
Practical Fixed-Parameter Algorithms for Defending Active Directory Style
Attack Graphs

Mingyu Guo, Jialiang Li, Aneta Neumann, Frank Neumann, Hung Nguyen
School of Computer Science

University of Adelaide, Australia
{mingyu.guo, j.li, aneta.neumann, frank.neumann, hung.nguyen}@adelaide.edu.au

Abstract
Active Directory is the default security management system
for Windows domain networks. We study the shortest path
edge interdiction problem for defending Active Directory
style attack graphs. The problem is formulated as a Stackel-
berg game between one defender and one attacker. The attack
graph contains one destination node and multiple entry nodes.
The attacker’s entry node is chosen by nature. The defender
chooses to block a set of edges limited by his budget. The at-
tacker then picks the shortest unblocked attack path. The de-
fender aims to maximize the expected shortest path length for
the attacker, where the expectation is taken over entry nodes.
We observe that practical Active Directory attack graphs have
small maximum attack path lengths and are structurally close
to trees. We first show that even if the maximum attack path
length is a constant, the problem is still W [1]-hard with re-
spect to the defender’s budget. Having a small maximum
attack path length and a small budget is not enough to de-
sign fixed-parameter algorithms. If we further assume that
the number of entry nodes is small, then we derive a fixed-
parameter tractable algorithm.
We then propose two other fixed-parameter algorithms by ex-
ploiting the tree-like features. One is based on tree decom-
position and requires a small tree width. The other assumes
a small number of splitting nodes (nodes with multiple out-
going edges). Finally, the last algorithm is converted into a
graph convolutional neural network based heuristic, which
scales to larger graphs with more splitting nodes.

Introduction
Cyber attack graphs model the chain of events (conceptual
or physical) that lead to successful cyber attacks. Despite
its popularity in both academia and industry, there is not a
canonical definition of cyber attack graphs. Lallie, Debat-
tista, and Bal (2020) surveyed over 180 attack graphs/trees
studied in literature, and discovered over 90 different self-
nominated definitions of attack graphs/trees.

For industry practitioners, there is one attack graph model
that stands out and finds its place in many practitioners’
toolkit, which is the Active Directory attack graph. Mi-
crosoft Active Directory is the default security management
system for Windows domain networks, which has a dom-
inant market share among large organisations worldwide.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Due to its popularity, Active Directory has been a focused
cyber attack target. An Active Directory environment natu-
rally describes an attack graph, where the nodes represent
accounts, computers, security groups, etc. A directed edge
from node A to B represents that an attacker can reach from
A to B via existing accesses or known exploits. There are
a number of software tools for analysing/visualising Ac-
tive Directory attack graphs. Among these tools, BLOOD-
HOUND1 is the most influential. Motivated by (Dunagan,
Zheng, and Simon 2009), BLOODHOUND models the iden-
tity snowball attack under Active Directory. Typically, an
identity snowball attack starts when an attacker gains ini-
tial access to the internal network. The attacker starts from
a low-privilege user account (often obtained via phishing
emails). The attacker then moves from low-privilege nodes
to high-privilege nodes (i.e., account A admin access−−−−−−−→

AdminTo
computer

B
scan memory−−−−−−−→
HasSession

account C). The goal of the attacker is to reach

the highest-privilege account, called the Domain Admin DA.
The core functionality of BLOODHOUND is to automati-
cally generate the shortest attack path from the attacker’s
entry node to DA, where the distance is defined as the num-
ber of hops. Following the shortest attack path implies less
time spent on the attack and less chance of failure. Before
the invention of BLOODHOUND, attackers used to explore
aimlessly in the internal network hoping to discover a privi-
lege escalation pathway. Dunagan, Zheng, and Simon (2009)
briefly described a heuristic edge blocking algorithm. The
aim is to block a small number of edges to cut the attack
graph into multiple disconnected regions, which essentially
removes the attack paths from most entry nodes.

We derive optimal edge blocking policies. The defender
can assign different utilities on attack paths of different
lengths. That is, maximizing the number of attack paths
cut is a special case of our model. We adopt a two-player
Bayesian Stackelberg game (Paruchuri et al. 2008) setup
with pure strategies only. In our game, the defender (leader)
has a limited budget b for blocking edges. Not all edges are
blockable. The attacker’s type is characterized by his entry
node. In practise, the entry account is often from a phish-
ing attack victim. Therefore, we assume that the attacker’s
entry node is drawn randomly by nature from a set of entry

1https://github.com/BloodHoundAD/BloodHound

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

9360

nodes (i.e., users whose emails are listed on the organisa-
tion’s website). The attacker is the follower in the Stackel-
berg game. That is, the attacker is aware of which edges have
been blocked.2 We assume that the attacker follows BLOOD-
HOUND’s advice and attacks via a shortest attack path. The
defender aims to maximize the attacker’s expected shortest
path length, where expectation is taken over all entry nodes.

