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Abstract

Cooperative multi-agent reinforcement learning (MARL)
faces significant scalability issues due to state and action
spaces that are exponentially large in the number of agents.
As environments grow in size, effective credit assignment
becomes increasingly harder and often results in infeasible
learning times. Still, in many real-world settings, there ex-
ist simplified underlying dynamics that can be leveraged for
more scalable solutions. In this work, we exploit such locality
structures effectively whilst maintaining global cooperation.
We propose a novel, value-based multi-agent algorithm called
LOMAQ, which incorporates local rewards in the Central-
ized Training Decentralized Execution paradigm. Addition-
ally, we provide a direct reward decomposition method for
finding these local rewards when only a global signal is pro-
vided. We test our method empirically, showing it scales well
compared to other methods, significantly improving perfor-
mance and convergence speed.

1 Introduction
The field of Reinforcement Learning (RL) is concerned with
an agent taking actions in an environment in order to maxi-
mize a cumulative reward. Recent work has witnessed major
success in various tasks, including Atari games (Mnih et al.
2015), and Go (Silver et al. 2016). A popular extension of
RL is cooperative multi-agent RL (cooperative MARL), in
which a group of agents attempts to interact with an environ-
ment together. Research on MARL has gained much atten-
tion in recent years, with examples in the Star-Craft multi-
agent challenge (Vinyals et al. 2019) and traffic control (Chu
et al. 2019).

A common paradigm used in cooperative MARL is Cen-
tralized Training Decentralised Execution (CTDE, Kraemer
and Banerjee (2016)). In this approach, agents are trained si-
multaneously by a centralized controller. Decentralized poli-
cies are then derived from the training process and used
for execution. Centralized training can be highly benefi-
cial, granting access to additional global information, which
helps agents coordinate their actions. Nevertheless, utiliz-
ing such information effectively is a challenging problem
for cooperative MARL, due to exponential state and action
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Figure 1: A visualization of training MARL for a graph of
agents with local rewards vs. with global rewards. The col-
ored regions represent the feedback that the agents exhibit
during training

spaces. As the environment scales, coordination becomes in-
creasingly difficult, rendering centralized training impracti-
cal. Still, in many real-world settings, there exist simplified
underlying dynamics that can help tackle this problem.

In this paper, we utilize local rewards, a principal compo-
nent of our work. While local rewards are often used in com-
petitive settings (i.e., where every agent attempts to maxi-
mize its own local reward), in most cooperative approaches,
cooperation is weakly enforced through a shared global re-
ward that all agents aim to maximize (Rashid et al. 2018;
Lowe et al. 2017). A visualization of this paradigm is de-
picted in Figure 1

Local rewards are critical for effective learning in scal-
able settings. As an example, consider the problem of coach-
ing a large soccer team. If a certain player loses the ball
to the other team, punishing that player directly (and pos-
sibly neighboring players) with targeted feedback, may be
far more effective than punishing the entire team with gen-
eral feedback. The latter will often leave players confused,
believing they should have acted differently.

Despite the effectiveness of local rewards, naively train-
ing with local rewards may result in greedy agents that
fail to cooperate. Concurrent approaches that aim to ex-
ploit local reward structures for our setting often pay a
price in terms of cooperation and usually resort to training
with global rewards (Lowe et al. 2017). This is particularly
true for the value decomposition approach for cooperative
MARL, which has become increasingly popular in recent
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years (Sunehag et al. 2018; Rashid et al. 2018; Son et al.
2019; Rashid et al. 2020; Wang et al. 2020). To the best of
our knowledge, there are no value decomposition methods
that utilize local rewards effectively. Rather, they rely on the
global reward signal for decomposing the joint state-action
value function into individual state-action value functions.
As we show in our work, such an approach hurts overall
performance and convergence speed in large environments.

In this work, we present a scalable value decomposition
method for the cooperative CTDE setting. Our method lever-
ages local agent rewards for improving credit assignment,
whilst maintaining a cooperative objective. In addition, we
provide a direct decomposition method for finding local re-
wards when only a global reward is provided. We empir-
ically show that our method is scalable, improving upon
state-of-the-art methods for this setting.

