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Abstract

Multiagent reinforcement learning algorithms have not been
widely adopted in large scale environments with many agents
as they often scale poorly with the number of agents. Using
mean field theory to aggregate agents has been proposed as a
solution to this problem. However, almost all previous meth-
ods in this area make a strong assumption of a centralized
system where all the agents in the environment learn the same
policy and are effectively indistinguishable from each other.
In this paper, we relax this assumption about indistinguishable
agents and propose a new mean field system known as Decen-
tralized Mean Field Games, where each agent can be quite
different from others. All agents learn independent policies
in a decentralized fashion, based on their local observations.
We define a theoretical solution concept for this system and
provide a fixed point guarantee for a (Q-learning based algo-
rithm in this system. A practical consequence of our approach
is that we can address a ‘chicken-and-egg’ problem in em-
pirical mean field reinforcement learning algorithms. Further,
we provide Q)-learning and actor-critic algorithms that use the
decentralized mean field learning approach and give stronger
performances compared to common baselines in this area. In
our setting, agents do not need to be clones of each other
and learn in a fully decentralized fashion. Hence, for the first
time, we show the application of mean field learning meth-
ods in fully competitive environments, large-scale continuous
action space environments, and other environments with het-
erogeneous agents. Importantly, we also apply the mean field
method in a ride-sharing problem using a real-world dataset.
We propose a decentralized solution to this problem, which is
more practical than existing centralized training methods.

Introduction

Most multiagent reinforcement learning (MARL) algorithms
are not tractable when applied to environments with many
agents (infinite in the limit) as these algorithms are exponen-
tial in the number of agents (Busoniu, Babuska, and De Schut-
ter 2006). One exception is a class of algorithms that use the
mean field theory (Stanley 1971) to approximate the many
agent setting to a two agent setting, where the second agent
is a mean field distribution of all agents representing the aver-
age effect of the population. This makes MARL algorithms
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tractable since, effectively, only two agents are being mod-
elled. Lasry and Lions (2007) introduced the framework of a
mean field game (MFG), which incorporates the mean field
theory in MARL. In MARL, the mean field can be a popu-
lation state distribution (Huang 2010) or action distribution
(Yang et al. 2018) of all the other agents in the environment.

MFGs have three common assumptions. First, each agent
does not have access to the local information of the other
agents. However, it has access to accurate global information
regarding the mean field of the population. Second, all agents
in the environment are independent, homogeneous, and in-
distinguishable. Third, all agents maintain interactions with
others only through the mean field. These assumptions (es-
pecially the first two) severely restrict the potential of using
mean field methods in real-world environments. The first as-
sumption is impractical, while the second assumption implies
that all agents share the same state space, action space, reward
function, and have the same objectives. Further, given these
assumptions, prior works use centralized learning methods,
where all agents learn and update a shared centralized policy.
These two assumptions are only applicable to cooperative en-
vironments with extremely similar agents. Theoretically, the
agent indices are omitted since all agents are interchangeable
(Lasry and Lions 2007). We will relax the first two assump-
tions. In our case, the agents are not interchangeable and can
each formulate their own policies during learning that differs
from others. Also, we will not assume the availability of the
immediate global mean field. Instead, agents only have local
information and use modelling techniques (similar to oppo-
nent modelling common in MARL (Hernandez-Leal, Kartal,
and Taylor 2019)) to effectively model the mean field dur-
ing the training process. We retain the assumption that each
agent’s impact on the environment is infinitesimal (Huang
2010), and hence agents calculate best responses only to the
mean field. Formulating best responses to each individual
agent is intractable and unnecessary (Lasry and Lions 2007).

The solution concepts proposed by previous mean field
methods have been either the centralized Nash equilibrium
(Yang et al. 2018) or a closely related mean field equilib-
rium (Lasry and Lions 2007). These solution concepts are
centralized as they require knowledge of the current pol-
icy of all other agents or other global information, even in
non-cooperative environments. Verifying their existence is
infeasible in many practical environments (Neumann 1928).



This work presents a new kind of mean field system, De-
centralized Mean Field Games (DMFGs), which uses a de-
centralized information structure. This new formulation of
the mean field system relaxes the assumption of agents’ in-
distinguishability and makes mean field methods applicable
to numerous real-world settings. Subsequently, we provide a
decentralized solution concept for learning in DMFGs, which
will be more practical than the centralized solution concepts
considered previously. We also provide a fixed point guaran-
tee for a ()-learning based algorithm in this system.