When there is only one entry node, our model reduces
to the well-studied shortest path edge interdiction prob-
lem (also called the most vital edges problem). Bar-noy,
Khuller, and Schieber (1995) already showed that the prob-
lem is NP-hard. Nevertheless, this negative result does not
rule out scalable algorithms for practical Active Directory
attack graphs. We adopt parameterized complexity analy-
sis and design fixed-parameter tractable (FPT) algorithms.
Fixed-parameter algorithms allow us to solve some NP-hard
problem instances efficiently and optimally, under the as-
sumption that the problem instances are characterized by a
few parameters that are small. For example, vertex cover
is known to be NP-complete, but the question “whether
there exists a vertex cover of size k” can be solved in
O(1.2738k + kn), where n is the number of nodes (Chen,
Kanj, and Xia 2006). That is, if one’s goal is to solve ver-
tex cover, and in one’s practical scenario k is never too
large, then the NP-completeness of vertex cover is irrele-
vant. Formally speaking, given problem instances with c pa-
rameters k1, k2, . . . , kc, the computational problem is fixed-
parameter tractable if we can design an algorithm with com-
plexity O(f(k1, . . . , kc)poly(n)). That is, the complexity is
allowed to be exponential in the parameters, but it needs to
be polynomial in the input size n. This allows us to scale to
large input sizes, as long as the parameters are small.

A natural question to ask is what should be the appropri-
ate parameters for describing Active Directory attack graph
instances. To answer this, let us consider the following at-
tack graph. Figure 1 is a synthetic attack graph generated
using BLOODHOUND team’s synthetic database generator
DBCREATOR.3 We make two observations. First, the max-
imum attack path length is small. Second, the graph looks
like a tree. Our observation is not an artifact based upon
DBCreator. It is considered a best practise for Active Di-
rectory to follow the organisation chart. For example, mar-
keting and human resources tend to form two separated tree
branches. The graph will not be exactly a tree because some
computers from human resources may need to access data
from marketing. That is, an Active Directory attack graph
can be thought of as a tree with additional security excep-
tions (non-tree edges connecting tree nodes to non-parents,
also called the feedback edges). The maximum attack path
length tends to be small for even the largest organisations.
I.e., it most likely only takes a few hops to go from an in-
tern’s account to the CEO’s account. This is similar to the

2In practise, the attacker can use a tool called SHARPHOUND
to scan the environment to obtain information on all edges.

3It should be noted that an organisation’s Active Directory at-
tack graph is considered sensitive information. Our paper only ref-
erences synthetic graphs generated using DBCREATOR. DBCRE-
ATOR generates a lot of details, such as a node’s operating system,
department, real names. We only extract the topology.

“six degree of separation” idea: all people are six or fewer
social connections from each other (Milgram 1967).

Figure 1: Synthetic attack graph generated using DBCRE-
ATOR (500 computers). Only nodes reachable to DA (right-
most node) are shown.

We use n and m to denote the number of nodes and the
number of edges. We adopt the following list of parameters.
In experiments, we show that some of these parameters stay
tiny and our largest experiment involves graphs with 5997
nodes (among which 2000 are computers). That is, our algo-
rithms scale well and are able to handle large organisations.

l maximum attack path length
w tree width
h number of feedback edges
b defensive budget
s number of entry nodes

Tree width is a standard measure in graph theory for
describing how close a graph is to a tree. The optimal
tree width is NP-hard to compute (Arnborg, Corneil, and
Proskurowski 1987). In this paper, tree width refers to the
achieved tree width using our own heuristic. A connected
graph can be interpreted as a tree with h additional feedback
edges. Note that h = m− (n− 1) as a tree has n− 1 edges.

We first show that having a small l does not make the
problem easy. We prove that our model is W [1]-hard with
respect to b even if l is a constant. We then propose three dif-
ferent fixed-parameter tractable algorithms. Our algorithms’
complexities are summarized in the table below. It should be
noted that these complexities only describe the worst-case
running time. When it comes to specific problem instances,
the running time often is significantly faster than what the
table suggests. We do not use m in our complexity notation
because we assume our graphs are similar to trees.

BUDGETFPT O
(
lb
(
b+s−1

b

)
n
)

requires small l, b, s
DP O((l + 2)w+1b2n) requires small l, w

acyclic graphs only
SPLITFPT O(3h(h2 + hl + bn)) requires small h

Finally, we convert SPLITFPT into a graph convolu-
tional neural network based heuristic. SPLITFPT enumer-
ates which route the attacker would choose at splitting nodes
(nodes with multiple out-going edges) when facing the opti-
mal defence. When h is too large, we cannot afford to enu-
merate all scenarios. Instead, we use a graph convolutional

9361

neural network (GCN) to estimate the attacker’s decision.
Our neural network is not trained based on real attacker data.
Instead, our network is purely used as an optimisation tool.

In summary, we propose 3 fixed-parameter algorithms
that scale in practise and a GCN-based approach. These
will help IT admins to identify high-risk edges (accesses/-
exploits) in practical Active Directory environments.

Related Works
Bazgan et al. (2019) studied single-source single-destination
shortest path edge interdiction. The authors studied a long
range of parameters. Unfortunately, most of the parame-
ters are irrelevant to practical Active Directory attack graphs
(i.e., distance to clique). Nevertheless, one of the parameters
considered is the number of feedback edges, which is also
used by our SPLITFPT algorithm. The authors proposed a
kernelization technique that converts an arbitrary graph into
a graph with 6h edges, and then exhaustively search over all
26h combinations of edges.