Our contributions are as follows. We define the Q-
Summation Maximization (QSM) Condition (Section 3.1),
showing its theoretical benefits in a linear bandit setting
(Theorem 1). We show that a monotonic decomposition of
utilities can be derived to establish the QSM condition (Sec-
tion 3.3), and provide a value-based algorithm to enforce it
(Section 4). Finally, we construct a reward decomposition
method for learning local rewards when a global reward is
given (Section 4.2).

2 Preliminaries
We define a multi-agent Markov decision process
(MAMDP) as the tuple M = (G,S,A, P, r, γ), where
G = (V, E) is an undirected graph of agents, where
V = [n] = {1, . . . , n} and E ⊆ V × V , S =×ni=1 Si is the
global state space, A =×ni=1Ai is the global action space,
P : S × S × A 7→ [0, 1] is the global transition function,
r : S × A 7→ R is the global reward, and γ ∈ (0, 1) is the
discount factor.

An agent i ∈ V is associated with the underlying
graph G, state si and action ai. For a set B ⊆ V we define
sB , aB as the subset of agent states and actions in B, i.e.,
sB = (si)i∈B and aB = (ai)i∈B , respectively. At time t, the
environment is at state s = (s1, . . . , sn) and the agents take
an action a = (a1, . . . , an), after which the environment
returns a reward r and transitions to state s′ according to
the factored dynamics P (s′|s, a) =

∏
i∈V Pi(s

′
i|sN(i), ai),

where here we used N(i) to denote the neighborhood of
agent i, including i, i.e., N(i) = {j ∈ V : (i, j) ∈ E} ∪ {i}.

We define a global Markovian policy π as a mapping
π : S ×A 7→ [0, 1] such that π(a|s) is the probability to
choose action a = (a0, . . . , an) at state s = (s0, . . . sn).
We define the value of policy π starting at a state s ∈ S and
taking action a ∈ A as

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtr(s(t), a(t))

∣∣∣∣∣ s(0) = s, a(0) = a

]
.

The value function is then defined by
vπ(s) = Ea∼π(s)[Qπ(s, a)]. We define the optimal
value and optimal policy by v∗(s) = maxπ v

π(s) and
π∗ ∈ arg maxπ v

π(s), respectively.

Finally, we denote by P a partition of V = [n] (i.e., of
agents), such that

⋃
J∈P J = V and

⋂
J∈P J = ∅. We say

that P ′ is a refinement of P if for every J ′ ∈ P ′ there exists
J ∈ P such that J ′ ⊆ J1.

2.1 Reward Decomposition
A primary element of MARL is the decomposi-
tion of the reward function r over agent states
and actions {si, ai}i∈V . Given some decomposi-
tion of rewards {ri : S ×A 7→ R}i∈V , such that
r(s, a) =

∑
i∈V ri(s, a), we define the par-

tial Q-function of π, denoted by Qπi (s, a) as
Qπi (s, a) = Eπ[

∑∞
t=0 γ

tri(s(t), a(t)) | s(0) = s, a(0) = a ].
It follows that Qπ(s, a) =

∑
i∈V Q

π
i (s, a). Note that

such decomposition always exists, e.g., by choosing
r1 = r, ri = 0, i ≥ 2.

In this work, we consider a reward decomposition for
which every agent is dependent only on its local state and
action, as defined formally below. We refer the reader to Sec-
tion 4.3 for a relaxation of this assumption.
Assumption 1 (Qu et al. (2020)). We assume that the reward
function r is additively decomposable. That is, there exist
{ri : Si ×Ai 7→ R}i∈V such that r(s, a) =

∑n
i=1 ri(si, ai)

for all s = (s1, . . . , sn), a = (a1, . . . , an).

3 Value Partitions for MARL
In this section, we focus on leveraging value-based parti-
tions for credit assignment in MARL. We consider decou-
pling the problem into smaller problems, each of which can
be viewed as a separate, easier estimation problem. Partic-
ularly, we generalize ideas from Rashid et al. (2018), and
define a partition-based Q-maximization condition. We mo-
tivate this condition in a contextual bandit setting, proving
it can exponentially improve regret. Then, for the general
RL setting, we propose a monotonic decomposition of agent
utilities for which our proposed condition holds. We show
examples of the latter and prove that monotonic decomposi-
tion of utilities is indeed sufficient for partition-based max-
imization. Our decomposition will prove beneficial in Sec-
tion 4, as we leverage value partitions to construct a scalable
value-based algorithm for MARL.

