dupli-
cate training examples, e.g., when the attacker adds dupli-
cate training examples. Moreover, we define the poison-
ing size of a poisoned training dataset D∗

tr (denoted as
S(Dtr, D

∗
tr)) as the minimal number of modified/added/re-

moved training examples that can turn Dtr into D∗
tr. For-

mally, S(Dtr, D
∗
tr) = max{|D∗

tr|, |Dtr|} − |D∗
tr ∩Dtr| is

the poisoning size of D∗
tr.

Certified accuracy: Given a training dataset Dtr and a
learning algorithm M, we use certified accuracy on a test-
ing dataset Dte = {(xi, yi)}ti=1 to measure the algorithm’s
performance. Specifically, we denote certified accuracy at
poisoning size e as CA(e) and formally define it as follows:

CA(e) = min
D∗

tr,S(Dtr,D
∗
tr)≤e

∑
(xi,yi)∈Dte

I(M(D∗
tr,xi) = yi)

|Dte|
,

(1)

where I is the indicator function and M(D∗
tr,xi) is the

label predicted for a testing input xi by the classifier learnt
by the algorithm M on the poisoned training dataset D∗

tr.
CA(e) is the least testing accuracy on Dte that the learning
algorithm M can achieve no matter how an attacker poisons
the training examples when the poisoning size is at most e.
For data poisoning attacks, the testing dataset Dte is a set
of clean testing examples. For backdoor attacks, Dte is a set
of testing examples embedded with a trigger. Our goal is to
derive lower bounds of CA(e) for learning algorithms kNN
and rNN.

Certified Accuracy of kNN and rNN
We first derive a lower bound of the certified accuracy via
individual certification, which treats testing examples in Dte

individually. Then, we derive a better lower bound of the
certified accuracy for rNN via joint certification, which treats
testing examples jointly.

Individual Certification
Given a poisoning size at most e, our idea is to certify whether
the predicted label stays unchanged or not for each testing

input individually. If the predicted label of a testing input
x stays unchanged (i.e., M(Dtr,x) = M(D∗

tr,x)) and it
matches with the testing input’s true label, then kNN or rNN
certifiably correctly classifies the testing input when the poi-
soning size is at most e. Therefore, we can obtain a lower
bound of the certified accuracy at poisoning size e as the
fraction of testing inputs in Dte which kNN or rNN certifi-
ably correctly classifies. Next, we first discuss how to certify
whether the predicted label stays unchanged or not for each
testing input individually. Then, we show our lower bound of
the certified accuracy at poisoning size e.
Certifying the predicted label of a testing input: Our goal
is to certify that M(Dtr,x) = M(D∗

tr,x) for a testing input
x when the poisoning size is no larger than a threshold. Given
a training dataset Dtr (or a poisoned training dataset D∗

tr) and
a testing input x, we use N (Dtr,x) (or N (D∗

tr,x)) to denote
the set of nearest neighbors of x in Dtr (or D∗

tr) for kNN or
rNN. We note that there may exist ties when determining the
nearest neighbors for kNN, i.e., multiple training examples
may have the same distance to the testing input. Usually,
kNN breaks such ties uniformly at random. However, such
random ties breaking method introduces randomness, i.e.,
the difference of nearest neighbors before and after poisoned
training examples (i.e., N (Dtr,x) vs. N (D∗

tr,x)) depends
on the randomness in breaking ties. Such randomness makes
it challenging to certify the robustness of the predicted label
against poisoned training examples. To address the challenge,
we propose to define a deterministic ranking of training exam-
ples and break ties via choosing the training examples with
larger ranks. Moreover, such ranking between clean training
examples does not depend on poisoned ones. For instance, we
can use a cryptographic hash function (e.g., SHA-1) that is
very unlikely to have collisions to hash each training example
based on its input feature vector and label, and then we rank
the training examples based on their hash values.

We use sl to denote the number of votes in N (Dtr,x)
for label l, i.e., the number of nearest neighbors in
N (Dtr,x) whose labels are l. Formally, we have sl =∑

(xj ,yj)∈N (Dtr,x)
I(yj = l), where l = 1, 2, · · · , c and I

is an indicator function. We note that sl also depends on the
testing input x. However, we omit the explicit dependency
on x for simplicity. kNN or rNN essentially predicts the label
of the testing input x as the label with the largest number
of votes, i.e., M(Dtr,x) = argmaxl∈{1,2,··· ,c} sl. Suppose
a and b are the labels with the largest and second largest
number of votes, i.e., sa and sb are the largest and second
largest ones among {s1, s2, · · · , sc}, respectively. We note
that there may exist ties when comparing the labels based
on their votes. We define a deterministic ranking of labels in
{1, 2, · · · , c} and take the label with the largest rank when
such ties happen. For instance, when labels 2 and 3 have tied
largest number of votes, we take label 3 as a. In the worse-
case scenario, each poisoned training example leads to one
corrupted voter in kNN or rNN, which changes its vote from
label a to label b. Therefore, kNN or rNN still predicts label a
for the testing input x when the number of poisoned training
examples is no more than ⌈ sa−sb

2 ⌉ − 1 (without considering
the ties breaking). Formally, we have the following theorem:

9577

Theorem 1. Assuming we have a training dataset Dtr, a
testing input x, and a nearest neighbor algorithm M (i.e.,
kNN or rNN). a and b respectively are the two labels with
the largest and second largest number of votes among the
nearest neighbors N (Dtr,x) of x in Dtr. Moreover, sa and
sb are the number of votes for a and b, respectively. Then, we
have the following:

M(D∗
tr,x) = a,

∀D∗
tr, S(Dtr, D

∗
tr) ≤ ⌈sa − sb + I(a > b)

2
⌉ − 1. (2)

Proof. See technical report (Jia et al. 2022).

