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Abstract
Recent studies indicate that deep neural networks (DNNs) are
prone to show discrimination towards certain demographic
groups. We observe that algorithmic discrimination can be
explained by the high reliance of the models on fairness sen-
sitive features. Motivated by this observation, we propose to
achieve fairness by suppressing the DNN models from cap-
turing the spurious correlation between those fairness sensi-
tive features with the underlying task. Specifically, we first
train a bias-only teacher model which is explicitly encour-
aged to maximally employ fairness sensitive features for pre-
diction. The teacher model then counter-teaches a debiased
student model so that the interpretation of the student model
is orthogonal to the interpretation of the teacher model. The
key idea is that since the teacher model relies explicitly on
fairness sensitive features for prediction, the orthogonal in-
terpretation loss enforces the student network to reduce its
reliance on sensitive features and instead capture more task-
relevant features for prediction. Experimental analysis indi-
cates that our framework substantially reduces the model’s
attention on fairness sensitive features. Experimental results
on four datasets further validate that our framework has con-
sistently improved model fairness with respect to group fair-
ness metrics, with a comparable or even better accuracy.

Introduction
DNN models are increasingly being used in high-stake de-
cision making applications that affect individuals. However,
these models might exhibit algorithmic bias behaviors (Nag-
pal et al. 2019; Du et al. 2020; Kiritchenko and Mohammad
2018; Wan et al. 2021). Specifically, DNN models place cer-
tain privileged groups at a systematic advantage and exhibit
discrimination with respect to certain unprivileged groups.
For example, a recruiting tool believes that males are more
qualified and gives much lower ratings to females (Kir-
itchenko and Mohammad 2018), loan eligibility system neg-
atively rates African Americans, and the recidivism predic-
tion system predicts that African American inmates are three
times more likely to be classified as ‘high risk’ than Eu-
ropean American inmates (Angwin et al. 2016), to name a
few. Many algorithmic discriminations are not justified, and
the bias problem might cause adverse impacts on individu-
als and society. Therefore, designing mitigation methods to
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reduce the algorithmic bias of DNN models has attracted in-
creasing attention recently (Mehrabi et al. 2022; Wu et al.
2021; Tang et al. 2021).

Our work is motivated by the observation that the bias
behavior of standard DNN models is a direct result of their
high reliance on fairness sensitive features in inputs. Here
fairness sensitive features denote features (e.g., ZIP code
and surname) that are highly predictive of certain protected
attribute (e.g., race). As a result, the underlying prediction
task (e.g., mortgage application) would highly rely on the
protected attributes (e.g., race) for prediction and introduce
discrimination for certain groups (e.g., African Americans).
Based on this observation, we propose to mitigate bias by
suppressing the model from capturing superficial correla-
tions of fairness sensitive features with the prediction task,
while forcing it to concentrate on task-relevant features.

Decorrelating fairness sensitive features with class la-
bels for DNN models is a technically challenging problem.
Firstly, one challenge lies in how to locate fairness sensi-
tive features in input. One straightforward idea is to label the
whole training set by domain experts or crowd workers. This
would lead to suboptimal results. On one hand, crowd sourc-
ing labelling is too time consuming and the labelling qual-
ity is not guaranteed (McDonnell et al. 2016). On the other
hand, many seemingly innocuous features may be highly
correlated with protected attributes and cause model bias.
This makes it extremely hard to annotate an exhaustive list of
sensitive features. Secondly, it is also challenging to utilize
the sensitive features even if we could obtain such labels. A
straightforward way is to delete these features, which how-
ever is impractical in many applications.

To address these challenges, we propose a general frame-
work, called DeFI (Decorrelating Feature Influence), to dis-
correlate the main prediction task and fairness sensitive fea-
tures for bias mitigation. We introduce a bias-only teacher
network that primarily leverages sensitive features in the in-
put to make predictions. Fairness sensitive features can be
automatically localized by the biased teacher network. This
teacher network then counter-teaches a debiased student net-
work, so that the interpretation of the student model is or-
thogonal to the interpretation of the teacher model. The key
idea is that since the teacher model relies explicitly on fair-
ness sensitive features for prediction, the orthogonal inter-
pretation loss enforces the student network to focus more
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Figure 1: An illustrative example of the proposed DeFI framework, where the task is for sentiment classification and the
protected attribute is gender. (a) The bias-only teacher model mostly relies on fairness sensitive feature, i.e., ‘woman’ for
prediction. (b) Without teaching, the student DNN will pick up both undesirable fairness sensitive features, i.e., ‘woman’, and
features reflective of sentiment, i.e., ‘irritated’. (c) After counter-teaching from the teacher network, the student DNN will
exclusively concentrate on task-relevant features, i.e., ‘irritated’, for prediction.

