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Abstract
How much credit (or blame) should an action taken in a
state get for a future reward? This is the fundamental tem-
poral credit assignment problem in Reinforcement Learning
(RL). One of the earliest and still most widely used heuristics
is to assign this credit based on a scalar coefficient, lambda
(treated as a hyperparameter), raised to the power of the time
interval between the state-action and the reward. In this em-
pirical paper, we explore heuristics based on more general
pairwise weightings that are functions of the state in which
the action was taken, the state at the time of the reward, as
well as the time interval between the two. Of course it isn’t
clear what these pairwise weight functions should be, and
because they are too complex to be treated as hyperparam-
eters we develop a metagradient procedure for learning these
weight functions during the usual RL training of a policy.
Our empirical work shows that it is often possible to learn
these pairwise weight functions during learning of the policy
to achieve better performance than competing approaches.

1 Introduction
The following umbrella problem (Osband et al. 2019) illus-
trates a fundamental challenge in most reinforcement learn-
ing (RL) problems, namely the temporal credit assignment
(TCA) problem. An RL agent takes an umbrella at the start
of a cloudy morning and experiences a long day at work
filled with various rewards uninfluenced by the umbrella,
before needing the umbrella in the rain on the way home.
The agent must learn to credit the take-umbrella action in
the cloudy-morning state with the very delayed reward at
the end of the day, while also learning to not credit the ac-
tion with the many intervening rewards, despite their occur-
ring much closer in time. More generally, the TCA prob-
lem is how much credit or blame should an action taken
in a state get for a future reward. One of the earliest and
still most widely used heuristics for TCA comes from the
celebrated TD(λ) (Sutton 1988) family of algorithms, and
assigns credit based on a scalar coefficient λ raised to the
power of the time interval between the state-action and the
reward. Note that this is a recency and frequency heuristic,
in that it assigns credit based on how recently and how fre-
quently a state-action pair has occurred prior to the reward.
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It is important, however, to also note that this heuristic has
not in any way shown to be the “optimal” way for TCA. In
particular, in the umbrella problem the action of taking the
umbrella on a cloudy morning will be assigned credit for
the rewards achieved during the workday early on in learn-
ing and it is only after a lot of learning that this effect will
diminish. Nevertheless, the recency and frequency heuristic
has been adopted in most modern RL algorithms because it
is so simple to implement, with just one hyperparameter, and
because it has been shown to allow for asymptotic conver-
gence to the true value function under certain circumstances.

In this empirical paper, we present two new families of
algorithms for addressing TCA: one that generalises TD(λ)
and a second that generalises a Monte-Carlo algorithm.
Specifically, our generalisation introduces pairwise weight-
ings that are functions of the state in which the action was
taken, the state at the time of the reward, and the time in-
terval between the two. Of course, it isn’t clear what this
pairwise weight function should be, and it is too complex to
be treated as a hyperparameter (in contrast to the scalar λ
in TD(λ)). We develop a metagradient approach to learning
the pairwise weight function at the same time as learning the
policy of the agent. Like other metagradient algorithms, our
algorithm has two loops: an outer loop that periodically up-
dates the pairwise weight function in order to optimize the
usual RL loss (policy gradient loss in our case) and an in-
ner loop where the policy parameters are updated using the
pairwise weight function set by the outer loop.