Deriving a lower bound of CA(e): kNN or rNN certifiably
correctly classifies a testing input x if it correctly predicts its
label before attacks and the predicted label stays unchanged
after an attacker poisons the training dataset. Therefore, the
fraction of testing inputs that kNN or rNN certifiably correctly
classifies is a lower bound of CA(e). Formally, we have the
following theorem:

Theorem 2 (Individual Certification). Assuming we have a
training dataset Dtr, a testing dataset Dte = {(xi, yi)}ti=1,
and a nearest neighbor algorithm M (i.e., kNN or rNN). ai
and bi respectively are the two labels with the largest and
second largest number of votes among the nearest neighbors
N (Dtr,xi) of xi in Dtr. Moreover, sai and sbi are the num-
ber of votes for ai and bi, respectively. Then, we have the
following lower bound of CA(e):

CA(e) ≥
∑

(xi,yi)∈Dte
I(ai = yi) · I(e ≤ e∗i)

|Dte|
, (3)

where e∗i = ⌈ sai
−sbi+I(ai>bi)

2 ⌉ − 1.

Proof. See technical report (Jia et al. 2022).

Joint Certification
We derive a better lower bound of the certified accuracy via
jointly considering multiple testing examples. Our intuition
is that, given a group of testing examples and a poisoning size
e, an attacker may not be able to make a learning algorithm
misclassify all the testing examples jointly even if it can make
the learning algorithm misclassify each of them individually.
In particular, rNN enables such joint certification. It is chal-
lenging to perform joint certification for kNN because of the
complex interactions between the nearest neighbors of differ-
ent testing examples (see our proof of Theorem 3 for specific
reasons). Next, we first derive a lower bound of CA(e) on a
group of testing examples for rNN. Then, we derive a lower
bound of CA(e) on the testing dataset Dte via dividing it
into groups. Finally, we discuss different strategies to divide
the testing dataset into groups, which may lead to different
lower bounds of CA(e).
Deriving a lower bound of CA(e) for a group of testing
examples: Suppose we have a group of testing examples
which have different predicted labels in rNN. Our key intu-
ition is that when an attacker can poison e training examples,

the attacker can only decrease the total votes for the testing
examples’ predicted labels by at most e in rNN, as the testing
examples’ predicted labels are different. We denote by U a
group of testing examples with different predicted labels and
by m its size, i.e., m = |U|. The next theorem shows a lower
bound of CA(e) on the testing examples in U for rNN.
Theorem 3. Assuming we have a training dataset Dtr, the
learning algorithm rNN, and a group of m testing exam-
ples U = {(xi, yi)}mi=1 with different predicted labels. ai
and bi respectively are the two labels with the largest and
second largest number of votes among the nearest neigh-
bors N (Dtr,xi) of xi in Dtr. Moreover, sai

and sbi are the
number of votes for ai and bi, respectively. Without loss of
generality, we assume the following:

(sa1
− sb1) · I(a1 = y1) ≥ (sa2

− sb2) · I(a2 = y2) ≥
· · · ≥ (sam − sbm) · I(am = ym). (4)

Then, the certified accuracy at poisoning size e of rNN for U
has a lower bound CA(e) ≥ w−1

|U| , where w is the solution
to the following optimization problem:

w = argmin
w′,w′≥1

w′

s.t.
m∑

i=w′

max(sai
− sbi − e+ I(ai > bi), 0)

· I(ai = yi) ≤ e. (5)
Proof. When an attacker can poison at most e training exam-
ples, the attacker can add at most e new nearest neighbors and
remove e existing ones in N (Dtr,xi) (equivalent to mod-
ifying e training examples) in the worst-case scenario. We
denote by s∗ai

and s∗bi respectively the number of votes for
labels ai and bi among the nearest neighbors N (D∗

tr,xi).
First, we have s∗bi ≤ sbi + e for ∀i ∈ {1, 2, · · · ,m} since at
most e new nearest neighbors are added. Second, we have
s∗ai

≥ sai
− ei in rNN, where ei is the number of removed

nearest neighbors in N (Dtr,xi) whose true labels are ai.
Note that kNN does not support joint certification because
s∗ai

≥ sai
− ei does not hold for kNN.