3.1 Q-Summation Maximization (QSM)
We begin by defining the Q-Summation Maximization con-
dition on which we build upon the rest of this section. The
QSM condition states that the Q-function can be maximized
using a partition of partial maximizers, as defined formally
below.
Definition 1 (QSM Condition). Let P be a partition of V .
We say that a MAMDP satisfies the Q-Summation Maximi-
sation (QSM) Condition with P , if for every s ∈ S and pol-
icy π

max
a

{
n∑
i=1

Qπi (s, a)

}
=
∑
J∈P

(
max
a

{∑
i∈J

Qπi (s, a)

})
1A refinement partition can be useful when multiple groups of

agents concurrently attempt to solve relatively separable tasks.
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Algorithm 1: Multi-OFUL

1: input: α, λ, δ > 0, P partition of V
2: init: VJ,aJ = λI , J ∈ P , aJ ∈×i∈J Ai.
3: YJ = 0, J ∈ P .
4: for t = 1, 2, . . . do
5: Receive context x(t)
6: for J ∈ P , aJ ∈×i∈J Ai do
7: ŷaJ (t) =

〈
x(t), V −1J,aJ

YJ

〉
8: UCBaJ (t) =

√
βJ(t, δ)‖x(t)‖V −1

J,aJ

9: end for
10: a(t) ∈×aJ arg maxJ∈P ŷaJ (t) + αUCBaJ (t)
11: Play a(t) and observe {rJ(t)}
12: VJ,aJ (t) = VJ,aJ (t) + x(t)x(t)T , J ∈ P
13: YJ = YJ + x(t)rJ(t), J ∈ P
14: end for

We note the two extremes of the QSM Condition.
First, every MAMDP satisfies the condition trivially with
P = {V}. Second, if P partitions V into singletons (i.e.,
P = {{1}, {2}, . . . , {n}}), then for every s ∈ S,

max
a

{
n∑
i=1

Qπi (s, a)

}
=

n∑
i=1

(
max
a
{Qπi (s, a)}

)
.

The QSM condition can greatly improve learning effi-
ciency in settings in which the partial Q-functions are easier
to approximate, effectively decoupling the problem to |P|
simpler problems. We prove this for an instance of the lin-
ear bandits problem in the following subsection. Then, in
Section 3.3 we discuss a sufficient assumption for which the
QSM condition holds.

3.2 QSM in Linear Bandits
To motivate the QSM condition, we generalize the linear
bandit model of Abbasi-Yadkori, Pál, and Szepesvári
(2011). Specifically, at each round t, the environment gener-
ates a context x(t) ∈ X ⊆ Rd (from a possibly adaptive ad-
versary), where ‖x(t)‖2 ≤ Sx. The learner must then choose
an action a(t) ∈ A =×ni=1Ai, where Ai = [K]. Given a
partition P of V , the learner then receives |P| noisy ob-
servations

{
rJ(t) =

∑
i∈J

〈
x(t), θ∗i,ai(t)

〉
+ ηJ(t)

}
J∈P

,

where
{
θ∗i,j ∈ Rd : i ∈ [n], j ∈ [K]

}
are unknown vectors,∥∥θ∗i,j∥∥2 ≤ Sθ, and {ηJ(t)}J∈P are independent random

variables (for every t). We assume ηJ(t) is conditionally
RJ -subgaussian random noise, such that

E
[
eληJ (t)

∣∣∣ aJ(1), . . . , aJ(t), ηJ(1), ηJ(t− 1)
]
≤ eλ

2R2
J/2.

We define the regret at time T by

Regret(T ) =
T∑
t=0

n∑
i=1

[〈
x(t), θ∗i,a∗i (t)

〉
−
〈
x(t), θ∗i,ai(t)

〉]
,

where a∗(t) ∈ arg maxa∈A
∑n
i=1

〈
x(t), θ∗i,ai

〉
.