Another similar but different problem is the bounded
length cut problem, which studies how to block b edges in
order to ensure that the shortest path is greater than a pa-
rameter l′. Golovach and Thilikos (2011) proposed an el-
egant FPT algorithm for solving the single-source single-
destination bounded length cut problem. Our BUDGETFPT
builds upon the core idea behind the authors’ algorithm. The
authors showed that if the maximum path length and the
budget are both small, then the problem is fixed-parameter
tractable. We prove that this is not the case for our model.
Dvořák and Knop (2018) also studied bounded length cut.
The authors proposed a FPT algorithm in tree width w and
maximum cut length l′ with complexity O(l′12w

2

n) for the
single-source single-destination model.

There have been existing works on Stackelberg games on
attack graphs (Aziz et al. 2018; Aziz, Gaspers, and Najeebul-
lah 2017; Durkota et al. 2019; Milani et al. 2020). Besides
models being different, all the above only discuss tiny attack
graphs with at most 50 nodes. Our setting and approaches
are different and we deal with realistic Active Directory at-
tack graphs with thousands of nodes. Wang et al. (2019) ap-
plied graph neural networks to network interdiction games.
The authors trained GCN using real attacker data to simu-
late Markov chain based boundedly rational attackers. We
use graph neural networks purely as an optimization tool.
Graph neural networks have been shown to be effective for
combinatorial graph problems (Dai et al. 2017).

Model Description
An Active Directory attack graph is denoted by G(V,E).
There are n = |V | nodes and m = |E| directed edges. There
is one attacker who enters the graph via one of the entry
nodes. Let s be the total number of entry nodes. We assume
that the entry node is selected by nature. For simplicity, we
assume uniform chances for all entry nodes. The attacker’s
goal is to reach a single destination node called Domain Ad-
min or DA. We consider only one destination.4 There is a

4In real-life Active Directory attack graphs, there are often mul-
tiple admin nodes. We simply merge all admin nodes into a single

set of edges that are blockable, denoted by Eb ⊆ E. Fig-
ure 2 is an example graph. The entry nodes are 10, 11, and
12. Node 0 is the destination. The thin edges are blockable
(only 1→ 0 and 2→ 0 are not blockable).

Figure 2: Example attack graph. DA is the rightmost node.

The defender selects the best b edges to block, where b is
the defensive budget. We use B to denote the set of edges
blocked. We consider only pure actions. That is, we do not
study mixed-strategy probabilistic blocking. The graph af-
ter blocking is denoted as G − B. We assume the attacker
can observe the defensive action and then perform a best-
response attack. In the context of Active Directory attack
graphs, the attacker performs the shortest path attack on
G − B. We use SP (si, G − B) to denote the shortest path
from entry node si to the destination, on graph G−B.

We assume that an attack path with x hops has a success
probability of f(x), where f could be any decreasing func-
tion in x. If no attack paths exist, then f(+∞) = 0. f can
essentially be any performance evaluation function. For pre-
sentation purposes, we call it the “success rate”, and we set
f(x) = 0.95x (i.e., every action has a 5% failure rate).

The defender’s task is to pick the best b edges to block,
in order to minimize the attacker’s expected success rate.
Expectation is taken by averaging over all s entry nodes.
Formally, our model is the following:

min
B⊆Eb,|B|≤b

1

s

s∑
i=1

f(|SP (si, G−B)|)

A baseline algorithm is the greedy algorithm (GREEDY).
We present it here to serve as an example to help readers
understand our model. The greedy algorithm will also be
used as an algorithm component in later sections.

Algorithm 1 (GREEDY). Given budget b, we pick the sin-
gle best edge to block in terms of reducing the attacker’s
expected success rate.5 We repeat b times.

GREEDY is actually the optimal algorithm if our graph is
exactly a tree. This is straightforward to see. Blocking ac-
tions happening in different tree branches are independent
from each other. Given edge e1 and e2, if the path from e1 to
DA passes through e2, then GREEDY will always block e2.

On the other hand, GREEDY works poorly if there are
substitutable block-worthy edges. For Figure 2, if our bud-
get is 2, under GREEDY, the edges blocked are any two of
{10 → 3, 11 → 3, 12 → 3}. Neither 3 → 1 nor 3 → 2
is blocked. There is still one entry node that can reach DA.

node and call it our DA.
5For example, we could use the almost linear algorithm pro-

posed in (Nardelli, Proietti, and Widmayer 2001) for each step.

9362

The attacker’s success rate is 1
3f(3). It is easy to see that the

optimal defence should be blocking both 3→ 1 and 3→ 2.

W [1] Hardness and BUDGETFPT
We mentioned that Active Directory attack graphs tend to
have short attack paths. We first prove that having a small
maximum attack path length alone is not enough to derive
efficient algorithms.
Theorem 1. Let b be the budget. Let l be the maximum at-
tack path length. Our problem is W [1]-hard with respect to
b even for constant l.