A ‘chicken-and-egg’ problem exists in empirical mean
field reinforcement learning algorithms where the mean field
requires agent policies, yet the policies cannot be learned
without the global mean field (Yang and Wang 2020). We
show that our formulation can address this problem, and we
provide practical algorithms to learn in DMFGs. We test our
algorithms in different types of many agent environments.
We also provide an example of a ride-sharing application that
simulates demand and supply based on a real-world dataset.

Background
Stochastic Game: An N-player stochastic
(Markovian) game can be represented as a tuple

(S, A . AN L e py), where S is the state
space, A’ represents the action space of the agent
je{l,...,N},andr7 : Sx A' x---x AN — R represents
the reward function of j. Also,p : Sx A x---x AN — Q(S)
represents the transition probability that determines the next
state given the current state and the joint action of all agents.
Here €2(S) is a probability distribution over the state space.
In the stochastic game, agents aim to maximize the expected
discounted sum of rewards, with discount factor vy € [0, 1).
Each agent j in the stochastic game formulates a pol-
icy, which is denoted by 7/ : & — (A7) where the
joint policy is represented as [r1,..., 7] for all
s € S. Given an initial state s, the value function of the
agent j under the joint policy 7 can be represented as
v (s|m) = > 72 V' E[ri|so = s, 7. The solution concept is
the Nash equilibrium (NE) (Hu and Wellman 2003). This is
represented by a joint policy 7, = [} 7N], such that,

for all 7/, vi(s|wl, w.7) > v/ (s|nd, w;”), for all agents
j € {1,...,N} and all states s € S. The notation 7, ”’
represents the joint policy of all agents except the agent j.
Mean Field Game: MFG was introduced as a framework
to solve the stochastic game when the number of agents N
is very large (Lasry and Lions 2007; Huang et al. 2006). In
this setting, calculating the best response to each individ-
ual opponent is intractable, so each agent responds to the

o . 1 i 1(s)
aggregated state distribution z; £ limy—s oo w

known as the mean field. Let p = {1;}32,. MFG as-
sumes that all agents are identical (homogeneous), indis-
tinguishable, and interchangeable (Lasry and Lions 2007).
Given this assumption, the environment changes to a single-
agent stochastic control problem where all agents share
the same pohcy (Saldi, Basar, and Raginsky 2018). Hence,
mt - = 7V = m. The theoretical formulation fo-
cuses on a representative player, and the solution of this
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player (optimal policy) obtains the solution for the entire
system. The value function of a representative agent can be
given as V(s,m,p) £ En[ 3700 v (se, ar, pue)|so = s,
where s and a are the state and action of the representa-
tive agent, respectively. The transition dynamics is repre-
sented as P(s;, as, it ), where the dependence is on the mean
field distribution. All agents share the same reward function
r(s¢, at, 11t ). The action comes from the policy 7 (a¢|s¢, fie)-

The solution concept for the MFG is the mean field
equilibrium (MFE). A tuple (7}, pq, 3 pe) 1S @ mean
field equilibrium if, for any policy 7, an initial state s &
S and given mean field ui; po, V(S, e Wiira) =
V (s, 7, Wi pe)- Additionally, p}, pc is the mean field ob-
tained when all agents play the same 7}, ateach s € S.

Mean Field Reinforcement Learning (MFRL): MFRL,
introduced by Yang et al. (2018), is another approach for
learning in stochastic games with a large number of agents.
Here, the empirical mean action is used as the mean field,
which each agent then uses to update its ()-function and
Boltzmann policy. Each agent is assumed to have access to
the global state, and it takes local action from this state. In
MFRL, the Q-function of the agent j is updated as,

Qj(sta aga”?)

i . : . 1
= (1— )Qi(s0,af, ) +alrf + 70 (sp31)]

where

v (s141) = Z 7w (ad g |se41, 1)@ (Ser1,al sy, 1) (2)

J
aiy1

1 o .
1y = 57 2ol ~m Clse i) 3)
J
exp(—BQ (st at, pf_y)
5ot cs OD(—5Q (s1,af 1)
“)

where s; is the global old state, s, is the global resulting
state, ri is the reward of 5 at time ¢, vJ is the value function of
4, N\ is the total number of agents, and B represents the Boltz-
mann parameter. The action a’ is assumed to be discrete and
represented using one-hot encoding. Like stochastic games,
MFRL uses the NE as the solution concept. The global mean
field p¢ captures the action distribution of all agents. To ad-
dress this global limitation, Yang et al. (2018) specify mean
field calculation over certain neighbourhoods for each agent.
However, an update using Eq. 3 requires each agent to have
access to all other agent policies or the global mean field to
use the centralized concept (NE). We omit an expectation in
Eq. 2 since Yang et al. (2018) guaranteed that their updates
will be greedy in the limit with infinite exploration (GLIE).