on task-relevant features for prediction. At test time, our
method does not need access to protected attributes, since
collecting protected attributes is often not allowed in real-
world applications. The major contributions of this paper are
summarized as follows:
• We propose a general bias mitigation framework, called

DeFI, which could reduce model discrimination via decor-
relating the prediction task and fairness sensitive features.

• DeFI is applicable to different DNN architectures and can
be easily extended to tackle multiple protected attributes
(e.g., race and gender) to achieve compositional fairness.

• Experimental results show that DeFI could increase the
performance with respect to demographic parity and
equality of odds metrics, while maintaining the original
prediction accuracy. The analysis further indicates that
DeFI has reduced attention on fairness sensitive features.

The Proposed Framework
In this section, we introduce the proposed DeFI framework
(Decorrelating Feature Influence). We formulate it into a
two-step procedure: 1) first training a biased teacher network
which deliberately maximizes the usage of fairness sensitive
features for prediction, 2) then training a student network
where its interpretation is orthogonal to the interpretation of
the teacher network. We design the teaching in two ways:
explicit decorrelation and implicit decorrelation.

Problem Statement
We first introduce the notations as well as fairness measure-
ments. Then we present feature influence analysis that serves
as the basic motivation for our proposed mitigation method.
Notations. Consider a classification problem with labeled
examples: {x, y, a} ∼ pdata, where x ∈ X is input feature,
and y ∈ Y is the label that we want to predict. Besides,
a ∈ A = {0, ...,K} is a K categorical protected attribute
annotation, such as race, gender, and age, where there ex-
ist certain unprivileged and privileged groups. We assume

that the protected attributes A can only be used during the
training phase and are not accessible during the inference
time (post-training). Our goal here is to learn a classification
model ŷ = f(x) which is predictive of label y, while at the
same time satisfying certain fairness measurements with re-
gard to a protected attribute a. In this work, we restrict our
attention to models that make a binary classification deci-
sion, i.e., Y = {0, 1}, where 1 and 0 denote favorable out-
come and unfavorable outcome, respectively.

Fairness Measurements. We use three statistic (group)
fairness metrics to assess the fairness of the model (Ga-
jane and Pechenizkiy 2018). The demographic parity met-
ric (Feldman et al. 2015) is defined as the probability ratio of
favorable outcome between unprivileged group (a = 0) and
privileged group (a = 1): Fparity = p(ŷ=1|a=0)

p(ŷ=1|a=1) , where ŷ is
the model prediction and 1 denotes the favorable outcome.
The equality of opportunity metric (Hardt et al. 2016; Za-
far et al. 2017) is defined as the true positive rate difference
between unprivileged group and privileged group: Fopty =
p(ŷ = 1|a = 0, y = 1)−p(ŷ = 1|a = 1, y = 1). Equality of
odds metric (Hardt et al. 2016) also takes false positive
rate into consideration: Fodds = p(ŷ = 1|a = 0, y = 0) −
p(ŷ = 1|a = 1, y = 0) + Fopty . Furthermore, we also use
accuracy Facc to assess the utility of the model.