Our main contribution in this paper is a family of algo-
rithms that contains within it the theoretically well under-
stood TD(λ) and Monte-Carlo algorithms. We show that the
additional flexibility of our algorithms can yield benefit ana-
lytically in a simple illustrative example intended to build in-
tuition and then empirically in more challenging TCA prob-
lems. A second contribution is the metagradient algorithm
to learn such the pairwise-weighting function that param-
eterises our family of algorithms. Our empirical work is
geared towards answering two questions: (1) Are the pro-
posed pairwise weight functions able to outperform the best
choice of λ and other baselines? (2) Is our metagradient
algorithm able to learn the pairwise weight functions fast
enough to be worth the extra complexity they introduce?
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2 Related Work
Several heuristic methods have been proposed to address
the long-term credit assignment problem in RL. RUD-
DER (Arjona-Medina et al. 2019) trains a LSTM (Hochre-
iter and Schmidhuber 1997) to predict the return of an
episode given the entire state and action sequence and
then conducts contribution analysis with the LSTM to re-
distribute rewards to state-action pairs. Synthetic Returns
(SR) (Raposo et al. 2021) directly learns the association be-
tween past events and future rewards and use it as a proxy for
credit assignment. Different from the predictive approach of
RUDDER and SR, Temporal Value Transport (TVT) (Hung
et al. 2019) augments the agent with an external memory
module and utilizes the memory retrieval as a proxy for
transporting future value back to related state-action pairs.
We compare against TVT by using their published code, and
we take inspiration from the core reward-redistribution idea
from RUDDER and implement it within our policy gradient
agent as a comparison baseline (because the available RUD-
DER code is not directly applicable). We do not compare to
SR because their source code is not available.

We also compare against two other algorithms that are
more closely related to ours in their use of metagradients. Xu
et al. (Xu, van Hasselt, and Silver 2018) adapt λ via meta-
gradients rather than tuning it via hyperparameter search,
thereby improving over the use of a fixed-λ algorithm. The
Return Generating Model (RGM) (Wang, Ye, and Liu 2019)
generalizes the notion of return from exponentially dis-
counted sum of rewards to a more flexibly weighted sum
of rewards where the weights are adapted via metagradients
during policy learning. RGM takes the entire episode as in-
put and generates one weight for each time step. In contrast,
we study pairwise weights as explained below.

Some recent works address counterfactual credit assign-
ment where classic RL algorithms struggle (Harutyunyan
et al. 2019; Mesnard et al. 2020; van Hasselt et al. 2020).
Although they are related to our work in that they also ad-
dress the TCA problem, we do no compare to them because
our work does not focus on the counterfactual aspect.

3 Pairwise Weights for Advantages
At the core of our contribution are new parameterizations of
functions for computing advantages used in policy gradient
methods. Therefore, we briefly review advantages in policy
gradient methods and TD(λ) as our points of departure.

Background on Advantages, Policy Gradient, and
TD(λ). We assume an episodic RL setting. The agent’s
policy πθ, parameterized by θ, maps a state S to a proba-
bility distribution over the actions. Within each episode, at
time step t, the agent observes the current state St, takes an
action At ∼ πθ(·|St), and receives the rewardRt+1. The re-
turn is denoted by Gt =

∑T
k=t+1 γ

k−t−1Rk where γ is the
discount factor and T denotes the length of the episode. The
state-value function V π is defined as

V π(s) = Eπ[Gt|St = s], (1)
and the action-value function Qπ is defined as

Qπ(s, a) = Eπ[Gt|St = s,At = a]. (2)

The notation Eπ[·] denotes the expected value of a random
variable given that the agent follows the policy π. Because
the policy is parameterized by θ, we will use Eπ[·] and Eθ[·]
interchangeably. The advantage function is defined as

Ψπ(s, a) = Qπ(s, a)− V π(s, a). (3)
For brevity, we will omit the superscript π on V , Q, and Ψ.

The performance measure for the policy πθ, denoted by
J(θ), is defined as the expected sum of the rewards when
the agent behaves according to πθ, i.e.,

J(θ) = Eθ[
T∑
t=1

γt−1Rt], (4)

The gradient of J(θ) w.r.t the policy parameters θ is (Sutton
et al. 2000; Williams 1992)

∇θJ(θ) = Eθ
[(
Gt − b(St)

)
∇θ log πθ(At|St)

]
, (5)

where b(St) is a baseline function for variance reduction. If
we choose the state-value function V as the baseline func-
tion, then Eq. 5 can be rewritten as (Schulman et al. 2015)

∇θJ(θ) = Eθ
[
Ψ(St, At)∇θ log πθ(At|St)

]
. (6)

Since the true state-value function V is usually unknown,
an approximation v is used in place of V , which leads to a
Monte-Carlo (MC) estimation of Ψ:

Ψ̂MC
t = Gt − v(St). (7)