Next, we derive the minimal value of ei such that rNN
misclassifies xi. In particular, we consider two cases. If ai ̸=
yi, i.e., xi is misclassified by rNN without attack, then we
have ei = 0. If ai = yi, xi is misclassified by rNN when
s∗ai

≤ s∗bi if ai < bi and s∗ai
< s∗bi if ai > bi after attack,

which means ei ≥ sai−sbi−e+I(ai > bi). Since ei ≥ 0, we
have ei ≥ max(sai − sbi − e + I(ai > bi), 0). Combining
the two cases, we have the following lower bound for ei
that makes rNN misclassify xi: ei ≥ max(sai

− sbi − e +
I(ai > bi), 0) · I(ai = yi). Moreover, since the attacker
can remove at most e training examples and the group of
testing examples have different predicted labels, i.e., ai ̸= aj
∀i, j ∈ {1, 2, · · · ,m} and i ̸= j, we have

∑m
i=1 ei ≤ e.

We note that the lower bound of ei is non-increasing as i
increases based on Equation (4). Therefore, in the worst-
case scenario, the attacker can make rNN misclassify the last
m − w + 1 testing inputs whose corresponding ei sum to
be at most e. Formally, w is the solution to the optimization
problem in Equation (5). Therefore, the certified accuracy at
poisoning size e is at least w−1

|U| .

9578

Deriving a lower bound of CA(e) for a testing
dataset: Based on Theorem 3, we can derive a lower bound
of CA(e) for a testing dataset via dividing it into disjoint
groups, each of which includes testing examples with differ-
ent predicted labels in rNN. Formally, we have the following
theorem:
Theorem 4 (Joint Certification). Given a testing dataset Dte,
we divide it into λ disjoint groups, i.e., U1,U2, · · · ,Uλ, where
the testing examples in each group have different predicted
labels in rNN. Then, we have the following lower bound of
CA(e):

CA(e) ≥
∑λ

j=1 µj · |Uj |∑λ
j=1 |Uj |

, (6)

where µj is the lower bound of the certified accuracy at poi-
soning size e on group Uj , which we can obtain by invoking
Theorem 3.

Proof. See technical report (Jia et al. 2022).

Strategies of grouping testing examples: Our Theorem 4
is applicable to any way of dividing the testing examples
in Dte to disjoint groups once the testing examples in each
group have different predicted labels in rNN. Therefore, a
natural question is how to group the testing examples in
Dte to maximize our lower bound of certified accuracy. For
instance, a naive method is to randomly divide the testing
examples into disjoint groups, each of which includes at most
c (the number of classes) testing examples with different
predicted labels. We call such method Random Division (RD).
However, RD achieves suboptimal performance because it
does not consider the certified robustness of each individual
testing example. In particular, some testing examples can
or cannot be certifiably correctly classified no matter which
groups they belong to. However, if we group them with other
testing examples, the certified accuracy may be degraded
because each group can have at most c testing examples. For
instance, if a testing example cannot be certifiably correctly
classified no matter which group it belongs to, then adding
it to a group would exclude another testing example from
the group, which may degrade the certified accuracy for the
group.

Therefore, we propose to isolate these testing examples
and divide the remaining testing examples into disjoint
groups. We call such method Isolation and Division (IS-
LAND). Specifically, we first divide the testing dataset Dte

into three disjoint parts which we denote as D0
te, D1

te, and
D2

te. D0
te contains the testing examples that cannot be certifi-

ably correctly classified at poisoning size e no matter which
group they belong to. Based on our proof of Theorem 3, a
testing example (xi, yi) that satisfies (sai

− sbi − e+ I(ai >
bi)) · I(ai = yi) ≤ 0 cannot be certifiably correctly classi-
fied at poisoning size e no matter which group it belongs to.
Therefore, D0

te includes such testing examples. Moreover,
based on Theorem 1, a testing example (xi, yi) that satisfies
e ≤ ⌈ sai

−sbi+I(ai>bi)

2 ⌉−1 can be certifiably correctly classi-
fied at poisoning size e. Therefore, D1

te includes such testing
examples. Each testing example in D0

te or D1
te forms a group

by itself. D2
te includes the remaining testing examples, which

we further divide into groups. Our method of dividing D2
te

into groups is inspired by the proof of Theorem 3. In particu-
lar, we form a group of testing examples as follows: for each
label l ∈ {1, 2, · · · , c}, we find the testing example that has
the largest value of (sai

− sbi − e+ I(ai > bi)) · I(ai = l)
and we skip the label if there is no remaining testing exam-
ple whose predicted label is l. We apply the procedure to
recursively group the testing examples in D2

te until no testing
examples are left.