Feature Influence Analysis. Our work is based on the ex-
perimental observation that discrimination is mainly caused
by the model’s dependence on fairness sensitive features
for prediction. Here fairness sensitive features are subset
of features in the input x that are highly predictive of
protected attribute a. We use an interpretation method (Sun-
dararajan, Taly, and Yan 2017) to analyze the feature impor-
tance distribution for different types of features. For a text-
based sentiment classification task using EEC dataset (Kir-
itchenko and Mohammad 2018), the interpretation heatmap
indicates that DNN model heavily relies on fairness sen-
sitive features for prediction. An example is illustrated in
Fig. 1(b). For this task, the word ‘woman’ is fairness sen-
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sitive feature, which is highly correlated with protected at-
tribute a = Female. The model pays comparable attention
to word ‘woman’ with ‘irritated’, indicating that it has asso-
ciated females with the negative anger sentiment. Due to the
data distribution imbalance in the training set, fairness sen-
sitive features could have high correlation with certain class
labels. Most current DNNs follow the data-driven learning
paradigm. The trained models would capture superficial cor-
relation between fairness sensitive features and the label,
amplifying these biases and taking a shortcut to make pre-
dictions (Geirhos et al. 2021). Eventually, the DNN models
show discrimination towards certain demographic groups.

Decorrelating Feature Influence (DeFI)
Based on the analysis in the last section, we propose to
achieve fairness by decorrelating feature influence from fair-
ness sensitive features to the prediction label (see Fig. 1).
However, it is challenging to locate the fairness sensitive
features in the input. Thus, we formulate the decorrelation
into the knowledge distillation framework (Hinton, Vinyals,
and Dean 2015; Phuong and Lampert 2019), while through
counter-teaching. We construct a bias-only teacher network
which is trained to maximally utilize fairness sensitive fea-
tures for prediction. Then the teacher network is further em-
ployed to counter-teach a debiased student network.
Constructing a Bias-Only Teacher Network. Our hypoth-
esis is that the input contains fairness sensitive features and
task-relevant features, and our goal is to separate them au-
tomatically. Specifically, we build a bias-only teacher model
which maximally utilizes the fairness sensitive features for
prediction. The teacher is denoted as fT (x) = c(h(x)),
where h(x) is the intermediate representation for input x,
and c(·) is responsible for mapping the intermediate repre-
sentation to the final prediction. Note that h(x) only con-
tains |A| dimensions. The key motivation of using the |A|-
dimension input representation h(x) is to force the teacher
network to only utilize biased information, i.e., fairness sen-
sitive features in input, to obtain prediction fT (x).

A two-stage strategy is used to train the bias-only teacher
model fT (x). Firstly, we use the input and the protected
attribute annotation {xi, ai}Ni=1 to train the representation
h(x). The purpose is to maximize the bias information cap-
tured by the representation h(x). Essentially we treat this
as the multiclass classification problem. Take the sample in
Fig. 1 (a) for example, the input x is the sentence “the sit-
uation makes this woman feel irritated”, and the protected
attribute a is “female”. Secondly, we utilize {h(xi), yi}Ni=1
to train the function c(·) to learn the mapping from h(x) to
fT (x). Ultimately, fT (x) will maximize the use of the most
discriminative sensitive features for prediction.

We illustrate the idea using Fig. 1(a). This is a sentiment
classification task, and we consider gender bias. The input
representation h(x) contains two dimensions, indicating in-
formation for male and female, respectively. The teacher
network fT (x) relies mainly on the fairness sensitive fea-
ture ‘woman’ for prediction, while at the same time paying
nearly no attention to task-relevant feature ‘irritated’.
Counter-Teaching a Debiased Student Network.

Equipped with the bias-only teacher network fT (x), we
could counter-teach a student network fS(x) to force the
student network to utilize complementary knowledge as
the teacher network. We propose two strategies to achieve
the teaching, including explicitly decorrelating feature
influence and implicitly decorrelating feature influence
from fairness sensitive features. Ultimately, we could obtain
a debiased DNN model which minimally relies on fairness
sensitive features for prediction.

Explicitly Decorrelating Feature Influence
In this section, we introduce how to counter-teach the stu-
dent network with the bias-only teacher network for bias
mitigation. Some fairness sensitive features in input xi can
be used to predict protected attributes ai with a high proba-
bility (Feldman et al. 2015). The high reliance of these fea-
tures can cause the discrimination of DNNs. Our goal is to
explicitly discourage the model from capturing superficial
correlations between fairness sensitive features and labels.