Theorem 1 implies that having a small maximum attack
path length and a small budget is not enough to derive fixed-
parameter algorithms, which makes it different from the sin-
gle source single destination bounded length cut problem
studied in (Golovach and Thilikos 2011). Nevertheless, the
authors’ core idea still applies to our setting. The core idea
goes like this: For single source and single destination, we
pick an arbitrary shortest path. We must block somewhere
along this path. Otherwise, it is as if no blocking happens.
Our fixed-parameter algorithm builds on the above idea.
Algorithm 2 (BUDGETFPT). We go over all combinations
to find the blocking setup that minimizes the expected suc-
cess rate for the attacker. We pick an arbitrary entry node s1
and pick an arbitrary shortest path from s1 to DA. We either
block at least one edge along this shortest path, or s1 can
be removed from our consideration (as its shortest path is
unaffected). There are at most l options for picking an edge
to block. After blocking an edge, the budget is reduced by
1. There is an option for ignoring s1. After ignoring s1, the
number of entry nodes is reduced by 1.

We use cb,s to denote the number of combinations we
need to go over when the remaining budget is b and the re-
maining number of entry nodes is s. We have the following
recursive relationship and the base cases:

cb,s = lcb−1,s + cb,s−1; c0,s = 1; cb,1 = lb

For each combination, the success rate evaluation takes
linear time. We derive the analytical form of cb,s, which
gives the following complexity result.
Proposition 1. BUDGETFPT has a complexity of

O

(
lb
(
b+ s− 1

b

)
n

)
Tree Decomposition Based Dynamic Program

In this section, we propose a dynamic programming algo-
rithm based on tree decomposition. This algorithm scales
the best in experiments, but one restriction is that it requires
the attack graph be acyclic. The synthetic attack graph in
Figure 1 does contain cycles. However, all cycles involve
one common user. So if we remove that one user, the graph
becomes acyclic. In other graphs generated using DBCRE-
ATOR, we always only need to remove a few nodes to make
the graph acyclic. We argue that the network admin has the
flexibility to convert existing graphs into acyclic with mini-
mum changes. Our algorithm can also serve as a heuristic.

The tree width of a graph is a commonly used index to
measure how close a graph is to a tree. Many computation-
ally difficult problems on general graphs are easy if the tree
width is small. This is also the case for our problem.

Our attack graphs are directed and all nodes have paths to
DA (nodes that cannot reach DA are ignored). We further
assume that the attack graphs are acyclic in this section. Un-
der the above assumptions, we could use topological sorting
to divide our attack graphs into several security levels. DA
belongs to the highest security level. An edge only goes from
a lower security level node to a strictly higher security level
node. Take Figure 2 as an example, we could interpret it as
that there are four security levels. 10 to 12 are in the low-
est security level while DA (node 0) has the highest security
level. With this security-level interpretation, there is no am-
biguity on the direction of an edge. If an edge involves node
a and b, then the direction must be from a to b if a has a
lower security level. We will directly reuse the tree decom-
position and tree width definition for undirected graphs.

As an example, Figure 3 shows a tree decomposition of
the graph in Figure 2. Every tree node contains a subset of
the original graph vertices. The union of all tree nodes con-
tains all graph vertices. Every edge is covered by a tree node.
For example, tree node (3, 1, 2) covers all out-going edges
of graph vertex 3. Finally, for every graph vertex, the tree
nodes containing it form a subtree. For example, the tree
nodes containing 3 are (3, 1, 2), (10, 3), (11, 3) and (12, 3).

Figure 3: Tree decomposition of Figure 2 using our heuristic

Tree decompositions are not unique. The optimal tree de-
composition that minimizes the tree width is NP-hard to
compute (Arnborg, Corneil, and Proskurowski 1987). For
our dynamic program, we require a specific style of tree
decompositions that satisfy extra properties. We call such
tree decompositions desired tree decompositions. Figure 3
is a desired tree decomposition. We first explain how we can
convert a desired tree decomposition into a dynamic pro-
gram via an example. During the process, we will explain
what it means for a tree decomposition to be desired. Fi-
nally, we propose a heuristic that guarantees to generate a
desired tree decomposition.

In Figure 3, the number of tree nodes is the same as
the number of graph vertices. The first coordinate values
are unique. A dynamic program subproblem involves a tree
node and a remaining budget b′. For example, ((3, 1, 2), b′)
corresponds to the following subproblem: given the remain-
ing budget b′ and the distances (to DA) for 1 and 2, what
should be the distance between 3 and DA? To answer this
question, we essentially need to determine the budget invest-
ment on 3 (budget spent on 3 is used to block 3’s out-going
edges). 3 has two successors (1 and 2). Both successors are
blockable, so we could spend 0 to 2 units of budget on 3. If

9363

x units of budget is spent on a node (to block its out-going
edges), it will always be blocking the shortest x paths. Once
the budget investment on 3 is determined, 3’s final distance
is also determined. To summarize, ((x, y1, y2, . . .), b′) is the
subproblem where the defender needs to decide how many
units of budget (at most b′) are invested on x, considering
the context information on x’s potential successors (the yi).
Here, context information refers to the distances to DA.