From Eq. 3 and Eq. 4, it can be seen that the current action
depends on the mean field and the mean field depends on the
current action. To resolve this ‘chicken-and-egg’ problem,
Yang et al. (2018) simply use the previous mean field action
to decide the current action, as in Eq. 4. This can lead to a
loss of performance since the agents are formulating best
responses to the previous mean field action pf_;, while they
are expected to respond to the current mean field action pf.

Wj(a‘g‘stvu’?—l) =



Related Work

MEFGs were first proposed in Huang, Caines, and Malhamé
(2003), while a comprehensive development of the system
and principled application methods were given later in Lasry
and Lions (2007). Subsequently, learning algorithms were
proposed for this framework. Subramanian and Mahajan
(2019) introduce a restrictive form of MFG (known as station-
ary MFQG) and provide a model-free policy-gradient (Sutton
et al. 1999; Konda and Tsitsiklis 1999) algorithm along with
convergence guarantees to a local Nash equilibrium. On sim-
ilar lines, Guo et al. (2019) provide a model-free ()-learning
algorithm (Watkins and Dayan 1992) for solving MFGs, also
in the stationary setting. The assumptions in these works are
difficult to verify in real-world environments. Particularly,
Guo et al. (2019) assume the presence of a game engine (sim-
ulator) that accurately provides mean field information to
all agents at each time step, which is not practical in many
environments. Further, other works depend on fictitious play
updates for the mean field parameters (Hadikhanloo and Silva
2019; Elie et al. 2020), which involves the strong assumption
that opponents play stationary strategies. All these papers use
the centralized setting for the theory and the experiments.
Prior works (Gomes, Mohr, and Souza 2010; Adlakha, Jo-
hari, and Weintraub 2015; Saldi, Basar, and Raginsky 2018)
have established the existence of a (centralized) mean field
equilibrium in the discrete-time MFG under a discounted cost
criterion, in finite and infinite-horizon settings. Authors have
also studied the behaviour of iterative algorithms and pro-
vided theoretical analysis for learning of the non-stationary
(centralized) mean field equilibrium in infinite-horizon set-
tings (Wiecek and Altman 2015; Wigcek 2020; Anahtarci,
Kariksiz, and Saldi 2019). We provide similar guarantees in
the decentralized setting with possibly heterogeneous agents.
Yang et al. (2018) introduces MFRL that uses a mean field
approximation through the empirical mean action, and pro-
vides two practical algorithms that show good performance
in large MARL settings. The approach is model-free and
the algorithms do not need strong assumptions regarding the
nature of the environment. However, they assume access to
global information that needs a centralized setting for both
theory and experiments. MFRL has been extended to multi-
ple types (Subramanian et al. 2020) and partially observable
environments (Subramanian et al. 2021). However, unlike us,
Subramanian et al. (2020) assumes that agents can be divided
into a finite set of types, where agents within a type are homo-
geneous. Subramanian et al. (2021) relaxes the assumption of
global information in MFRL, however, it still uses the Nash
equilibrium as the solution concept. Further, that work con-
tains some assumptions regarding the existence of conjugate
priors, which is hard to verify in real-world environments.
Additional related work is provided in Appendix L.