We use local DNN interpretability to obtain the contribu-
tion of features towards model prediction (Du, Liu, and Hu
2020). It is achieved by attributing the model’s prediction to
its input features. The final interpretation is illustrated in the
format of feature importance vectors, where a higher value
indicates a higher contribution score of that feature to the
model prediction. We explicitly regularize the interpretation
for the student with the interpretation of the teacher network,
and the loss function is given as follows:

LEX(x) =
1

N

N∑
i=1

⟨I(fT (xi), xi), I(fS(xi), xi)⟩, (1)

where each I represents the local interpretation vector of xi

for the teacher and student network, respectively. The inter-
pretation vector I has the same length as the input xi, and
each element of I denotes how relevant a feature within the
input xi can explain the prediction of the model f(xi). We
encourage a smaller inner product and expect that these two
vectors are more different from each other. Considering that
the biased teacher gives high attention to word ‘woman’ in
Fig. 1, then the student network is enforced to give near-zero
attention to that word instead.
Interpretation Algorithm. To generate interpretations, we
use a back-propagation based interpretation method named
Integrated Gradient (Sundararajan, Taly, and Yan 2017), as it
is a model-agnostic interpretation technique applicable to all
models that have differentiable output in terms of inputs. Its
key idea is to integrate the gradients of m intermediate sam-
ples over the straightline path from baseline xbase to input
xi, which could be denoted as:

I(f(xi), xi) = (xi−xbase)·
m∑

k=1

∂f(xbase +
k
m
(xi − xbase)

∂xi
· 1
m

.

(2)
The sensitivity of each feature with respect to the prediction
is integrated over the spectrum to give the approximate attri-
bution score for each feature. To calculate each gradient, a
target label needs to be specified, where we use the ground
truth label yi of xi.
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Note that for text classification applications, each input
text is composed of T words: xi = {xt

i}Tt=1, and each word
xt
i ∈ Rd denotes a word embedding with d dimensions. We

first compute gradients of the output prediction with respect
to individual entries in word embedding vectors, and use the
L2 norm to reduce each vector of the gradients to a single at-
tribution value, representing the contribution of each single
word. Also, for different inputs xi, we use the same baseline
xbaseline, and fix it as a zero-value vector for tabular input
and as zero word embedding for text input.

Implicitly Decorrelating Feature Influence
We could also train the debiased student network as an en-
semble with the biased teacher network. The key idea is to
implicitly encourage the student network to use alternative
features in the input. The ensemble of probability output
from teacher fT (xi) and student fS(xi) is given as follows:

p(y|x) = softmax(log(pS(y|x)) + log(pT (y|x))), (3)

where the first term is what we expect the student network to
capture, and the second term denotes what the teacher net-
work has learned. In the ensemble learning (Hinton 2002;
He, Zha, and Wang 2019), we fix parameters for the teacher
network and only update the parameters for the student net-
work. In the following, we show that the implicit effect of the
ensemble training of Eq.(3) is to force the student to capture
complementary features to the teacher, i.e., the interpretation
of the student is orthogonal to interpretation of the teacher.
Relation to Decorrelating Feature Influence. Suppose
each input feature x could be split into two subsets of fea-
tures: fairness sensitive features xsens which are highly rele-
vant to protected attribute a and the rest features xtask which
are more relevant to the main prediction task. We could ap-
proximately decompose the model prediction p(x) by apply-
ing the Bayes rule as follows:

p(y|x) = p(y|xsens, xtask) (4a)
∝ p(y|xtask)p(xsens|y, xtask) (4b)
∝ p(y|xtask)p(xsens|y) (4c)

= p(y|xtask)
p(y|xsens)p(xsens)

p(y)
(4d)

∝ p(y|xtask)︸ ︷︷ ︸
Student

p(y|xsens)︸ ︷︷ ︸
Teacher

/p(y), (4e)

where Eq. (4b) is obtained by applying the Bayes rule
while conditioning on xtask. Furthermore, suppose that
these two sets of features xsens and xtask are condition-
ally independent given label y, we could omit xtask from
p(xsens|y, xtask) and obtain Eq. (4c). By further applying
the Bayes rule for p(xsens|y), we can obtain Eq. (4d). Also
considering that the training set is relatively balanced for the
label y, we omit it from the Eq. (4e), and obtain the formu-
lation of Eq.(3).