Evaluation
Datasets: We evaluate our methods on MNIST and CI-
FAR10. We use the popular histogram of oriented gradients
(HOG) (Dalal and Triggs 2005) method (we adopt public
implementation (hog 2021)) to extract features for each ex-
ample, which we found improves certified accuracy. Note that
previous work (Jia, Cao, and Gong 2021) used a pre-trained
model to extract features via transfer learning. However, the
pre-trained model may also be poisoned and thus we don’t
use it. For simplicity, we rank the training examples in a
dataset using their indices and use them to break ties in de-
termining nearest neighbors for kNN. Moreover, we rank the
labels as {1, 2, · · · , 10} to break ties for labels. Following
previous work (Wang et al. 2019a), we adopt a white square
located at the bottom right corner of an image as the trigger in
backdoor attacks for both MNIST and CIFAR10. The sizes of
the triggers are 5× 5 and 10× 10 for MNIST and CIFAR10,
considering different image sizes in those two datasets.
Parameter settings: While any distance metric is applicable,
we use ℓ1 in our experiments for both kNN and rNN. Unless
otherwise mentioned, we adopt the following settings: k =
5, 000 for both MNIST and CIFAR10 in kNN; and r = 4 for
MNIST and r = 20 for CIFAR10 in rNN, considering the
different feature dimensions of MNIST and CIFAR10. By
default, we use the ISLAND grouping method in the joint
certification for rNN.
Comparing with bagging (Jia, Cao, and Gong 2021) and
DPA (Levine and Feizi 2021): Figure 2 and 3 show the
comparison results of bagging, DPA, kNN, and rNN for data
poisoning attacks and backdoor attacks, respectively. Bag-
ging learns N base classifiers, each of which is learnt on a
random subsample with ξ training examples of the training
dataset. Moreover, bagging’s certified accuracy is correct
with a confidence level 1− α. DPA divides a training dataset
into ζ disjoint partitions and learns a base classifier on each
of them. Then, DPA takes a majority vote among the base
classifiers to predict the label of a testing example. All the
compared methods have tradeoffs between accuracy under no
attacks (i.e., CA(0)) and robustness against attacks. There-
fore, we set their parameters such that they have similar
accuracy under no attacks (i.e., similar CA(0)). In particular,
we use the default k for kNN, and we adjust r for rNN, ξ
for bagging, and ζ for DPA. The searched parameters are
as follows: r = 4, ξ = 20, and ζ = 2, 500 for MNIST; and
r = 21, ξ = 300, and ζ = 500 for CIFAR10. We find that
the searched parameters are the same for data poisoning at-
tacks and backdoor attacks. Note that we set N = 1, 000 and
α = 0.001 for bagging following Jia, Cao, and Gong (2021).

9579

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00
C

er
ti

fie
d

A
cc

u
ra

cy Bagging

DPA

kNN

rNN

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy Bagging

DPA

kNN

rNN

(b) CIFAR10

Figure 2: Comparing kNN and rNN with state-of-the-art
methods against data poisoning attacks.

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy Bagging

DPA

kNN

rNN

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy Bagging

DPA

kNN

rNN

(b) CIFAR10

Figure 3: Comparing kNN and rNN with state-of-the-art
methods against backdoor attacks.

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy IC

JC–RD

JC–ISLAND

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy IC

JC–RD

JC–ISLAND

(b) CIFAR10

Figure 4: Comparing individual certification with joint certi-
fication for rNN against data poisoning attacks.

We have the following observations. First, both kNN and
rNN outperform bagging and DPA. The superior performance
of kNN and rNN stems from two reasons: 1) each poisoned
training example corrupts multiple voters for bagging and
DPA, while it only corrupts one voter for kNN and rNN,
which means that, given the same gap between the largest
and second largest number of votes, kNN and rNN can tol-
erate more poisoned training examples; and 2) rNN enables
joint certification that improves the certified accuracy. Sec-
ond, rNN achieves better certified accuracy than kNN when
the poisoning size is large. The reason is that rNN supports
joint certification. Third, kNN (or rNN) achieves similar cer-
tified accuracy against data poisoning attacks and backdoor
attacks for a given poisoning size. This is because, in back-
door attacks, adding a trigger to a testing image does not
affect its label predicted by a clean classifier.
Comparing individual certification with joint certifica-
tion: Figure 4 and 8 (in technical report (Jia et al. 2022))
compare individual certification and joint certification (with
the RD and ISLAND grouping methods) for rNN against data
poisoning attacks and backdoor attacks. Our empirical results

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy k=1,000

k=3,000

k=5,000

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy k=1,000

k=3,000

k=5,000

(b) CIFAR10

Figure 5: Impact of k on the certified accuracy of kNN against
data poisoning attacks.

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy r=3.0

r=3.5

r=4.0

(a) MNIST

0 200 400 600 800
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy r=18

r=20

r=22

(b) CIFAR10

Figure 6: Impact of r on the certified accuracy of rNN against
data poisoning attacks.

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy kNN w/o SSL

rNN w/o SSL

kNN with SSL

rNN with SSL

(a) Data poisoning attacks

0 1000 2000 3000
Poisoning Size e

0.00

0.25

0.50

0.75

1.00

C
er

ti
fie

d
A

cc
u

ra
cy kNN w/o SSL

rNN w/o SSL

kNN with SSL

rNN with SSL

(b) Backdoor attacks

Figure 7: Self-supervised learning improves the certified ac-
curacy of kNN and rNN, where CIFAR10 is used.