Let us run through a solution on the basis of Figure 3. Let
us recall that the actual graph is in Figure 2. We still assume
the total budget is 2. We start from ((0), 2). The budget in-
vestment on 0 will be 0 since its distance to itself is always
0. This information is then passed down to ((2, 0), 2). 2 has
no blockable out-going edges, so we cannot spend any bud-
get anyway. The distance (to DA) for 2 is then 1. This in-
formation is passed down to ((1, 0, 2), 2). Again, we cannot
invest any budget because 1’s out-going edge is not block-
able. We get that 1’s distance is 1. This context is passed
down to ((3, 1, 2), 2). At this point, we are deciding how
many units of budget to spend on 3. Based on the context
information, we know that 1 and 2’s distances are both 1.
The best decision here is to invest 2 units of budget. Af-
ter that, 3’s distance becomes infinity. This information is
then passed down to all three leaf nodes. For example, one
subproblem at the leaf level is ((10, 3), 0). The context in-
formation says that 10’s successor 3’s distance to DA is in-
finity, and there is no budget left. So we get 10’s distance
to DA is also infinity. Since 10 is one of three entry nodes,
we add 1

3f(+∞) = 0 to the expected success rate. Essen-
tially, the original problem is ((0), b). Our dynamic program
makes decisions on the budgets spent on each node. Context
information and remaining budgets are passed down to fu-
ture subproblems. Through out the process, one property we
need is that as we move from the root to the leaves, when a
vertex first enters into our consideration (i.e., vertex 3 enters
at tree node (3, 1, 2)), the context information (i.e., 1 and 2’s
distances) must be enough for us to decide the new vertex’
distance right away. That is, for any vertex i, we consider
the subtree containing i. The root of this subtree must con-
tain all out-going edges of i. Also, the root of the whole tree
should be a node containing DA only. The above properties
are not held by all tree decompositions. In this paper, we use
the vertex elimination technique to generate tree decomposi-
tion (Bodlaender et al. 2006). This technique maps an arbi-
trary permutation of the vertices into a tree decomposition. It
should be noted that the vertex elimination technique is only
a heuristic framework because it is NP-hard to figure out the
best permutation that results in the smallest tree width. Our
heuristic is simple: eliminate vertices based on the security
level ranking, with the lowest security level eliminated first.
We of course cannot guarantee that the generated tree width
is the smallest, but it is provable that it generates a tree de-
composition that is desired.

Lastly, actually our example in Figure 3 does not cap-
ture one complication, which is that at node (3, 1, 2), we
also need to divide the remaining budget among three child
branches. We need to divide it four ways (one for (3, 1, 2)
itself, for blocking 3’s out-going edges; and three for three
child branches). This has a complexity of b4. If there are too

many branches, then the decision process gets too expensive.
We resolve this using the nice tree decomposition idea from
(Cygan et al. 2015). The main idea is that we can always
clone a node into two. For example, we can insert another
(3, 1, 2) in between (3, 1, 2) and (1, 0, 2). The copy closer
to DA only makes the decision on 3 itself (how many units
of budget to spend on 3). The copy further away from DA
deals with the splitting problem for splitting the remaining
budget for three children. However, this node still needs to
split three ways. The nice tree decomposition idea can re-
solve this with ease as well. We simply need to add another
clone of (3, 1, 2) to handle the second round of splitting. One
node splits between (10, 3) and the rest {(11, 3), (12, 3)}.
The second node splits between (11, 3) and (12, 3). For our
setting, the number of clone nodes needed is at most 2n,
which does not affect the complexity. The gain is that for
every node, the decision is always one dimensional, so the
number of decisions at a node is at most b+ 1.

Proposition 2. DP has a complexity of

O((l + 2)w+1b2n)

w is the achieved tree width using our desired tree decom-
position heuristic.

Classification-based SPLITFPT
Another parameter to describe a graph’s tree-likeness is
the number of feedback edges h. A related parameter is
the number of splitting nodes t (nodes with multiple out-
going edges). If the maximum out degree is d, then we have
h ≤ t(d−1). For the synthetic graph in Figure 1, the number
of splitting nodes is only 12, and the maximum out degree
d is only 3. Having small t and d essentially means that the
attacker’s strategy space is tiny. If the attacker starts from
a non-splitting node, then the attacker has no choice but to
move on to the only successor, and keeps moving on until
1) the attacker is facing a blocked edge, which means the
attacker’s entry node cannot reach DA; 2) the attacker has
reached DA; or finally 3) the attacker has reached another
splitting node. A path where every intermediate node has
only one out-going edge is called a simple path. At a split-
ting node, an attacker faces at most d simple paths (one for
each successor). Every simple path leads to either another
splitting node or to DA. Essentially, the attacker’s strategy
is characterized by his route choices at the splitting nodes. At
each splitting node, there are at most d+1 options, including
at most d simple paths to choose from, and not choosing at
all, which happens if none of the simple paths leads to DA.
The attacker’s strategy space has a size of (d+ 1)t.