A desirable debiased model will mainly rely on task-
relevant features, i.e., xtask, for prediction. Nevertheless,
a model trained with cross entropy loss, i.e., p(y|x), will
rely on both xsens and xtask for prediction. We cannot
directly calculate p(y|xsens), which is thus obtained from

the bias-only teacher network. Using the ensemble learning
of Eq.(3), the student network is enforced to capture com-
plementary features to the teacher, i.e., p(y|xtask) (Clark,
Yatskar et al. 2019). The feature influence of the student net-
work is orthogonal to the feature influence of the teacher net-
work, and thus the student network would shift its attention
from fairness sensitive features to task-relevant features.
Adjusting The Influence of Teacher Network. Sometimes
the teacher network could be strongly biased towards certain
predictions. Taking Fig. 1(a) for example, the model could
output a strong negative sentiment whenever the input is rel-
evant to females. In the preliminary experiments, we find
that if we directly add the teacher and student network out-
put together (see Eq. (3)), the student network could show
discrimination towards previously privileged groups, such
as males. To alleviate this problem, we update Eq. (3) by
adding a parameter α (smaller than 1) to adjust the impact
of the teacher network:

p(y|x) = softmax(log(pS(y|x)) + αlog(pT (y|x))). (5)

With p(yi|xi) in Eq.(5), the ensemble learning loss is imple-
mented via cross entropy and is given as follows:

LIM(x) = − 1

N

N∑
i=1

yilog(p(yi|xi))+ (1− yi)log(1− p(yi|xi)).

(6)

Overall Loss Function
Putting the above-mentioned two manners of counter-
teaching together, i.e., the explicit one in Eq.(1) and the im-
plicit one in Eq.(6), the overall loss function is:

L(x) = LCE(x) + β1LEX(x) + β2LIM(x), (7)

where the first term is the standard cross entropy (CE) loss
for debiased student prediction pS :

LCE(x) = − 1

N

N∑
i=1

yilog(pS(yi|xi))+(1−yi)log(1−pS(yi|xi)).

(8)
The second and third terms are the explicit and implicit
decorrelation, respectively. Both are used to suppress the
student’s reliance on sensitive features. Hyperparameters β1

and β2 are used to balance these three terms, in order to con-
trol the fairness and utility trade-off. Larger β1 and β2 could
lead to reduced discrimination, at the expense of a larger
model accuracy drop.

The overall DeFI framework is implemented in two
stages. In the first stage, we train the bias-only teacher net-
work fT (x), and fix its parameters. In the second stage, we
use Eq. (7) to train the debiased student network fS(x).
Note that during the second stage, the entire teacher network
fT (x) is fixed, and only the parameters of the student fS(x)
are updated using back-propagation. Ultimately, the teacher
network fT (x) is discarded and only the debiased student
network fS(x) is employed for prediction.

Experiments
In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed DeFI framework.
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Adult MEPS COMPAS EEC

# Training instances 31600 11080 3700 2940
# Validation instances 4520 1482 523 420

# Test instances 9102 3168 1055 840
Protected attribute Gender Race Race Gender

Table 1: Dataset Statistics

Experimental Setup
Benchmark Datasets. We use three tabular datasets and
one synthetic text dataset. The statistics are given in Tab. 1.
The first one is Adult Income (Adult), which aims to pre-
dict whether a salary is greater than or less than 50K (Ko-
havi 1996). The second one is Medical Expenditure (MEPS).
MEPS is a medical dataset aiming to predict whether a per-
son would have high utilization (Bellamy et al. 2018). The
third is COMPAS, which aims to predict criminal defen-
dant’s likelihood of reoffending (Angwin et al. 2016). The
fourth one is Equity Evaluation Corpus (EEC), which is
used to predict the sentiment of texts (Kiritchenko and Mo-
hammad 2018). We differentiate between angry and joy and
formulate it into a binary classification problem. To simulate
real-world datasets that show discrimination towards certain
demographic groups, we manually inject noise into the train-
ing dataset to make it biased towards females.
Details about Protected Attributes. As shown in Table
1, gender is the protected attribute for the Adult and EEC
datasets. The binary attributes include male and female,
where female is the unprivileged group for both datasets.
Race is selected as the protected attribute for both MEPS
and COMPAS datasets. More specifically, binary protected
attributes for COMPAS include Caucasian (i.e., European
Americans) and African Americans, and African Americans
is the unprivileged group. The binary protected attribute for
MEPS include Caucasian and Non-Caucasian, where Non-
Caucasian is the unprivileged group.
Baseline Methods. We compare DeFI with the Vanilla
baseline that is trained only by cross entropy loss, as well
as the following five baselines methods:

• Optimized pre-processing (OptimPre) (Calmon et al.
2017) It is a pre-processing transformation technique to
debias the training dataset. The transformation is formu-
lated in a probabilistic framework, where features and la-
bels are edited to ensure group fairness.