Algorithm 1 uses the structured partition under
which the QSM condition holds. At every iteration
of the algorithm, a least square problem is solved
for every J ∈ P , after which an action is cho-
sen according to an upper confidence defined by√
βJ(t, δ) = λ1/2|J |Sθ +Rmax

√
d log

(
|P|K|J|(1+tSx)/λ

δ

)
.

Denote KP =
∑
J∈P K

|J| and Rmax = maxJ∈P RJ .
Then, we have the following result.

Theorem 1. Assume E[rJ ] ∈ [−1, 1] for all J ∈ P . For all
T ≥ 0, with probability at least 1 − δ, the regret of Algo-
rithm 1 is bounded by

Regret(T ) ≤ 2
√
T

√
d log

(
λ+

TS2
x

Kd

)
KP×(

λ1/2nSθ +Rmax

√
d log

(
|P|Kn(1 + tSx)/λ

δ

))
.

This leads to, Regret(T ) ≤ Õ
(
dRmax

√
TKP

)
.

The above result achieves regret that is dependent on
the maximum subgassuian constant Rmax and

√
KP . This

upper bound is significantly lower than the regret of
a naive application of the OFUL algorithm in Abbasi-
Yadkori, Pál, and Szepesvári (2011). As the latter doesn’t
assume the QSM condition, it achieves an exponen-
tially larger regret, Regret(T ) ≤ Õ

(
dRtot

√
TKn

)
, where

Rtot =
∑
J∈P RJ . Indeed, whenever maxJ∈P |J | � n Al-

gorithm 1 achieves regret which is exponentially smaller in
K. Particularly, when P = {{1}, {2}, . . . {n}}, we get that
Regret(T ) ≤ Õ

(
dRmax

√
TnK

)
.

3.3 Monotonic Decomposition of Utilities
In Section 3.1 we defined the QSM condition and showed
it can significantly improve performance in a linear bandit
setting, suggesting its benefits for cooperative MARL. Still,
a question arises, when does the QSM condition hold? In
this section, we show a sufficient monotonicity assumption
under which the QSM condition holds. We formalize this
assumption below.

Assumption 2 (Monotonic Decomposition). We as-
sume there exists a partition P of V , utility func-
tions {Uπi : Si ×Ai 7→ R}i∈V , and partition functions
{FπJ : Rn 7→ R}J∈P such that for all J ∈ P ,

FπJ (U(s, a)) =
∑
i∈J

Qπi (s, a), and

∇UF
π
J ≥ 0,

where U(s, a) := (Uπ1 (s1, a1), . . . , Uπn (sn, an))T .

Remark 1. The monotonic decomposition assumption gen-
eralizes to trajectory-dependent utilities Uπi : T 7→ R, such
that FπJ (U(τ)) =

∑
i∈J Q

π
i (s, a), where s, a are the final

state and action in the trajectory τ .
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A basic setting for which Assumption 2 holds is decou-
pled MAMDPs. Indeed, for any M = (G,S,A, P, r, γ)
such that E = ∅ and M is additively decomposable (see
Assumption 1), we have that Assumption 2 holds for any
partition P . We refer the reader to the appendix for a proof
as well as examples of Assumption 2.

3.4 Monotonic Utilities are Sufficient for QSM
Next, we show that monotonic utilities (Assumption 2) are
sufficient for the QSM condition. Additionally, we show
that, under Assumption 2, local utilities are enough for
global Q-maximization. This result is closely related to
maximization results in previous work (Son et al. 2019;
Rashid et al. 2018). See Appendix for proof.

Theorem 2. Suppose Assumption 2 holds for some parti-
tion P . Then the QSM condition (Definition 1) is satisfied
with P . Moreover, for any state s = (s1, . . . , sn) ∈ S ,
arg maxa∈AQ

π(s, a) =×ni=1 arg maxai∈Ai U
π
i (si, ai).