validate that joint certification improves the certified accu-
racy upon individual certification. Moreover, our ISLAND
grouping method outperforms the RD method.
Impact of k and r: Figure 5, 6, 9 (in technical report (Jia
et al. 2022)), 10 (in technical report (Jia et al. 2022)) show
the impact of k and r on the certified accuracy of kNN and
rNN against data poisoning attacks and backdoor attacks,
respectively. As the results show, k and r achieve tradeoffs
between accuracy under no attacks (i.e., CA(0)) and robust-
ness. Specifically, when k or r is smaller, the accuracy under
no attacks, i.e., CA(0), is larger, but the certified accuracy
decreases more quickly as the poisoning size e increases.
Self-supervised learning improves the certified accuracy:
Self-supervised learning (SSL) (Hadsell, Chopra, and LeCun
2006; He et al. 2020; Chen et al. 2020) aims to learn a feature
extractor using a large amount of unlabeled data, such that
the feature extractor can be used to extract features for a vari-
ety of downstream learning tasks. We adopt the pre-trained
feature extractor called CLIP (Radford et al. 2021) to extract
features. CLIP was pre-trained using 400 million (image,
text) pairs and we use its public implementation (cli 2021).

9580

Note that we assume the pre-trained feature extractor is not
poisoned. For each training or testing input in CIFAR10, we
use CLIP to extract its features. Then, given the features, we
use kNN or rNN to classify testing inputs. We use the default
k (i.e., k = 5, 000) for both kNN without SSL and kNN
with SSL. We adjust r such that rNN without SSL (or rNN
with SSL) has similar certified accuracy under no attacks
with kNN without SSL (or kNN with SSL). Figure 7 shows
the comparison results. Our results show that self-supervised
learning can significantly improve the certified accuracy of
kNN and rNN.

Related Work
Data poisoning attacks and backdoor attacks: Data poi-
soning attacks have been proposed against various learn-
ing algorithms such as Bayes classifier (Nelson et al.
2008), SVM (Biggio, Nelson, and Laskov 2012), neural net-
works (Muñoz-González et al. 2017; Shafahi et al. 2018;
Suciu et al. 2018; Demontis et al. 2019), recommender
systems (Li et al. 2016; Yang, Gong, and Cai 2017; Fang
et al. 2018; Fang, Gong, and Liu 2020), federated learn-
ing (Bhagoji et al. 2019; Fang et al. 2020; Bagdasaryan
et al. 2020), and others (Rubinstein et al. 2009). Backdoor
attacks (Gu et al. 2019; Chen et al. 2017; Liu et al. 2018; Jia,
Liu, and Gong 2022) corrupt both the training and testing
phases of a machine learning system such that the corrupted
classifier predicts an attacker-chosen label for any input em-
bedded with a trigger.
Defenses against data poisoning attacks and backdoor
attacks: To mitigate data poisoning attacks and/or backdoor
attacks, many empirical defenses (Rubinstein et al. 2009;
Biggio et al. 2011; Feng et al. 2014; Jagielski et al. 2018;
Tran, Li, and Madry 2018; Diakonikolas et al. 2019; Liu,
Dolan-Gavitt, and Garg 2018; Wang et al. 2019a) have been
proposed. Steinhardt, Koh, and Liang (2017) derived an upper
bound of the loss function for data poisoning attacks when
the model is learnt using examples in a feasible set. However,
these defenses cannot guarantee that the predicted label for
a testing input is certifiably unaffected and cannot provide
(rigorous) certified accuracies.

Recently, several certified defenses (Ma, Zhu, and Hsu
2019; Wang et al. 2020; Rosenfeld et al. 2020; Weber et al.
2020; Levine and Feizi 2021; Jia, Cao, and Gong 2021) were
proposed to defend against data poisoning attacks and/or
backdoor attacks. These defenses provide certified accuracies
for a testing dataset either probabilistically (Ma, Zhu, and
Hsu 2019; Wang et al. 2020; Weber et al. 2020; Jia, Cao,
and Gong 2021) or deterministically (Rosenfeld et al. 2020;
Levine and Feizi 2021). All these defenses except Ma, Zhu,
and Hsu (2019) leverage majority vote to predict the label
of a testing example. In particular, a voter is a base clas-
sifier learnt on a perturbed version of the training dataset
in randomized smoothing based defenses (Rosenfeld et al.
2020; Wang et al. 2020; Weber et al. 2020), while a voter is a
base classifier learnt on a subset of the trainig dataset in bag-
ging (Jia, Cao, and Gong 2021) and DPA (Levine and Feizi
2021). Ma, Zhu, and Hsu (2019) showed that a differentially
private learning algorithm achieves certified accuracy against
data poisoning attacks. They also train multiple differentially

private classifiers, but they are not used to predict the label
of a testing example via majority vote. Instead, their average
accuracy is used to estimate the certified accuracy.