• Adversarial learning (AdverLearn) (Zhang, Lemoine,
and Mitchell 2018) The output layer of the main predic-
tor is used as input to another adversary network. The goal
of the predictor is to learn a representation which is maxi-
mally informative for the major prediction task, while the
role of adversarial classifier is to minimize the predictor’s
ability to predict the protected attribute.

• Penalize Explanation (Explanation) (Liu and Avci
2019) It enforces DNN models to pay more attention
to the correct features relevant to the prediction task. The
model training is regularized with local DNN interpreta-
tion by incorporating annotations from domain experts.

• Demographic Parity (DP-Gap) (Bechavod and Ligett
2017) It is implemented as a regularizer, which directly
optimizes the metric difference of demographic parity be-
tween two protected groups. A hyperparameter is used to
control the fairness-accuracy trade off.

• Equalized Odds Post-processing (EOP) (Hardt et al.
2016) This is a model-agnostic post-processing method
for fairness mitigation. The key idea is to enforce both de-
mographic groups to have the same false positive rate and
the same false negative rate.

DNN Architectures. Since the focus of this work is on
fairness mitigation rather than improving prediction accu-
racy, we only use standard architectures. We use multilayer
perceptron (MLP) for the three tabular datasets (i.e., Adult,
MEPS, and COMPAS), and convolutional neural network
(CNN) (Kim 2014) for the text dataset (i.e., EEC). The de-
tails for the two DNN architectures are given as follows:

• CNN. This is a two-dimensional CNN. We perform the
convolution operation on the embedding matrix and use
convolution of three kernel sizes: [2, 3, 4]. After the con-
volution, we use ReLU activation and max pooling. The
resulting tensors will be concatenated as the final repre-
sentation, which is then connected to the fully connected
layer and softmax layer to get the probability output.

• MLP. It contains four layers where the node numbers for
intermediate layers are 50. We use ReLU after each fully
connected layer. Dropout is inserted after the output of the
ReLU activation, with a dropout probability of 0.2.

Implementation Details. For EEC dataset, we use the 300-
dimensional word2vec word embedding (Mikolov et al.
2013) to initialize the embedding layer of the CNN model.
The hyperparameter m for Integrated Gradient in Eq.(2)
is fixed as 50 for all experiments. The influence weight
α in Eq.(5) is set as 0.01, 0.06, 0.03, 0.001 for Adult,
MEPS, COMPAS, ECC, respectively. To train the DNN
models, we use the Adam optimizer, and the learning rate
is searched from {5e-5, 1e-4, 5e-4, 1e-3, 5e-3}. Note that
hyper-parameters (β1, β2) and other hyper-parameters are
tuned based on the trade-off between accuracy and fairness
metrics on the validation sets.

Fairness and Accuracy Evaluation
We report fairness-accuracy curves by varying two major
hyperparameters of DeFI, i.e., β1 and β2 in Eq.(7), and vary-
ing the degree of regularization for the three in-processing
baselines. For the pre-processing and post-processing base-
lines, we select the best hyperparameters reported in the
original paper or official implementations, and report a sin-
gle point. Random initialization can lead to variance in DNN
performance, and thus we report the average values over
three runs for all DNNs. The results are given in Fig. 2.
Comparison with Original DNN. For the vanilla model
trained with only cross entropy loss, i.e., Vanilla, the Fparity

values are less than 0.9 for all four datasets. The Fodds dif-
ferences between two protected groups range from -0.088 to
-0.445, implying a discrimination towards the unprivileged
groups. For all four datasets, DeFI has consistently improved
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(a) Adult (c) COMPAS(b) MEPS (d) EEC

Figure 2: Fairness-accuracy trade off curves. The first row indicates demographic parity Fparity metric and the second row
denotes Equality of odds Fodds metric. Among four datasets, the proposed DeFI achieves consistent performance improvements
for two group fairness metrics, while not resulting in large fairness accuracy trade-off. (Best viewed in color)

two fairness metrics. For three tabular datasets, as we in-
crease the values of β1 and β2, better Fparity and Fodds can
be observed, at the expense of a higher accuracy drop.