Decentralized Mean Field Game

The DMFG model is specified by (S, A, p, R, 1), where
S = S' x --- x SV represents the state space and A =
Al x .- x AN represents the joint action space. Here, S7
represents the state space of an agent j € {1,..., N} and
A’ represents the action space of j. As in MFGs, we are
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considering the infinite population limit of the game, where
the set of agents N, satisfy N — oo. Similar to the MFG
formulation in several prior works (Lasry and Lions 2007;
Huang et al. 2006; Saldi, Basar, and Raginsky 2018), we will
specify that both the state and action spaces are Polish spaces.
Particularly, A7 for all agents j, is a compact subset of a finite
dimensional Euclidean space ;¢ with the Euclidean distance
norm || - ||. Since all agents share the same environment,
for simplicity, we will also assume that the state spaces of
all the agents are the same S* .. =8N = S and are
locally compact. Since the state space is a complete separable
metric space (Polish space), it is endowed with a metric
dx. The transition function p : S x A7 x P(S) — P(S)
determines the next state of any j given the current state
and action of j, and the probability distribution of the state
in the system (represented by the mean field). The reward
function is represented as a set R = {R',..., RV}, where,
R : 8 x AV x P(S) — [0, 00) is the reward function of j.

Recall that a DMFG has two major differences as com-
pared to MFG and MFRL. 1) DMFG does not assume that the
agents are indistinguishable and homogeneous (agent indices
are retained). 2) DMFG does not assume that each agent can
access the global mean field of the system. However, each
agents’ impact on the environment is infinitesimal, and there-
fore all agents formulate best responses only to the mean
field of the system (no per-agent modelling is required).

As specified, in DMFG, the transition and reward functions
for each agent depends on the mean field of the environment,
represented by 1 = (11;)¢>0, with the initial mean field repre-
sented as 9. For DMFG, mean field can either correspond to

N J

the state distribution p; 2 limy—soo w or the action
distribution p¢ as in Eq. 3. Without loss of generality we
use the mean field as the state distribution y; (represented by
P(S)), as done in prior works (Lasry and Lions 2007; Elliott,
Li, and Ni 2013). However, our setting and theoretical results
will hold for the mean field as action distribution pf as well.

In the DMFG, each agent j will not have access to the true
mean field of the system and instead use appropriate tech-
niques to actively model the mean field through exploration.
The agent j holds an estimate of the actual mean field repre-
sented by ji. Let 7 £ (u])¢>0. Let, M be used to denote
the set of mean fields {p? € P(S)}. A Markov policy for an
agent j is a stochastic kernel on the action space A7 given the
immediate local state (s]) and the agent’s current estimated
mean field pi, i.e. } : S x P(S) — P(A7), for each t > 0.
Alternatively, a non-Markov policy will depend on the entire
state-action history of game play. We will use I/ to denote
a set of all policies (both Markov and non-Markov) for the
agent j. Let s represent the state of an agent j at time ¢
and a] represent the action of j at ¢. Then an agent j tries
to maximize the objective function given by the following
equation (where 77 denotes the immediate reward obtained
by the agent j and 5 € [0, 1) denotes the discount factor),

T (wl) BT [0, B (s, ai )] ®)

In line with prior works (Yang et al. 2018; Subramanian
et al. 2020), we assume that each agent’s sphere of influ-
ence is restricted by its neighbourhood, where it conducts



exploration. Using this assumption, we assert that, after a
finite ¢, the mean field estimate will accurately reflect the
true mean field for j, in its neighbourhood denoted as N J,
This assumption specifies that agents have full information in
their neighbourhood, and they can use modelling techniques
to obtain accurate mean field information within the neigh-
bourhood (also refer to flocking from Perrin et al. (2021)).

Assumption 1. There exists a finite time I' and a neighbour-
hood N7, such that for all t > T, the mean field estimate of
anagentj € 1,..., N satisfies (Vs? € N7) pu? (s7) = u(s?).
Also, ¥s1 € N, we have, p(lsi, al, i) = p(-|s],a?, ps)
and rj("sij>aijvﬂij) = rj(' Sija aZa :ut)'

Let us define a set @ : M — 2T as ®(p?) = {n €
IV : 77 is optimal for p? }. Conversely, for j, we define a
mapping ¥ : IT — M as, given a policy 7/ € II7, the mean
field state estimate i/ = W(77) can be constructed as,

pr () = [ pClstoad, )P (el e 59)
» (6)
Here P™ is a probability measure induced by 7/. Later (in
Theorem 1) we will prove that restricting ourselves to Markov

policies is sufficient in a DMFG, and hence P =g,
Now, we can define the decentralized mean field equilib-
rium (DMFE) which is the solution concept for this game.

Definition 1. The decentralized mean field equilibrium of
an agent j is represented as a pair (7l, pil) € I1F x M if
= CI)(,ui) and ul = \If(wi) Here 1) is the best response
to ,ui and ul is the mean field estimate of j when it plays .