kNN and rNN have intrinsic majority vote mechanisms
and we show that they provide deterministic certified ac-
curacies against data poisoning attacks and backdoor at-
tacks. Moreover, rNN enables joint certification. We note
that DPA (Levine and Feizi 2021) proposed to use a hash
function to assign training examples into partitions, which is
different from our use of hash function. In particular, we use
a hash function to rank training examples. Moreover, both
DPA and our work rank the labels to break ties.
Nearest neighbors and robustness: A line of works (Wilson
1972; Guyon, Matić, and Vapnik 1994; Peri et al. 2020; Bahri,
Jiang, and Gupta 2020) leveraged nearest neighbors to clean
a training dataset. For instance, Wilson (1972) proposed to
remove a training example whose label is not the same as the
majority vote among the labels of its 3 nearest neighbors. Peri
et al. (2020) proposed to remove a training example whose
label is not the mode amongst labels of its k nearest neighbors
in the feature space. Bahri, Jiang, and Gupta (2020) combined
kNN with an intermediate layer of a preliminary deep neural
network model to filter suspiciously-labeled training exam-
ples. Another line of works (Gao, Niu, and Zhou 2016; Reeve
and Kabán 2019) studied the resistance of nearest neighbors
to random noisy labels. For instance, Gao, Niu, and Zhou
(2016) analyzed the resistance of kNN to asymmetric label
noise and introduced a Robust kNN to deal with noisy la-
bels. Reeve and Kabán (2019) further analyzed the Robust
kNN proposed by Gao, Niu, and Zhou (2016) in the setting
with unknown asymmetric label noise.

kNN and its variants have also been used to defend
against adversarial examples (Wang, Jha, and Chaudhuri
2018; Sitawarin and Wagner 2019; Yang et al. 2020). For
instance, Wang, Jha, and Chaudhuri (2018) analyzed the ro-
bustness of nearest neighbors to adversarial examples and pro-
posed a more robust 1-nearest neighbor. Several works (Am-
saleg et al. 2017; Wang, Jha, and Chaudhuri 2018; Wang
et al. 2019b; Yang et al. 2020) proposed adversarial examples
to nearest neighbors, e.g., Wang et al. (2019b) proposed ad-
versarial examples against 1-nearest neighbor. These works
are orthogonal to ours as we focus on analyzing the certi-
fied robustness of kNN and rNN against data poisoning and
backdoor attacks.

Conclusion and Future Work
In this work, we derive the certified robustness of nearest
neighbor algorithms, including kNN and rNN, against data
poisoning attacks and backdoor attacks. Moreover, we de-
rive a better lower bound of certified accuracy for rNN via
jointly certifying multiple testing examples. Our evaluation
results show that 1) both kNN and rNN outperform state-
of-the-art certified defenses against data poisoning attacks
and backdoor attacks, and 2) joint certification outperforms
individual certification. Interesting future work includes 1)
extending joint certification to other learning algorithms, 2)
improving joint certification via new grouping methods, and
3) improving certified accuracy of kNN and rNN via new
distance metrics.

9581

Acknowledgments
We thank the anonymous reviewers for insightful reviews.
This work was supported by the National Science Foundation
under Grants No. 1937786 and 2112562, as well as the Army
Research Office under Grant No. W911NF2110182.

References
2021. CLIP. ”https://github.com/openai/CLIP”. Accessed:
2021-08.
2021. HOG. ”https://scikit-image.org/docs/dev/api/skimage.
feature.html\#skimage.feature.hog”. Accessed: 2021-08.
Amsaleg, L.; Bailey, J.; Barbe, D.; Erfani, S.; Houle, M. E.;
Nguyen, V.; and Radovanović, M. 2017. The vulnerability of
learning to adversarial perturbation increases with intrinsic
dimensionality. In 2017 IEEE Workshop on Information
Forensics and Security (WIFS), 1–6. IEEE.
Bagdasaryan, E.; Veit, A.; Hua, Y.; Estrin, D.; and Shmatikov,
V. 2020. How to backdoor federated learning. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2938–2948. PMLR.
Bahri, D.; Jiang, H.; and Gupta, M. 2020. Deep k-nn for noisy
labels. In International Conference on Machine Learning,
540–550. PMLR.
Barreno, M.; Nelson, B.; Sears, R.; Joseph, A. D.; and Tygar,
J. D. 2006. Can machine learning be secure? In Proceedings
of the 2006 ACM Symposium on Information, computer and
communications security, 16–25.
Bhagoji, A. N.; Chakraborty, S.; Mittal, P.; and Calo, S. 2019.
Analyzing federated learning through an adversarial lens. In
International Conference on Machine Learning, 634–643.
PMLR.
Biggio, B.; Corona, I.; Fumera, G.; Giacinto, G.; and Roli, F.
2011. Bagging classifiers for fighting poisoning attacks in
adversarial classification tasks. In International workshop on
multiple classifier systems, 350–359. Springer.
Biggio, B.; Fumera, G.; and Roli, F. 2013. Security evaluation
of pattern classifiers under attack. IEEE Transactions on
Knowledge and Data Engineering, 26(4): 984–996.
Biggio, B.; Nelson, B.; and Laskov, P. 2012. Poisoning
attacks against support vector machines. In Proceedings of
the 29th International Coference on International Conference
on Machine Learning, 1467–1474.
Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International conference on machine learning,
1597–1607. PMLR.
Chen, X.; Liu, C.; Li, B.; Lu, K.; and Song, D. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data
Poisoning. CoRR, abs/1712.05526.
Cover, T.; and Hart, P. 1967. Nearest neighbor pattern classi-
fication. IEEE Transactions on Information Theory, 13(1):
21–27.
Dalal, N.; and Triggs, B. 2005. Histograms of oriented gra-
dients for human detection. In 2005 IEEE computer soci-
ety conference on computer vision and pattern recognition
(CVPR’05), volume 1, 886–893. Ieee.