Typically for Stackelberg games, we optimize over the
defender’s strategy space. For each defender’s strategy, we
figure out the attacker’s best-response, and then check how
good this best-response attack is in terms of the defender’s
utility. In this paper, because the attacker’s strategy space is
tiny, we instead optimize over the attacker’s strategy space.
We guess what the attacker would do when facing the opti-
mal defence. That is, we guess the attacker’s route choices
at the splitting nodes. When both t and d are tiny, we can
simply go over all strategies of the attacker. If we go over all

9364

combinations, then at least one is indeed the best response
to the optimal defence. Given a guessed attacker’s strategy,
we can derive the distances (to DA) from all splitting nodes.
For example, given split node t1, we know what route the at-
tacker would choose at this node, which has to be the short-
est unblocked route, since we assume it is a best response.
We can follow along this simple path to another splitting
node (or to DA). At the next splitting node, we also know
what route the attacker would choose. This way we can gen-
erate the shortest paths from all splitting nodes to DA, ex-
cept for splitting nodes at which the attacker chooses not
to take any route (the distances are set to infinity for these
nodes). For all generated shortest paths, we mark all block-
able edges covered by them as not blockable. The defender
cannot block these edges, otherwise it is contradictory to our
assumption that the attacker’s strategy is a best response.
Then, at each splitting node, there are routes not taken by
the attacker (either all but one are not taken, or simply all
are not taken). Let us consider a splitting node a, and one of
its successors b, where route a → b is not taken. We follow
the simple path starts from a→ b, and continue on until we
either reach DA or another splitting node. We always end up
with a node whose distance to DA is known. We calculate
whether the simple path under discussion is a better choice
for the attacker or not. If not, we do not need to do anything.
If it is a better choice for the attacker, then we must block
this simple path. Again, otherwise it is contradictory to our
assumption that the attacker’s strategy is the best response to
the optimal defence. For a simple path, it is without loss of
generality to block the blockable edge that is closest to DA.
There is no reason to block further away edges or multiple
edges. After the above actions (marking some edges as not
blockable and blocking some edges), we end up with an at-
tack graph that is exactly a tree (only one rational decision
at any splitting node). When the attack graph is a tree, we
simply run GREEDY using the remaining budget.

Proposition 3. SPLITFPT has a complexity of

O(3h(h2 + hl + bn))

Graph Convolutional Neural Networks
SPLITFPT exhaustively goes over the attacker’s d + 1 op-
tions at all t splitting nodes. This is exactly a node classifica-
tion problem. We use graph convolutional neural network to
perform node classification so that it scales to larger graphs.

We perform unsupervised learning as follows. A node
classification neural network takes one splitting node as in-
put, and outputs its classification (i.e., which route the at-
tacker would take when facing the optimal defence; the
attacker may take no routes, which is just another clas-
sification category). Given a classification on the split-
ting nodes, we can evaluate the corresponding defence that
would induce this classification using the same procedure in
SPLITFPT. That is, we can map a node classification to an
expected success rate for the attacker.

A short description of our neural network approach is that,
given the current neural network (the current node classifi-
cation rule), we randomly flip some nodes’ classifications

to check whether the perturbed classification leads to bet-
ter result (worse success rate for the attacker). If so, we in-
struct the neural network to learn toward the better classi-
fication (treat it as true labels). We obviously do not have
the computational resources to exhaustively go over all node
classification combinations (otherwise we should simply run
SPLITFPT). The goal is to get a small number of nodes’
classifications correct, and hope the neural network is able
to pick up the underlying rules, and can help generalize to
produce correct classifications on all nodes.

Below are the details of our neural network.
Node and edge features: Because the original graph is too
large to handle, we construct a condensed graph contain-
ing only the splitting nodes. The splitting nodes are con-
nected via simple paths in the original graph. In the con-
densed graph, a simple path is interpreted as a single edge.
An example node feature is its out degree. An example edge
feature is the length of the corresponding simple path. Due
to space constraint, we omit our list of manually derived fea-
tures (7 node features, 6 edge features).
Network structure: Both the node features and the edge
features are expanded to 64 dimensions using linear en-
coders. The features then go through 10 layers of crystal
graph convolutional layer with MAX as the aggregator and
batch normalization turned on (Xie and Grossman 2018).
Between each layer, we have a dropout layer that drops an
edge with 0.1 probability. The last layer is a linear layer that
converts the output to d + 1 dimensions. Given an output,
the coordinate with the highest value is taken as the neural
network’s classification for the input splitting node.
Training: We use a batch size of 16 (splitting nodes). For
splitting nodes not in the batch, their classifications follow
the current network’s decision. For a node in the batch, with
0.9 probability, we follow the current network’s classifica-
tion, but we do not just pick the coordinate with the highest
value. Instead, we use SOFTMAX to get each dimension’s
probability and we draw a classification accordingly. With
0.1 probability, we disregard the network and draw a clas-
sification uniformly at random. Essentially, we slightly per-
turb the in-batch nodes’ classifications. We then go over the
in-batch nodes one by one based on a random permutation
order. For each node, we exhaustively go over all d+1 clas-
sifications and check whether unilateral change leads to a
better-performing classification. We end up with a new clas-
sification. With 0.5 probability, we use this new classifica-
tion as true labels. With the other 0.5 chance, we use the
historically best-performing classification as true labels. We
stop after 50 epochs. Loss is based on cross entropy and the
optimizer is Adam with a learning rate of 0.01. We also al-
ways train 5 times with random seed 0 to 4.