The important distinction between DMFE and centralized
concepts, such as NE and MFE, is that DMFE does not rely
on the policy information of other agents. MFE requires all
agents to play the same policy, and NE requires all agents to
have access to other agents’ policies. DMFE has no such con-
straints. Hence, this decentralized solution concept is more
practical than NE and MFE. In Appendix F, we summarize
the major differences between the DMFG, MFG and MFRL.

Theoretical Results

We provide a set of theorems that will first guarantee the
existence of the DMFE in a DMFG. Further, we will show
that a simple Q-learning update will converge to a fixed point
representing the DMFE. We will borrow relevant results from
prior works in centralized MFGs in our theoretical guarantees.
Particularly, we aim to adapt the results and proof techniques
in works by Saldi, Basar, and Raginsky (2018), Lasry and
Lions (2007), and Anahtarci, Kariksiz, and Saldi (2019) to
the decentralized setting. The statements of all our theorems
are given here, while the proofs are in Appendices A — E.
Similar to an existing result from centralized MFG (Lasry
and Lions 2007), in the DMFG, restricting policies to only
Markov policies would not lead to any loss of optimality. We

use ng to denote the set of Markov policies for the agent j.
Theorem 1. For any mean field, p € M, and an agent
je€{l,..., N}, we have,
sup Ji(ﬂj) = sup Ji(wj).
I €lld i GHJM

)
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Next, we show the existence of a DMFE under a set of
assumptions similar to those previously used in the central-
ized MFG (Lasry and Lions 2007; Saldi, Basar, and Raginsky
2018). The assumptions pertain to bounding the reward func-
tion and imposing restrictions on the nature of the mean field
(formal statements in Appendix B). We do not need stronger
assumptions than those previously considered for the MFGs.

Theorem 2. Anagent j € {1,..., N} in the DMFG admits
a decentralized mean field equilibrium (7, ) € TI7 x M.

We use C to denote a set containing bounded functions in
S. Now, we define a decentralized mean field operator (H),

H:CxP(S)>(Q,n)

o o ®)
— (Hi(Q7, ), Hy(Q7, 7)) € C x P(S)
where

Hy(Q7, 1)(s],a7) = 7 (s], az, jue)

_ _ S ©))
8 [ Qs (514107 41l (5|51 0 1)

Hy(Q7, pw)()

2 fowo (15t (1, Qo pd) )ik (5)
(10)
for an agent j. Here, 7/ is a maximiser of the operator Hj.

For the rest of the theoretical results, we consider a set
of assumptions different from those needed for Theorem 2.
Here we assume that the reward and transition functions
are Lipschitz continuous with a suitable Lipschitz constant.
The Lipschitz continuity assumption is quite common in the
mean field literature (Yang et al. 2018; Lasry and Lions 2007;
Subramanian et al. 2020). We also consider some further
assumptions regarding the nature of gradients of the value
function (formal statements in Appendix C). All assumptions
are similar to those considered before for the analysis in
the centralized MFGs (Lasry and Lions 2007; Anahtarci,
Kariksiz, and Saldi 2019; Huang 2010). First, we provide
a theorem regarding the nature of operator H. Then, we
provide another theorem showing that H is a contraction.
Theorem 3. The decentralized mean field operator H is
well-defined, i.e., this operator maps C x P(S) to itself.
Theorem 4. Let B represent the space of bounded functions
in S. Then the mapping H : C x P(S) — C x P(S) is a
contraction in the norm of B(S).

Since H is a contraction, by the Banach fixed point theo-
rem (Shukla, Balasubramanian, and Pavlovi¢ 2016), we can
obtain that fixed point using the () iteration algorithm given
by Alg. 1. We provide this result in the next theorem.
Theorem 5. Let the Q-updates in Algorithm 1 converge
to (QL, ) for an agent j € {1,...,N}. Then, we can
construct a policy 7} from Q2. using the relation,

mi(s7) = arg max QJ(s’,a’, pl).
al e A

(1)

Then the pair (7%, u’k) is a DMFE.

Hence, from the above results, we have proved that a
DMFG admits a DMFE, and an iterative algorithm using
Q-updates can arrive at this equilibrium. This provides a
fixed point for Alg. 1, to which the @-values converge.