Assumption 2 is a generalization of the monotonicity as-
sumption of Q-mix (Rashid et al. 2018), which holds when
P = {V}. In contrast, whenP = {{1}, {2}, . . . , {n}}, each
Qi can be expressed as a function of U(s,a), and is mono-
tonic w.r.t to its inputs. The following proposition shows
that, if Assumption 2 holds for P ′, a refinement of P , then
it holds for P as well. Particularly, this means that if As-
sumption 2 holds for any P , then the assumption holds for
P = {V}.
Proposition 1. Let M = (G,S,A, P, r, γ), and let
P,P ′ be partitions such that P ′ is a refinement of P . If
Assumption 2 holds for P ′, then it also holds for P .

The above proposition suggests a certain trade-off be-
tween the refinement of P and the number of MAMDP’s
that satisfy Assumption 2. Assumption 2 can thus be viewed
as a trade-off between expressibility and speed, as controlled
by the refinement of P .

In the next section, we build upon Assumption 2 to con-
struct a scalable value-based MARL algorithm that effi-
ciently leverages local value-partitions and local rewards.

4 Local Multi-Agent Q-Learning
In this section, we describe a value-based approach that
leverages the QSM condition using an application of As-
sumption 2. Algorithm 2 provides pseudo-code of our
method, which we call LOcal Multi-Agent Q-learning
(LOMAQ). We assume local agent rewards are observ-
able during learning (this assumption will be lifted in Sec-
tion 4.2). Instead of approximating the global Q-function,
LOMAQ builds upon Assumption 2 to approximate the par-
tition functions {FJ}J∈P .

Algorithm 2 receives as input a partition P and enforces
the monotonicity assumption ofAssumption 2. At every it-
eration of the algorithm, a greedy action is taken w.r.t. each
utility. After an action has been selected, {FJ}J∈P are up-
dated using a bellman update for every J ∈ P . Finally, in
line 10, monotonicity is enforced to ensure Assumption 2
holds. After training is complete, we use the learned utilities

Algorithm 2: LOMAQ with local rewards

1: Input: Partition P of V , exploration parameter ε
2: Init: FJ({U(s′, a′)) = 0, for all J ∈ P
3: for t = 1, 2 . . . do
4: Take action a
5: Observe s′ and local rewards {rJ}J∈P
6: a′greedy ∈

(
arg maxa′i Ui(s

′
i, a
′
i)
)
i∈V

7: a′ ←

{
random action ,w.p. ε
a′greedy ,w.p. 1− ε

8: for J ∈ P do
9: FJ(U(s, a))

αt← rJ(s, a) + γFJ(U(s′, a′))
10: Project FJ to the set {f : Rn 7→ R s.t. ∇f ≥ 0}
11: end for
12: end for

Ui for decentralized execution. We note that, due to Theo-
rem 2, choosing the greedy action in line 6 w.r.t. the local
utilities is equivalent to acting greedily w.r.t. the global Q-
function. We refer the reader to the appendix for a discussion
regarding the convergence of Algorithm 2.

4.1 Practical Implementation of LOMAQ
We implement LOMAQ in a deep Q-learning framework
(Rashid et al. 2018). Specifically, we approximate FπJ for
every J ∈ P , and Uπi for every i ∈ V using neural networks
with parameters θ. We denote these approximations by F θJ
and Uθi , respectively. The outputs of Uθi are forwarded as
inputs into F θJ , i.e., F θJ ({Uθi }ni=1).

Given a mini-batch of tuples (s, a, r, s′) sampled from a
replay memory, we train the neural networks end-to-end by
minimizing the loss

LF (θ) = Es,a,s′
[∑
J∈P

(
yJ − F θJ ({Uθi (si, ai)}ni=1)

)2]
,

(1)

where, yJ =
∑
j∈J rj + γmaxa′

{
F θJ ({Uθi (s′i, a

′
i)}ni=1)

}
.

Figure 2 depicts the feed-forward architecture for
LOMAQ. The local agents states si are fed into Uθi , which
outputs a vector of size Ai, representing the utility of every
state-action pair (si, ai). The utilities of the chosen actions
a′i are then forwarded as inputs into F θJ ({Uθi (si, a

′
i)}ni=1).

Finally, the outputs of F θJ are trained according to LF (θ) in
Equation (1).