However, Ψ̂MC usually suffers from high variance. To reduce
variance, the approximated state-value function v is used to
estimate the return as in the TD(λ) algorithm using the eli-
gibility trace parameter λ; specifically the new form of the
return, called λ-return is a weighted sum of n-step truncated
corrected returns where the correction uses the estimated
value function after n-steps. The corresponding λ-estimator
is (see (Schulman et al. 2015) for a full derivation)

Ψ̂
(λ)
t =

T∑
k=t+1

(γλ)k−t−1δk, (8)

where δt = Rt + γv(St) − v(St−1) is the TD-error at time
t. As a special case, when λ = 1, it recovers the MC estima-
tor (Schulman et al. 2015). As noted above, the value for λ
is usually manually tuned as a hyperparameter. Adjusting λ
provides a way to tradeoff bias and variance in Ψ̂(λ) (this is
absent in Ψ̂MC). Below we present two new estimators that
are analogous in this regard to Ψ̂(λ) and Ψ̂MC.

Proposed Heuristic 1: Advantages via Pairwise Weighted
Sum of TD-errors. Our first new estimator, denoted
PWTD for Pairwise Weighted TD-error, is a strict gener-
alization of the λ-estimator above and is defined as follows:

Ψ̂PWTD
η,t =

T∑
k=t+1

fη(St, Sk, k − t)δk, (9)

where fη(St, Sk, k − t) ∈ [0, 1], parameterized by η, is the
scalar weight given to the TD-error δk as a function of the
state to which credit is being assigned, the state at which the
TD-error is obtained, and the time interval between the two.
Note that if we choose f(St, Sk, k − t) = (γλ)k−t−1, it
recovers the usual λ-estimator Ψ̂(λ).
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Figure 1: A simple illustrative MDP. The initial action deter-
mines the final reward but does not impact the intermediate
rewards. The consequence of the initial action is delayed.

Proposed Heuristic 2: Advantages via Pairwise Weighted
Sum of Rewards. Instead of generalizing from the λ-
estimator, we can also generalize from the MC estimator via
pairwise weighting. Specifically, the new pairwise-weighted
return is defined as

GPWR
η,t =

T∑
k=t+1

fη(St, Sk, k − t)Rk, (10)

where fη(St, Sk, k − t) ∈ [0, 1] is the scalar weight given
to the reward Rk. The corresponding advantage estimator,
denoted PWR for Pairwise Weighted Reward, then is:

Ψ̂PWR
η,t = GPWR

η,t − vPWR(St), (11)

where V PWR(s) = Eθ[GPWR
η,t |St = s] and vPWR is an approx-

imation of V PWR. Note that if we choose f(St, Sk, k− t) =

γk−t−1, we can recover the MC estimator Ψ̂MC.
The benefit of the additional flexibility provided by these

new estimators highly depends on the choice of the pairwise
weight function f . As we will demonstrate in the simple ex-
ample below, the new estimators can yield lower variance
and benefit policy learning if the function f captures the
underlying credit assignment structure of the problem. On
the other hand, the new estimators may not even be well-
defined in the infinite-horizon setting if the pairwise weight
function is chosen wrongly because the weighted sum of
TD-errors/rewards could be unbounded. Designing a good
pairwise weight function by hand is challenging because it
requires both domain knowledge to capture the credit as-
signment structure and careful tuning to avoid harmful con-
sequences. Thus we propose a metagradient algorithm to
learn the pairwise weight function such that it benefits pol-
icy learning, as detailed in § 4.

An Illustrative Analysis of the Benefit of the PWR Esti-
mator. Consider the simple-MDP version of the umbrella
problem in Figure 1. Each episode starts at the leftmost state,
s0, and consists of T transitions. The only choice of action
is at s0 and it determines the reward on the last transition.
A noisy reward ε is sampled for each intermediate transition
independently from a distribution with mean µ and variance
σ2 > 0. These intermediate rewards are independent of the
initial action. We consider the undiscounted setting in this
example. The expected return for state s0 under policy π is

V (s0) = Eπ[G0] = (T − 1)µ+ Eπ[RT ].