Experiments
Our hardware specs are I7-6700 3.4GHZ and double
TURBO-GTX1080-8G GPUs. We conduct all experi-
ments using a synthetic Active Directory attack graph gen-
erated by DBCREATOR. We set the number of computers
to 2000. We only consider three types of edges: ADMINTO,
MEMBEROF, HASSESSION. These three edge types are the
only three default edge types in BLOODHOUND. The final

9365

Success Rate Time[s] #Opt
BUDGETFPT 0.308 5.517
GCN 0.324 34.166 9
GREEDY 0.483 0.117 1

Table 1: R2000 with b = 10 and s = 5

Success Rate Time[s] #Opt
DP 0.449 0.007
GCN 0.449 2.340 10
GREEDY 0.449 0.017 10

Table 2: R2000-DAG with b = 10 and s = 5

graph contains 5997 nodes (computers + user accounts + se-
curity groups, etc.) and 18795 edges.6 We call this graph
R2000. We can make R2000 acyclic by removing another 4
nodes from it. We call the acyclic version R2000-DAG.

We randomly set some edges to be blockable. For a non-
splitting node, its out-going edge is blockable with pb prob-
ability. For a splitting node, with pb probability, all of its
out-going edges are blockable. We set pb to be 0.2. All of
our experiments are repeated 10 times.
Table 1: Low budget setting. We randomly pick 5 nodes to
be the entry nodes. We set the budget to 10. With a small
budget and a small number of entry nodes, BUDGETFPT is
scalable. We compare BUDGETFPT against GREEDY and
GCN (the graph convolutional neural network approach).
Note that BUDGETFPT is optimal. Success Rate is short for
the expected success rate for the attacker (lower is better).
Time[s] is seconds per trial. #Opt shows how many times the
algorithm under discussion produces a result that is within
0.000001 of the optimal result (among 10 trials).
Table 2: Acyclic setting. We use R2000-DAG instead. We
compare DP against GREEDY and GCN. It turns out that
both GCN and GREEDY always achieve the optimal results.
GREEDY being optimal is not entirely surprising, because
we have shown that GREEDY is optimal if the graph is ex-
actly a tree, and R2000-DAG is very close to a tree.
Table 3: Acyclic setting with substitutable edges. We
could artificially modify R2000-DAG and create an acyclic
graph that is not close to a tree. We recall that GREEDY
fails when there are substitutable blockable-worthy edges,
as shown in Figure 2. We introduce substitutable edges
into R2000-DAG. Given a blockable edge a → b, we du-
plicate b. We create two paths a

blockable−−−−−−→ b → c and
a

blockable−−−−−−→ b′ → c, where c is a successor of b. Essen-
tially, we are recreating the structure of Figure 2. This setup
is actually simulating a practical scenario. If there are two
different exploits that allow the attacker to travel from a to
b, then we need to block both exploits. Under this artificially
created acyclic graph, GCN is still always getting the opti-
mal result, and GREEDY fails 4 out of 10 trials.

6There are 7 admin nodes. We merge them into one node DA.
Out of 5997 nodes, only 339 can reach DA. So we can preprocess
our graphs to make it much smaller.

Success Rate Time[s] #Opt
DP 0.465 0.008
GCN 0.465 8.000 10
GREEDY 0.566 0.030 6

Table 3: R2000-DAG with additional substitutable edges,
b = 10 and s = 5

Success Rate Time[s] #Win
GCN (pb = 0.2) 0.450 37.987 1
GREEDY (pb = 0.2) 0.438 0.245 3

GCN (pb = 0.4) 0.226 24.121 5
GREEDY (pb = 0.4) 0.287 0.600 0

Table 4: R2000 with b = 20 and s = 10

Table 4: Setting without optimal solutions. We go back to
R2000. We double the budget to 20 and double the num-
ber of entry nodes to 10. We can no longer afford to run
BUDGETFPT. We also cannot run DP because R2000 con-
tains cycles. In this setting, we do not have optimal solu-
tions. We compare GREEDY against GCN. #Win refers to
how many times an algorithm beats the other one (ties are
not counted as wins). It turns out that GREEDY performs bet-
ter than GCN in this setting. In R2000, there are naturally
occurring substitutable edges. With double budget, GREEDY
will block the substitutable edges despite they are perceived
as low in priority (i.e. no place to spend the budget, so might
as well spend on substitutable edges). If we double pb, then
GREEDY again has plenty of places to spend budget on, so
it will not spend budget on substitutable edges. As a result,
GCN constantly wins again.

Conclusion
We studied edge blocking for defending Active Directory
style attack graphs. We proposed 3 fixed-parameter algo-
rithms based on the observation that practical Active Direc-
tory attack graphs have small maximum attack path lengths
and are similar to trees. BUDGETFPT can be applied when
both the budget and the number of entry nodes are small.
DP scales the best experimentally, but it is only applicable
to acyclic graphs. SPLITFPT is based on performing fixed-
parameter analysis on the attacker’s strategy space, which
happens to be much smaller compared to the defensive strat-
egy space in our model. For each attacking strategy, we anal-
ysed what kind of defense would make this attacking strat-
egy a valid best response. This FPT technique is potentially
useful for other Stackelberg games. Lastly, we scaled up
SPLITFPT by converting it to a graph convolutional neu-
ral network based heuristic. A typical FPT approach is to
exhaustively search among a set of solutions characterized
by the fixed parameters. Instead of exhaustive search, we
trained a neural network to guess the best solution. Our al-
gorithms will help IT admins to identify high-risk edges (ac-
cesses/exploits) in practical Active Directory environments.

9366

Acknowledgements
Frank Neumann has been supported by the Australian Re-
search Council through grant FT200100536. Hung Nguyen
is partially supported by the “Cyber NGT – Provable Net-
work Security” grant.