Algorithm 1: Q-learning for DMFG
1: For each agent j € {1,..., N}, start with initial Q-
function @ and the initial mean field state estimate wh
while ( 217/1'21) 7& ( "17’7,717/‘[3171) do
(Qy1s Hog1) = H( Jo 113,
end while o
Return the fixed point (Q%, p2) of H

AN

Algorithms
We will apply the idea of decentralized updates to the model-
free MFRL framework. We modify the update equations in
MFRL and make them decentralized, where agents only ob-
serve their local state and do not have access to the immediate
global mean field. Our new updates are:
Qi(shal Wi
= (1 - Q)QJ(ng ag

where

,a ] ; ] (]2)
py) + alr] + 07 (s7,,)]

Uj(5i+1) = Z ﬂ-j(ag-l—l‘si—i-lvMgfl)Qj(sg+17ai—&-luu’ifl)

a1+1
(13)
i = (s i) (14)

and 0 (al |50, i) = — OPEPQ (st 0t ™)
PISts My ) = o
Za{/eAJ eXP(_ﬂQJ(Sg»ag ,/J’g’ ))
(15)

Here, s] is the local state and £ is the mean field action
estimate for the agent j at time ¢ and /i]"% is the observed
local mean field action of j at ¢ — 1. Other variables have
the same meaning as Eq. 1 — Eq. 4. In Eq. 14, the mean field
estimate for 5 is updated using a function of the current state
and the previous local mean field. Opponent modelling tech-
niques commonly used in MARL (Hernandez-Leal, Kartal,
and Taylor 2019) can be used here. We use the technique
of He and Boyd-Graber (2016), that used a neural network
to model the opponent agent(s). In our case, we use a fully
connected neural network (2 Relu layers of 50 nodes and an
output softmax layer) to model the mean field action. The
network takes the current state and previous mean field action
as inputs and outputs the estimated current mean field. This
network is trained using a mean square error between the
estimated mean field action from the network (Eq. 14) and
the observed local mean field (local observation of actions of
other agents /i) after action execution. The policy in Eq. 15
does not suffer from the ‘chicken-and-egg’ problem of Eq. 4
since it depends on the current mean field estimate, unlike
MFRL which used the previous global mean field in Eq. 4.
We provide a neural network-based )-learning implemen-
tation for our update equations, namely Decentralized Mean
Field Game Q-learning (DMFG-QL), and an actor-critic im-
plementation, Decentralized Mean Field Game Actor-Critic
(DMFG-ACQC). Detailed description of the algorithms are in
Appendix H (see Algs. 2 and 3). A complexity analysis is in
Appendix K, and hyperparameter details are in Appendix J.
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Experiments and Results

In this section we study the performance of our algorithms.
The code for experiments has been open-sourced (Subra-
manian 2021). We provide the important elements of our
domains here, while the complete details are in Appendix I.
The first five domains belong to the MAgent environment
(Zheng et al. 2018). We run the experiments in two phases,
training and execution. Analogous to experiments conducted
in previous mean field studies (Yang et al. 2018; Subrama-
nian et al. 2020), all agents train against other agents playing
the same algorithm for 2000 games. This is similar to multia-
gent training using self-play (Shoham, Powers, and Grenager
2003). The trained agents then enter into an execution phase,
where the trained policies are simply executed. The execu-
tion is run for 100 games, where algorithms may compete
against each other. We consider three baselines, independent
Q@-learning (IL) (Tan 1993), mean field Q-learning (MFQ)
(Yang et al. 2018), and mean field actor-critic (MFAC) (Yang
et al. 2018). Each agent in our implementations learns in a
decentralized fashion, where it maintains its own networks
and learns from local experiences. This is unlike centralized
training in prior works (Yang et al. 2018; Guo et al. 2019). We
repeat experiments 30 times, and report the mean and stan-
dard deviation. Wall clock times are given in Appendix M.
First, we consider the mixed cooperative-competitive Bat-
tle game (Zheng et al. 2018). This domain consists of two
teams of 25 agents each. Each agent is expected to cooperate
with agents within the team and compete against agents of the
other team to win the battle. For the training phase, we plot
the cumulative rewards per episode obtained by the agents
of the first team for each algorithm in Fig. 1(a). The perfor-
mance of the second team is also similar (our environment
is not zero-sum). From the results, we see that DMFG-QL
performs best while the others fall into a local optimum and
do not get the high rewards. The DMFG-AC algorithm comes
second. It has been noted previously (Yang et al. 2018) that
Q-learning algorithms often perform better compared to their
actor-critic counterparts in mean field environments. MFQ
and MFAC (using the previous mean field information) per-
forms poorly compared to DMFG-QL and DMFG-AC (using
the current estimates). Finally, IL loses out to others due to its
independent nature. In execution, one team trained using one
algorithm competes against another team from a different
algorithm. We plot the percentage of games won by each al-
gorithm in a competition against DMFG-QL and DMFG-AC.
A game is won by the team that kills more of its opponents.
The performances are in Fig. 1(b) and (c), where DMFG-QL
performs best. In Appendix G, we show that DFMG-QL can
accurately model the true mean field in the Battle game.
The second domain is the heterogeneous Combined Arms
environment. This domain is a mixed setting similar to Battle
except that each team consists of two different types of agents,
ranged and melee, with distinct action spaces. Each team has
15 ranged and 10 melee agents. This environment is different
from those considered in Subramanian et al. (2020), which
formulated each team as a distinct type, where agents within
a team are homogeneous. The ranged agents are faster and
attack further, but can be killed quickly. The melee agents are
slower but are harder to kill. We leave out MFQ and MFAC
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Figure 1: Battle results. In (a) solid lines show average and
shaded regions represent standard deviation. In (b) and (c)
bars are average and black lines represent standard deviation.