In practice, every agent i ∈ V views a trajectory of local
states, represented by τi. We use recurrent networks for esti-
mating Uθi , and fully-connected networks for F θJ . We utilize
the graph structure for approximating FJ , by redirecting Ui
into FJ only if there exists a j ∈ J such that i ∈ N(j). We
refer the reader to the appendix for an exhaustive overview
of specific implementation details.

Monotonic Regularization To enforce the monotonicity
criterion of Assumption 2, we implement line 10 of Algo-
rithm 2 by regularizing the loss in Equation (1). We propose
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Figure 2: The architecture for the LOMAQ network. The
agent’s states si are fed into the utility networks Uθi , which
are then forwarded as inputs into F θJ .

two such regularizations; namely, using hard and soft pro-
jection regularizers.

For hard regularization, we project all parameters θ
to be positive through a Relu activation function, i.e.,
θ ← Relu(θ) for all θ corresponding to F θJ . Alternatively,
to allow for softer regularization, we penalize Equation (1)
by the negative derivatives of F θJ w.r.t. Uθi for every J ∈ P .
That is, L(θ) = LF (θ) + λRreg(θ), where λ > 0, and

Rreg(θ) =
∑
J∈P

Relu(−∇UF
θ
J ).

Here, the regularization parameter λ reflects a trade-off be-
tween efficiency (due to QSM) and accuracy (whenever As-
sumption 2 does not hold exactly).

4.2 Global Reward
While LOMAQ relies on observable local rewards for esti-
mating FπJ , they may not always be provided. In this sec-
tion, we propose a new method for decomposing the global
reward function into local reward functions, whenever these
are not available.

We assume the global reward signal can be approximately
additively decomposed (see Assumption 1). We approximate
each local reward ri(si, ai) using a deep neural network with
parameters φ. Our prediction for the global reward is then
given by rφpred(s, a) =

∑n
i=1 r

φ
i (si, ai), which is trained to

match the global reward signal rglobal, by minimizing the loss

Lr(φ) = Es,a
[(
rφpred(s, a)− rglobal(s, a)

)2]
. (2)

Training rφi (si, ai) is done in parallel to LOMAQ, where
(s, a, rglobal) are sampled from a replay memory. We refer

the reader to the appendix for an exhaustive overview and
further implementation details.

4.3 Beyond Additive Decomposition
In certain settings, Assumption 1 may be too restrictive, e.g.
when interactions between agents are exhibited in the global
reward signal. To overcome this, we consider an alternative
decomposition of the reward, where every learned reward
function can be dependent on a group of agents.

Formally, for any i ∈ V we denote by I(i) the power set
of agents in {i} ∪N(i). That is,

I(i) = {I : I is in the power set of {i} ∪N(i)}.

Next, for every set I ∈ I(i) we define a reward function
relating to the agents in I , rI : SI × AI 7→ R. Finally, we
define the reward of agent i ∈ V by

ri(s, a) =
∑
I∈I(i)

1

|I|
rI(sI , aI), (3)

where here, every reward rI in the summand is normalized
according to the cardinality of I . Notice that this decom-
position is a generalization of Assumption 1. Indeed, Equa-
tion (3) coincides with Assumption 1 whenever E = ∅.

The reward decomposition in Equation (3) creates a hier-
archy for every agent i, as every local reward ri is comprised
of multiple learned reward functions {rI(sI , aI)}I∈I(i)
which have less effect on agent i as |I| increases.

In most cases, the number of local reward functions is ex-
ponential in N(i), rendering large decompositions infeasi-
ble. Moreover, as |I| increases, the learned rewards become
dependent on more agents, reducing their effectiveness (due
to normalization in |I|). We therefore focus on learning re-
ward functions of small cardinality in |I|. We enforce this in
practice using a regularization term that is dependent on |I|.
Specifically, we regularize the loss in Equation (2) by

Rreg(φ) =
∑
I∈I

w(|I|)× |rφI (sI , aI)|,

where w(|I|) are weights that grow proportionally to |I|, pe-
nalizing rφI (sI , aI) as |I| increases. This regularization re-
flects a trade-off between the overall accuracy of the learned
rewards and the complexity of the reward decomposition.