Demontis, A.; Melis, M.; Pintor, M.; Jagielski, M.; Biggio,
B.; Oprea, A.; Nita-Rotaru, C.; and Roli, F. 2019. Why
do adversarial attacks transfer? explaining transferability of
evasion and poisoning attacks. In 28th USENIX security
symposium, 321–338.
Diakonikolas, I.; Kamath, G.; Kane, D.; Li, J.; Steinhardt,
J.; and Stewart, A. 2019. Sever: A robust meta-algorithm
for stochastic optimization. In International Conference on
Machine Learning, 1596–1606. PMLR.
Fang, M.; Cao, X.; Jia, J.; and Gong, N. 2020. Local Model
Poisoning Attacks to Byzantine-Robust Federated Learning.
In 29th USENIX Security Symposium, 1605–1622.
Fang, M.; Gong, N. Z.; and Liu, J. 2020. Influence function
based data poisoning attacks to top-n recommender systems.
In Proceedings of The Web Conference 2020, 3019–3025.
Fang, M.; Yang, G.; Gong, N. Z.; and Liu, J. 2018. Poisoning
attacks to graph-based recommender systems. In Proceedings
of the 34th Annual Computer Security Applications Confer-
ence, 381–392.
Feng, J.; Xu, H.; Mannor, S.; and Yan, S. 2014. Robust logis-
tic regression and classification. In Proceedings of the 27th
International Conference on Neural Information Processing
Systems-Volume 1, 253–261.
Fix, E.; and Hodges, J. 1951. Discriminatory Analysis: Non-
parametric Discrimination, Consistency Properties. Report
No. 4, USAF School of Aviation Medicine, Randolph Field,
Texas, Feb.
Gao, W.; Niu, X.-Y.; and Zhou, Z.-H. 2016. On the Con-
sistency of Exact and Approximate Nearest Neighbor with
Noisy Data. ArXiv, abs/1607.07526.
Gu, T.; Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2019. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks.
IEEE Access, 7: 47230–47244.
Guyon, I.; Matić, N.; and Vapnik, V. 1994. Discovering
informative patterns and data cleaning. In Proceedings of the
3rd International Conference on Knowledge Discovery and
Data Mining, 145–156.
Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimension-
ality reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, 1735–1742. IEEE.
He, K.; Fan, H.; Wu, Y.; Xie, S.; and Girshick, R. 2020.
Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 9729–9738.
Jagielski, M.; Oprea, A.; Biggio, B.; Liu, C.; Nita-Rotaru, C.;
and Li, B. 2018. Manipulating machine learning: Poisoning
attacks and countermeasures for regression learning. In 2018
IEEE Symposium on Security and Privacy, 19–35. IEEE.
Jia, J.; Cao, X.; and Gong, N. Z. 2021. Intrinsic Certified
Robustness of Bagging against Data Poisoning Attacks. In
Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, 7961–7969.
Jia, J.; Liu, Y.; Cao, X.; and Gong, N. Z. 2022. Certified
Robustness of Nearest Neighbors against Data Poisoning and
Backdoor Attacks. CoRR, abs/2012.03765.