for this experiment, since both these algorithms require the
presence of fully homogeneous agents. The experimental
procedure is the same as in Battle. From the results we see
that DMFG-QL performs best in both phases (see Fig. 2).

3004 IL EEE Opponent
250 | —— DMFG-QL pypmpmwmm M = DMFG-QL
T 200 { T DMFCAC pmemmprmmitmma e | 8
© @
% 150 o .
s
= 100 §
Y
50 &
o
0 25 50 75 100 125 150 175 200 = 0

Tens of Episodes L DMFG-AC

(a) Training (b) Execution

Figure 2: Combined Arms results

Next is the fully competitive Gather environment. This con-
tains 30 agents trying to capture limited food. All the agents
compete against each other for capturing food and could re-
sort to killing others when the food becomes scarce. We plot
the average rewards obtained by each of the five algorithms in
the training phase (Fig. 3(a)). DMFG-QL once again obtains
the maximum performance. In competitive environments, ac-
tively formulating the best responses to the current strategies
of opponents is crucial for good performances. Predictably,
the MFQ and MFAC algorithms (relying on previous infor-
mation) lose out. For execution, we sample (at random) six
agents from each of the five algorithms to make a total of 30.
We plot the percentage of games won by each algorithm in a
total of 100 games. A game is determined to have been won
by the agent obtaining the most rewards. Again, DMFG-QL
shows the best performance during execution (Fig. 3(b)).
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Figure 3: Gather results

The next domain is a fully cooperative Tiger-Deer environ-
ment. In this environment, a team of tigers aims to kill deer.
The deer are assumed to be part of the environment moving
randomly, while the tigers are agents that learn to coordinate
with each other to kill the deer. At least two tigers need to at-
tack a deer in unison to gain large rewards. Our environment
has 20 tigers and 101 deer. In the training phase, we plot the
average reward obtained by the tigers (Fig. 4(a)). The perfor-
mance of MFQ almost matches that of DMFG-QL and the
performance of DMFG-AC matches MFAC. In a cooperative
environment, best responses to actively changing strategies
of other agents are not as critical as in competitive environ-
ments. Here all agents aid each other and using the previous
time information (as done in MFQ and MFAC) does not
hurt performance as much. For execution, a set of 20 tigers
from each algorithm execute their policy for 100 games. We
plot the average number of deer killed by the tigers for each
algorithm. DMFG-QL gives the best performance (Fig. 4(b)).
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Figure 4: Tiger-Deer results