5 Experiments
In this section we test the performance of LOMAQ and com-
pare it to previous MARL approaches on two large-scale
multi agent tasks.

5.1 Environments
We tested our algorithm on two environments, Coupled-
Multi-Cart-Pole and Bounded-Cooperative-Navigation.
Both environments include minor modifications of the
well-known Cart-Pole (Brockman et al. 2016) and
Cooperative-Navigation (Lowe et al. 2017) environments.

The Coupled-Multi-Cart-Pole consists of n cartpoles, re-
siding on the 1d axis. Each cart is viewed as an agent, con-
trolled by applying a force of ±1. Every pair of neighboring
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Figure 3: The Coupled-Multi-Cart-Pole environment with 3
cartpoles. The right-most cartpole has fallen (marked in red).
The global reward for this timestep is +2.

carts is connected by a spring. Every cart receives a local re-
ward of +1 for every timestep that the pole is upright. The
global reward for the environment is the total number of cart-
poles that are currently upright. The dependency graph for
this environment can be modeled as a line graph, where ev-
ery cartpole has two neighbors excluding the edges which
only have one. Figure 3 depicts this environment for three
cartpoles.

The Bounded-Cooperative-Navigation consists of n
agents (particles) and n landmarks. Agents must strive to
cooperatively cover as many landmarks as possible. In this
environment, particles aren’t able to move freely in 2d space.
Every particle is bound to a fixed distance from its starting
position and is thereby restricted to a certain region. This re-
striction resembles a simplified food-delivery service, where
the landmarks represent customers and the agents represent
delivery people. Consequently, not all particles interact with
each other directly, since direct interactions only occur when
two particles are in the same location. This induces a depen-
dency graph for which every two particles are neighbors in
the graph if and only if their regions overlap. The environ-
ment rewards +1 for every landmark that is covered by a
particle at a certain timestep. Figure 4 shows a conceptual
visualization of the task.

5.2 Comparative Experiments
Scalability We tested LOMAQ on both cooperative envi-
ronments with n = 15 agents in two setups; namely, with
and without access to a local reward signal. We denote these
by LOMAQ and LOMAQ+RD, respectively. In both cases,
we used the refined partition P = {{1}, {2}, . . . , {n}}.

We compared LOMAQ to a wide range of contemporary
cooperative methods. In addition, we compared LOMAQ to
two versions of IQL (Tan 1993), trained with environment
local rewards and global rewards, which we denote by IQL-
local and IQL, respectively.

Figure 5 depicts the results of the Coupled-Multi-Cart-
Pole and Bounded-Cooperative-Navigation environments. It
is evident that both versions of LOMAQ significantly out-
perform all of the compared methods in both performance
and convergence speed. We note that LOMAQ+RD con-
verges to LOMAQ’s policy, with a slight delay due to the
time taken to learn the reward decomposition.

In both environments various cooperative methods exhibit
slow learning compared to LOMAQ, due to the use of global
rewards. Additionally, while IQL-local does learn quickly

(a) Particles in purple, landmarks
in red, regions in gray

(b) Interaction graph based on
region overlap

Figure 4: The Bounded-Cooperative-Navigation environ-
ment with 16 agents and circular regions.

(primarily due to the use of local rewards), it converged to a
sub-optimal solution. This occurs as IQL acts greedily w.r.t
its local rewards. In contrast, LOMAQ incentivizes cooper-
ation, enabling both fast convergence as well as improved
performance.

Reward Decomposition We visualize multiple reward de-
compositions for Bounded-Cooperative-Navigation. We run
our decomposition method with a global reward signal, for
n = 2 agents and a single landmark. If both agents are on the
landmark at the same time, the global reward remains 1. We
plot the learned reward functions as a function of Agent 1
and Agent 2’s distance from the landmark, which we denote
by ∆x. These results are depicted in Figure 6.

The first row in Figure 6 assumes a decomposition ac-
cording to Assumption 1. Assumption 1 does not hold for
this setup, since the reward function is dependent on both
agents when they share a landmark. The approximated re-
ward is overly optimistic and wrongly rewards +2 when the
landmark is shared. The second row approximates a decom-
position that allows |I| ≤ 2 with no regularization λ = 0.
In this case, the global reward is approximated correctly, and
the local reward functions rφ{i} = 0. The third row visualizes
a decomposition with regularization w(|I| = 2) = 1, λ =

0.0001. In this case, the local reward functions rφ{i} convey

information for each agent i, and rφ{1,2} conveys information
regarding their joint dynamic.