Comparison with Other Mitigation Methods. There are
four key findings. First, among four datasets, the proposed
DeFI achieves consistent performance improvements for the
two group fairness metrics, while not resulting in a large fair-
ness accuracy trade-off. Second, for pre-processing mitiga-
tion: OptimPre has fewer improvement in terms of two fair-
ness metrics, indicating the limited ability of pre-processing
for bias mitigation. Third, in terms of in-processing mitiga-
tion: AdverLearn can simultaneously improve three fairness
metrics. It, however, has come at the expense of relatively
lower accuracy. When it has similar accuracy to DeFI, it
has larger discrimination. One possible explanation is that
adversarial learning could potentially remove other useful
information that the model could rely on to make predic-
tions. The Explanation baseline could achieve comparable
performance on EEC with DeFI. However, this method re-
quires annotating an exhaustive list of sensitive features,
which is impractical in many applications. Fourth, for post-
processing mitigation: EOP has consistent improvement for
both fairness metrics. Nevertheless, EOP possesses two lim-
itations: 1) dramatic accuracy drop and 2) requiring the test-
ing time access to protected attributes. This is usually not
practical in real-world applications to get access to protected
attributes, thus reducing the applicability of post-processing
bias mitigation methods.

Why No Fairness-Accuracy Tradeoff for EEC Dataset?
In Fig. 2, DeFI has sacrificed accuracy for Adult, MEPS,
and COMPAS datasets, while improveing accuracy for EEC

Accuracy Race Bias Gender Bias

Models Facc Fparity Fopty FoddsFparity Fopty Fodds

Vanilla 86.5 0.857 -0.195-0.243 0.938 -0.052-0.076
DeFI 84.6 0.950 -0.057-0.070 0.961 -0.081-0.095
DeFI comb 84.2 0.955 -0.061-0.076 0.983 -0.032-0.036

Table 2: Compositional fairness.

dataset. The main reason is that the distributions for the
training and test set are the same for Adult, MEPS, and
COMPAS, where the fairness sensitive features are predic-
tive of labels both on the training and test sets. In contrast,
for EEC, we only inject noise into the training set. As a re-
sult, those fairness sensitive features are only predictive of
labels in training set and have no connection with labels on
the test set. The improved accuracy of EEC also validates
that DeFI has successfully decorrelated the connection be-
tween fairness sensitive features with main task labels.

Compositional Fairness
We use MEPS dataset to investigate the mitigation of com-
positional fairness (combination of multiple sensitive at-
tributes (Bose and Hamilton 2019)), since it has available
labels for two attributes: gender and race. We fix hyper-
parameters (β1, β2) as (1.5, 3), and report a single point on
fairness accuracy curve as in Tab. 2.
Limitation of Regularizing One Attribute. In real-world
applications, there usually exists more than one protected
attribute. The reduction in bias of one attribute could in-
crease the bias of another attribute. Take MEPS dataset for
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Vanilla

(a) (b) 

The conversation my sister amazingwith was

The conversation my sister amazingwith was

The conversation my sister amazingwith was

The conversation my sister amazingwith was

AdverLearn

Teacher

DeFI

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

my boyfriend us all thetold about recent hilarious event

Figure 3: Two illustrative examples of interpretations. The proposed method DeFI could mainly focus on task-relevant sentiment
features, i.e., ‘amazing’ and ‘hilarious’, for prediction.