The next domain is the continuous action Waterworld do-
main, first introduced by Gupta, Egorov, and Kochenderfer
(2017). This is also a fully cooperative domain similar to
Tiger-Deer, where a group of 25 pursuer agents aim to cap-
ture a set of food in the environment while actively avoiding
poison. The action space corresponds to a continuous thrust
variable. We implement DMFG-AC in this domain, where
the mean field is a mixture of Dirac deltas of actions taken by
all agents. The experimental procedure is the same as Tiger-
Deer. For this continuous action space environment, we use
proximal policy optimization (PPO) (Schulman et al. 2017)
and deep deterministic policy gradient (DDPG) (Lillicrap
et al. 2016), as baselines. We see that DMFG-AC obtains the
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Figure 5: Waterworld results

best performance in both phases (refer to Fig. 5(a) and (b)).
Our final environment is a real-world Ride-pool Matching
Problem (RMP) introduced by Alonso-Mora et al. (2017).
This problem pertains to improving the efficiency of vehicles
satisfying ride requests as part of ride-sharing platforms such
as UberPool. In our environment, ride requests come from the
open source New York Yellow Taxi dataset (NY YellowTaxi
2016). The road network (represented as a grid with a finite
set of nodes or road intersections) contains a simulated set of
vehicles (agents) that aim to serve the user requests. Further
details about this domain are in Appendix I. We consider two
baselines in this environment. The first is the method from
Alonso-Mora et al. (2017), which used a constrained opti-
mization (CO) approach to match ride requests to vehicles.
This approach is hard to scale and is myopic in assigning
requests (it does not consider future rewards). The second
baseline is the Neural Approximate Dynamic Programming
(NeurADP) method from Shah, Lowalekar, and Varakantham
(2020), which used a (centralized) DQN algorithm to learn
a value function for effective mapping of requests. This ap-
proach assumes all agents are homogenous (i.e., having the
same capacity and preferences), which is impractical. To
keep comparisons fair, we consider a decentralized version of
NeurADP as our baseline. Finally, we implement DMFG-QL
for this problem where the mean-field corresponds to the
distribution of ride requests at every node in the environment.
Similar to prior approaches (Lowalekar, Varakantham, and
Jaillet 2019; Shah, Lowalekar, and Varakantham 2020), we
use the service rate (total percentage of requests served) as
the comparison metric. We train NeurADP and DMFG-QL
using a set of eight consecutive days of training data and test
all the performances in a previously unseen test set of six
days. The test results are reported as an average (per day)
of performances in the test set pertaining to three different
hyperparameters. The first is the capacity of the vehicle (c)
varied from 8 to 12, the second is the maximum allowed
waiting time (7) varied from 520 seconds to 640 seconds, and
the last is the number of vehicles (IV), varied from 80 to 120.
The results in Figs. 6(a-c) show that DMFG-QL outperforms
the baselines in all our test cases. The mean field estimates in
DMFG-QL help predict the distribution of ride requests in the
environment, based on which agents can choose ride requests
strategically. If agents choose orders that lead to destinations
with a high percentage of requests, they will be able to serve
more requests in the future. Thus, DMFG-QL outperforms
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Figure 6: Results for the ride-sharing experiment. For (a), (b)
and (c), we start with a prototypical configuration of c=10, 7
=580, and N = 100, and then vary the different parameters.
Figures (a), (b) and (c) share the same legend given in (a).

the NeurADP method (which does not maintain a mean field).
We note that the service rate for all algorithms is low in this
study (10% — 30%), since we are considering fewer vehicles
compared to prior works (Shah, Lowalekar, and Varakan-
tham 2020) due to the computational requirements of being
decentralized. In practice our training is completely paralleliz-
able and this is not a limitation of our approach. Also, from
Fig. 6(c), an increase in the number of vehicles, increases the
service rate. In Fig. 6(d) we plot the performance of the three
algorithms for a single test day (24 hours — midnight to mid-
night). During certain times of the day (e.g., 5 am), the ride
demand is low, and all approaches satisfy a large proportion
of requests. However, during the other times of the day, when
the demand is high, the DMFG-QL satisfies more requests
than the baselines, showing its relative superiority.

Conclusion

In this paper, we relaxed two strong assumptions in prior
work on using mean field methods in RL. We introduced the
DMFG framework, where agents are not assumed to have
global information and are not homogeneous. All agents learn
in a decentralized fashion, which contrasts with centralized
procedures in prior work. Theoretically, we proved that the
DMFG will have a suitable solution concept, DMFE. Also,
we proved that a )-learning based algorithm will find the
DMEFE. Further, we provided a principled method to address
the ‘chicken-and-egg’ problem in MFRL, and demonstrated
performances in a variety of environments (including RMP).
For future work, we would like to extend our theoretical
analysis to the function approximation setting and analyze the
convergence of policy gradient algorithms. Empirically, we
could consider other real-world applications like autonomous
driving and problems on demand and supply optimization.
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