References
Arnborg, S.; Corneil, D. G.; and Proskurowski, A. 1987.
Complexity of Finding Embeddings in a K-Tree. Siam Jour-
nal of Discrete Mathematics, 8(2): 277–284.
Aziz, H.; Gaspers, S.; Lee, E. J.; and Najeebullah, K. 2018.
Defender Stackelberg Game with Inverse Geodesic Length
as Utility Metric. In Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’18, 694–702. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems.
Aziz, H.; Gaspers, S.; and Najeebullah, K. 2017. Weakening
Covert Networks by Minimizing Inverse Geodesic Length.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, 779–785. Melbourne, Aus-
tralia: International Joint Conferences on Artificial Intelli-
gence Organization. ISBN 978-0-9992411-0-3.
Bar-noy, A.; Khuller, S.; and Schieber, B. 1995. The Com-
plexity of Finding Most Vital Arcs and Nodes. Technical
report, University of Maryland.
Bazgan, C.; Fluschnik, T.; Nichterlein, A.; Niedermeier, R.;
and Stahlberg, M. 2019. A More Fine-Grained Complex-
ity Analysis of Finding the Most Vital Edges for Undirected
Shortest Paths. Networks, 73(1): 23–37.
Bodlaender, H. L.; Fomin, F. V.; Koster, A. M. C. A.;
Kratsch, D.; and Thilikos, D. M. 2006. On Exact Algorithms
for Treewidth. In Azar, Y.; and Erlebach, T., eds., Algorithms
– ESA 2006, Lecture Notes in Computer Science, 672–683.
Berlin, Heidelberg: Springer. ISBN 978-3-540-38876-0.
Chen, J.; Kanj, I. A.; and Xia, G. 2006. Improved Parame-
terized Upper Bounds for Vertex Cover. In Královič, R.; and
Urzyczyn, P., eds., Mathematical Foundations of Computer
Science 2006, Lecture Notes in Computer Science, 238–249.
Berlin, Heidelberg: Springer. ISBN 978-3-540-37793-1.
Cygan, M.; Fomin, F. V.; Kowalik, Ł.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer International
Publishing. ISBN 978-3-319-21274-6.
Dai, H.; Khalil, E. B.; Zhang, Y.; Dilkina, B.; and Song,
L. 2017. Learning Combinatorial Optimization Algo-
rithms over Graphs. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’17, 6351–6361. Red Hook, NY, USA: Curran
Associates Inc. ISBN 978-1-5108-6096-4.
Dunagan, J.; Zheng, A. X.; and Simon, D. R. 2009. Heat-
Ray: Combating Identity Snowball Attacks Using Machine-
learning, Combinatorial Optimization and Attack Graphs. In
Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles - SOSP ’09, 305. Big Sky, Mon-
tana, USA: ACM Press. ISBN 978-1-60558-752-3.

Durkota, K.; Lisý, V.; Bošanský, B.; Kiekintveld, C.; and
Pěchouček, M. 2019. Hardening Networks against Strategic
Attackers Using Attack Graph Games. Computers & Secu-
rity, 87: 101578.
Dvořák, P.; and Knop, D. 2018. Parameterized Complex-
ity of Length-bounded Cuts and Multicuts. Algorithmica,
80(12): 3597–3617.
Golovach, P. A.; and Thilikos, D. M. 2011. Paths of
Bounded Length and Their Cuts: Parameterized Complex-
ity and Algorithms. Discrete Optimization, 8(1): 72–86.
Lallie, H. S.; Debattista, K.; and Bal, J. 2020. A Review
of Attack Graph and Attack Tree Visual Syntax in Cyber
Security. Computer Science Review, 35: 100219.
Milani, S.; Shen, W.; Chan, K. S.; Venkatesan, S.; Leslie,
N. O.; Kamhoua, C.; and Fang, F. 2020. Harnessing the
Power of Deception in Attack Graph-Based Security Games.
In Zhu, Q.; Baras, J. S.; Poovendran, R.; and Chen, J., eds.,
Decision and Game Theory for Security, Lecture Notes in
Computer Science, 147–167. Cham: Springer International
Publishing. ISBN 978-3-030-64793-3.
Milgram, S. 1967. The Small-World Problem. Psychology
Today, 1: 61–67.
Nardelli, E.; Proietti, G.; and Widmayer, P. 2001. A Faster
Computation of the Most Vital Edge of a Shortest Path. In-
formation Processing Letters, 79(2): 81–85.
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Or-
donez, F.; and Kraus, S. 2008. Efficient Algorithms to Solve
Bayesian Stackelberg Games for Security Applications. In
Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3, AAAI’08, 1559–1562. Chicago,
Illinois: AAAI Press. ISBN 978-1-57735-368-3.
Wang, K.; Mate, A.; Wilder, B.; Perrault, A.; and Tambe,
M. 2019. Using Graph Convolutional Networks to Learn
Interdiction Games. In AI for Social Good Workshop, Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Xie, T.; and Grossman, J. C. 2018. Crystal Graph Convo-
lutional Neural Networks for an Accurate and Interpretable
Prediction of Material Properties. Physical Review Letters,
120(14): 145301.

9367