Vanilla AdverLearn Teacher DeFI

Fbias 0.35 0.21 2918.52 0.05

Table 3: Interpretation ratio

example, as shown in Tab. 2. The regularization of the race
attribute has improved model (i.e., DeFI) performance for
the race attribute. However, DeFI at the same time sacrifices
some fairness metrics for the gender attribute (Fopty from
-0.052 to -0.081 and Fodds from -0.076 to -0.095). This is
because DNN models tend to take shortcuts to make predic-
tions. The reduced attention of one shortcut (i.e., race) might
amplify model’s reliance on other shortcuts (e.g., race).
Compositional Fairness. We extend DeFI to compositional
fairness by training multiple biased teacher models for sev-
eral protected attributes. For MEPS dataset, we train two
biased teachers for race and gender attributes. As shown
in Tab. 2, the DeFI comb model has improved three fair-
ness metrics for both race and gender attributes compared
to Vanilla model. More encouragingly, there is only a 0.4%
accuracy drop for DeFI comb compared to DeFI. This con-
forms that DeFI can mitigate discrimination towards multi-
ple protected attributes, with a negligible drop in accuracy.

Interpretation for Sanity Check
We quantitatively and qualitatively analyze the connections
of interpretation with model bias.
Visualizations for EEC Dataset. We visualize interpreta-
tions for 4 comparing methods in Fig. 3. There are three
key findings. First, the teacher network highlights all fair-
ness sensitive features, such as ‘sister’ and ‘boyfriend’. This
is a major advantage of the teacher network, where it could
tell us not only which subsets of features are highly rele-
vant to protected attributes, but also the corresponding like-
lihood. Second, the Vanilla model focuses comparable atten-
tion on fairness sensitive features and task-relevant features.
Third, the debiased DeFI learns to pay less attention to fair-
ness sensitive features. Instead, DeFI mainly captures more
task-relevant features for prediction, i.e., ‘amazing’ and ‘hi-
larious’. This demonstrates DeFI has captured complemen-
tary information as the teacher network.
Quantitative Evaluation for EEC. We manually select
out fairness sensitive features (e.g., ‘she’, ‘sister’, ‘he’,
‘brother’) and task-relevant features (e.g., ‘excited’, ‘won-
derful’, ‘angry’, ‘annoyed’) from EEC dataset. Then the bias
degree of the models is defined as the average ratio between
the importance values of interpretation of two list of fea-

Accuracy Race Bias

Models Facc Fparity Fopty Fodds

Vanilla 86.5 0.857 -0.195 -0.243
DeFI 84.6 0.950 -0.057 -0.070
DeFI explicit 84.3 0.956 -0.061 -0.078
DeFI implicit 86.0 0.938 -0.037 -0.063

Table 4: Ablation analysis.

tures: Fbias = 1
n

∑n
i=1

psensitive

ptask
, where the smaller Fbias

is, the less attention is paid from the model to fairness sensi-
tive features. The results are reported in Tab. 3. It indicates
that original DNN pays comparable attention, i.e., 0.35, to
fairness sensitive features and task-relevant features. This
results in the over-association between demographic with
certain labels, leading to its discrimination behavior. The
teacher network mainly focuses on sensitive features, with a
ratio of 2918.52. Benefiting from this teacher network, DeFI
substantially reduces the attention of the student network for
fairness sensitive features (from 0.35 to 0.05).

Ablation Analysis
DeFI has two components for counter-teaching from the
teacher network: DeFI explicit and DeFI implicit. We use
MEPS dataset to conduct ablation studies to analyze their
contributions, and report the results in Tab. 4 (we fix hyper-
parameters (β1, β2) as (1.5, 3)). There are two main find-
ings. Firstly, both DeFI explicit and DeFI implicit could im-
prove the model with regard to all three fairness metrics.
Secondly, DeFI explicit and DeFI implicit bring different
benefits. DeFI explicit has more improvement for the de-
mographic parity Fparity , while DeFI implicit has more im-
provement for both Fopty and Fodds. Besides, DeFI implicit
has relatively higher accuracy than DeFI explicit.

Conclusions
In this work, we propose a bias mitigation framework, called
DeFI, to decorrelate influence of fairness sensitive features
for the prediction task. DeFI first trains a bias-only teacher
network and then counter-teaches a debiased student net-
work to encourage the student to downweight its attention
to sensitive features. DeFI is model-agnostic, easy to imple-
ment, and does not require access to protected attributes at
test time. Despite the simplicity, we show that DeFI could
increase the DNN performance with respect to three group
fairness measurements, with a negligible drop in accuracy.
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