For any initial action a0, the advantage is

Ψ(s0, a0) = Eπ[G0|a0]− V (s0) = Eπ[RT |a0]− Eπ[RT ].

Consider pairwise weights for computing Ψ̂PWR(s0, a0) that
place weight only on the final transition, and zero weight
on the noisy intermediate rewards, capturing the notion that
the intermediate rewards are not influenced by the initial ac-
tion choice. More specifically, we choose f such that for any
episode, w0T = 1 and wij = 0 for other i and j. The short-
hand wij denotes f(Si, Sj , j − i) for brevity. The expected
parameterized reward sum for the initial state s0 is

V PWR(s0) = Eπ[Gη,0] = Eπ[
T∑
i=t

w0tRt] = Eπ[RT ].

If vPWR is correct, for any initial action a0, the pairwise-
weighted advantage is the same as the regular advantage:

Eπ[Ψ̂PWR
η (s0, a0)] = Eπ[Gη,0 − vPWR(s0)|a0]

= Eπ[
T∑
t=1

w0tRt]− V PWR(s0)

= E[RT |a0]− Eπ[RT ] = Ψ(s0, a0).

As for variance, for any initial action a0, [Gη,0|a0] is deter-
ministic because of the zero weight on all the intermediate
rewards and thus Ψ̂PWR

η (s0, a0) has zero variance. The vari-
ance of Ψ̂MC(s0, a0) on the other hand is (T − 1)σ2 > 0.
Thus, in this illustrative example Ψ̂PWR yields an unbiased
advantage estimator with far lower variance than Ψ̂MC.

Our example exploited knowledge of the domain to set
weights that would yield an unbiased advantage estimator
with reduced variance, thereby providing some intuition on
how a more flexible return might in principle yield benefits
for learning. Of course, in general RL problems will have
the umbrella problem in them to varying degrees. But how
can these weights be set by the agent itself, without prior
knowledge of the domain? We turn to this question next.

4 A Metagradient Algorithm for Adapting
Pairwise Weights

Recently metagradient methods have been developed to
learn various kinds of parameters that would otherwise be
set by hand or by manual hyperparameter search; these in-
clude discount factors (Xu, van Hasselt, and Silver 2018; Za-
havy et al. 2020), intrinsic rewards (Zheng, Oh, and Singh
2018; Rajendran et al. 2019; Zheng et al. 2020), auxiliary
tasks (Veeriah et al. 2019), constructing general return func-
tions (Wang, Ye, and Liu 2019), and discovering new RL
objectives (Oh et al. 2020; Xu et al. 2020). We use the meta-
gradient algorithm from (Xu, van Hasselt, and Silver 2018)
for training the pairwise weights. The algorithm consists of
an outer loop learner for the pairwise weight function, which
is driven by a conventional policy gradient loss and an inner
loop learner driven by a policy-gradient loss based on the
new pairwise-weighted advantages. An overview of the al-
gorithm is in the appendix. For brevity, we use Ψ̂η to denote
Ψ̂PWTD
η or Ψ̂PWR

η unless it causes ambiguity.

Learning in the Inner Loop. In the inner loop, the
pairwise-weighted advantage Ψ̂η is used to compute the pol-
icy gradient. We rewrite the gradient update from Eq. 5 with
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the new advantage as

∇θJη(θ) = Eτ∼πθ
[
T−1∑
t=0

Ψ̂η,t∇θ log πθ(At|St)], (12)

where τ is a trajectory sampled by executing πθ. The overall
update to θ is

∇θJ inner(θ) = ∇θJη(θ) + βH∇θH(πθ), (13)

where H(θ) is the usual entropy regularization term (Mnih
et al. 2016) and βH is a mixing coefficient. We apply gradi-
ent ascent to update the policy parameters and the updated
parameters are denoted by θ′.

Computing Ψ̂PWR
η with Equation 11 requires a value func-

tion predicting the expected pairwise-weighted sums of re-
wards. We train the value function, vψ with parameters ψ,
along with the policy by minimizing the mean squared error
between its output vψ(St) and the pairwise-weighted sum of
rewards Gη,t. The objective for training vψ is

Jvη (ψ) = Eτ∼πθ
[
T−1∑
t=0

(Gη,t − vψ(St))
2]. (14)

Note that Ψ̂PWTD
η does not need this extra value function.