6 Related Work
Graph Based MARL. The underlying structure of the
team of agents in the environment can often be modeled
using a graph topology. Jiang et al. (2019) propose DGN
- a MARL algorithm based on the graph convolutional net-
work (GCN) architecture which assumes centralized execu-
tion and homogeneous agents. Naderializadeh et al. (2020)
propose GraphMIX for CTDE, that uses global rewards for
learning. Qu et al. (2020) propose Scalable Actor-Critic -
An Actor-Critic approach for the discrete space case which
utilizes a dependency graph with theoretical guarantees.
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Figure 5: Test returns for the Coupled-Multi-Cart-Pole environment and for the Bounded-Cooperative-Navigation environment.

Figure 6: Visualization of learned reward functions rφI
for different decompositions in Bounded-Cooperative-
Navigation for n = 2 agents and a single landmark. We plot
the learned reward functions as a function of Agent 1 and
Agent 2’s distance from the landmark, denoted by ∆x. The
first row assumes |I| ≤ 1, the second row assumes |I| ≤ 2
with no regularization, and the third row adds regularization.

Cooperative MARL. Our approach enhances the popular
value decomposition family (Son et al. 2019; Wang et al.
2020; Rashid et al. 2020), which consider a cooperative
multi-agent problem in which each agent observes its own
state and action history. Sunehag et al. (2018) propose VDN
for decomposing the value function into a sum of utility
functions. Rashid et al. (2018) offer Q-mix which general-
izes this concept, by decomposing the value function into
a monotonic function of individual utility functions. All of
these approaches implicitly measure the impact of every
agent on the observed global reward, whereas we propose
to combine this line of work with an explicit approach for
credit assignment using local rewards.

Credit Assignment. Various approaches have attempted
to tackle the credit assignment problem. A common ap-
proach for credit assignment is by estimating the individual
Q functions Qi directly, which are often substantially sim-
pler and significantly easier to learn than Q (Qu et al. 2020;
Kok and Vlassis 2004; Russell and Zimdars 2003; van Sei-
jen et al. 2017; Juozapaitis et al. 2019). Our work extends
this line of work for value-based CTDE, and focuses on re-

ward decompositions that expedite learning alongside global
cooperation.

Reward Decomposition. Multiple works recognize the
benefits of local rewards and attempt to learn them in
settings where only a global reward signal is provided.
RD2 (Lin et al. 2020) learns a reward decomposition with
minimally-dependent features for factored-state MDP set-
ting. Our method can be seen as an extension of RD2 for
MARL, where the action is also factored.

Large Action Spaces. Finally, our work is related to work
on large and combinatorial action spaces. From action elim-
ination (Zahavy et al. 2018), to action embeddings (Tennen-
holtz and Mannor 2019; Chandak et al. 2019), through ac-
tion redundancy (Baram, Tennenholtz, and Mannor 2021),
our work can be viewed as an additional method for reduc-
ing the effective dimensionality of the problem.

7 Conclusion and Future Work
In this work we tackled the credit assignment problem of co-
operative MARL through local, partition based value func-
tions. We used the QSM condition and a monotonic decom-
position of utilities to construct a value-based approach, ef-
fectively reducing the problem to simpler ones. We showed
that local rewards are highly beneficial, both when pro-
vided as well as learned implicitly from a global reward.
These greatly improved overall performance and conver-
gence speed, suggesting that local structures can be effi-
ciently used to improve MARL algorithms.

In this work we have assumed that an underlying, static
dependency graph G is provided during training. In many
cases, these assumptions are limiting. We look to further
generalize our method by learning such dynamic dependen-
cies between agents through interaction with the environ-
ment. In addition, our work has assumed thatAssumption 2
holds for some partition P and local reward decomposition
{ri}. We look to generalize our algorithm to automatically
identify effective decompositions.
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