9582

Jia, J.; Liu, Y.; and Gong, N. Z. 2022. BadEncoder: Backdoor
Attacks to Pre-trained Encoders in Self-Supervised Learning.
In IEEE Symposium on Security and Privacy, 346–362. IEEE.
Levine, A.; and Feizi, S. 2021. Deep Partition Aggregation:
Provable Defenses against General Poisoning Attacks. In
International Conference on Learning Representations.
Li, B.; Wang, Y.; Singh, A.; and Vorobeychik, Y. 2016. Data
poisoning attacks on factorization-based collaborative filter-
ing. In Proceedings of the 30th International Conference on
Neural Information Processing Systems, 1893–1901.
Liu, K.; Dolan-Gavitt, B.; and Garg, S. 2018. Fine-pruning:
Defending against backdooring attacks on deep neural net-
works. In International Symposium on Research in Attacks,
Intrusions, and Defenses, 273–294. Springer.
Liu, Y.; Ma, S.; Aafer, Y.; Lee, W.-C.; Zhai, J.; Wang, W.; and
Zhang, X. 2018. Trojaning Attack on Neural Networks. In
25th Annual Network and Distributed System Security Sym-
posium, NDSS 2018, San Diego, California, USA, February
18-221, 2018. The Internet Society.
Ma, Y.; Zhu, X.; and Hsu, J. 2019. Data poisoning against
differentially-private learners: attacks and defenses. In Pro-
ceedings of the 28th International Joint Conference on Artifi-
cial Intelligence, 4732–4738.
Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.;
and Jha, N. K. 2014. Systematic poisoning attacks on and
defenses for machine learning in healthcare. IEEE Journal
of Biomedical and Health Informatics, 19(6): 1893–1905.
Muñoz-González, L.; Biggio, B.; Demontis, A.; Paudice, A.;
Wongrassamee, V.; Lupu, E. C.; and Roli, F. 2017. Towards
poisoning of deep learning algorithms with back-gradient
optimization. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security.
Nelson, B.; Barreno, M.; Chi, F. J.; Joseph, A. D.; Rubinstein,
B. I.; Saini, U.; Sutton, C. A.; Tygar, J. D.; and Xia, K. 2008.
Exploiting Machine Learning to Subvert Your Spam Filter.
LEET, 8: 1–9.
Peri, N.; Gupta, N.; Huang, W. R.; Fowl, L.; Zhu, C.; Feizi,
S.; Goldstein, T.; and Dickerson, J. P. 2020. Deep k-nn de-
fense against clean-label data poisoning attacks. In European
Conference on Computer Vision, 55–70. Springer.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
et al. 2021. Learning transferable visual models from nat-
ural language supervision. In International Conference on
Machine Learning, 8748–8763. PMLR.
Reeve, H.; and Kabán, A. 2019. Fast rates for a kNN classifier
robust to unknown asymmetric label noise. In International
Conference on Machine Learning, 5401–5409. PMLR.
Rosenfeld, E.; Winston, E.; Ravikumar, P.; and Kolter, Z.
2020. Certified robustness to label-flipping attacks via ran-
domized smoothing. In International Conference on Machine
Learning, 8230–8241. PMLR.
Rubinstein, B. I.; Nelson, B.; Huang, L.; Joseph, A. D.; Lau,
S.-h.; Rao, S.; Taft, N.; and Tygar, J. D. 2009. Antidote:
understanding and defending against poisoning of anomaly
detectors. In Proceedings of the 9th ACM SIGCOMM Con-
ference on Internet Measurement, 1–14.

Shafahi, A.; Huang, W. R.; Najibi, M.; Suciu, O.; Studer,
C.; Dumitras, T.; and Goldstein, T. 2018. Poison frogs!
targeted clean-label poisoning attacks on neural networks. In
Proceedings of the 32nd International Conference on Neural
Information Processing Systems, 6106–6116.
Sitawarin, C.; and Wagner, D. 2019. On the robustness of
deep k-nearest neighbors. In 2019 IEEE Security and Privacy
Workshops, 1–7. IEEE.
Steinhardt, J.; Koh, P. W.; and Liang, P. 2017. Certified de-
fenses for data poisoning attacks. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, 3520–3532.
Suciu, O.; Marginean, R.; Kaya, Y.; Daume III, H.; and Du-
mitras, T. 2018. When does machine learning {FAIL}? gen-
eralized transferability for evasion and poisoning attacks. In
27th USENIX Security Symposium, 1299–1316.
Tran, B.; Li, J.; and Madry, A. 2018. Spectral signatures in
backdoor attacks. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, 8011–
8021.
Wang, B.; Cao, X.; Jia, J.; and Gong, N. Z. 2020. On Certify-
ing Robustness against Backdoor Attacks via Randomized
Smoothing. In CVPR 2020 Workshop on Adversarial Ma-
chine Learning in Computer Vision.
Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng,
H.; and Zhao, B. Y. 2019a. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In 2019
IEEE Symposium on Security and Privacy, 707–723. IEEE.
Wang, L.; Liu, X.; Yi, J.; Zhou, Z.; and Hsieh, C. 2019b.
Evaluating the Robustness of Nearest Neighbor Classifiers:
A Primal-Dual Perspective. CoRR, abs/1906.03972.
Wang, Y.; Jha, S.; and Chaudhuri, K. 2018. Analyzing the
robustness of nearest neighbors to adversarial examples. In
International Conference on Machine Learning, 5133–5142.
PMLR.
Weber, M.; Xu, X.; Karlas, B.; Zhang, C.; and Li, B. 2020.
RAB: Provable Robustness Against Backdoor Attacks. CoRR,
abs/2003.08904.
Wilson, D. L. 1972. Asymptotic properties of nearest neigh-
bor rules using edited data. IEEE Transactions on Systems,
Man, and Cybernetics, (3): 408–421.
Xiao, H.; Biggio, B.; Brown, G.; Fumera, G.; Eckert, C.; and
Roli, F. 2015a. Is feature selection secure against training
data poisoning? In international conference on machine
learning, 1689–1698. PMLR.
Xiao, H.; Biggio, B.; Nelson, B.; Xiao, H.; Eckert, C.; and
Roli, F. 2015b. Support vector machines under adversarial
label contamination. Neurocomputing, 160: 53–62.
Yang, G.; Gong, N. Z.; and Cai, Y. 2017. Fake Co-visitation
Injection Attacks to Recommender Systems. In 24th An-
nual Network and Distributed System Security Symposium,
NDSS 2017, San Diego, California, USA, February, 2017.
The Internet Society.
Yang, Y.-Y.; Rashtchian, C.; Wang, Y.; and Chaudhuri,
K. 2020. Robustness for non-parametric classification: A
generic attack and defense. In International Conference on
Artificial Intelligence and Statistics, 941–951. PMLR.

9583