Updating η via Metagradient in the Outer Loop. To up-
date η, the parameters of the pairwise weight functions, we
need to compute the gradient of the usual policy loss w.r.t. η
through the effect of η on the inner loop’s updates to θ.

∇ηJouter(η) = ∇θ′J(θ′)∇ηθ′. (15)

where,

∇θ′J(θ′) = Eτ ′∼πθ′ [
T−1∑
i=0

Ψt∇θ′ log πθ′(At|St)], (16)

τ ′ is another trajectory sampled by executing the updated
policy πθ′ and Ψt is the regular advantage.

Note that we need two trajectories, τ and τ ′, to make one
update to the meta-parameters η. The policy parameters θ
are updated after collecting trajectory τ . The next trajec-
tory τ ′ is collected using the updated parameters θ′. The
η-parameters are updated on τ ′. In order to make more effi-
cient use of the data, we follow (Xu, van Hasselt, and Silver
2018) and reuse the second trajectory τ ′ in the next iteration
as the trajectory for updating θ. In practice we use modern
auto-differentiation tools to compute Equation 15 without
applying the chain rule explicitly. Computing the regular ad-
vantage requires a value function for the regular return. This
value function is parameterized by φ and updated to mini-
mize the squared loss analogously to vφ.

5 Experiments
We present three sets of experiments. The first set (§5.1)
uses simple tabular MDPs that allow visualization of the
pairwise weights learned by Meta-PWTD and -PWR. The
results show that the metagradient adaptation both increases
and decreases weights in a way that can be interpreted as re-
flecting explicit credit assignment and variance reduction. In
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Figure 2: (Left) Depth 8 DAG environment with choice
of two actions at each state and rewards along transitions.
(Right) Learning performance of regular return, handcrafted
weights, and fixed meta-learned weights. Results are aver-
aged over 5 independent runs. Low is good.

the second set (§5.2) we test Meta-PWTD and -PWR with
neural networks in the benchmark credit assignment task
Key-to-Door (Hung et al. 2019). We show that Meta-PWTD
and -PWR outperform several existing methods for directly
addressing credit assignment, as well as TD(λ) methods, and
show again that the learned weights reflect domain struc-
ture in a sensible way. In the third set (§5.3), we evalu-
ate Meta-PWTD and -PWR in two benchmark RL domains,
bsuite (Osband et al. 2019) and Atari, and show that our
methods do not hinder learning when environments do not
pose idealized long-term credit assignment challenges.

5.1 Learned Pairwise Weights in A Simple MDP
Consider the environment represented as a DAG in Figure 2
(left). In each state in the left part of the DAG (states 0–
14, the first phase), the agent chooses one of two actions
but receives no reward. In the remaining states (states 15–
44, the second phase) the agent has only one action avail-
able and it receives a reward of +1 or −1 at each transition.
Crucially, the rewards the agent obtains in the second phase
are a consequence of the action choices in the first phase
because they determine which states are encountered in the
second phase. There is an interesting credit assignment prob-
lem with a nested structure; for example, the action chosen
at state 1 determines the reward received later upon transi-
tion into state 44. We refer to this environment as the Depth
8 DAG and also report results below for depths 4 and 16.

In the DAG environments we use a tabular policy, value
function, and meta-parameter representations. The param-
eters θ, ψ, φ, and η represent the policy, baseline for the
weighted return, baseline for the regular return, and meta-
parameters respectively. The η parameters are a |S| × |S|
matrix. The entry on the ith row and the jth column defines
the pairwise weight for computing the contribution of re-
ward at state j to the return at state i. A sigmoid is used
to bound the weights to [0, 1], and the η parameters are ini-
tialized so that the pairwise weights are close to 0.5. Note
that even in a tabular domain such as the DAG, setting the
credit assignment weights by random search would be in-
feasible due to the number of possible weight combinations.
This problem is exacerbated by larger domains discussed in
the following sections. For this reason, the metagradient al-
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Figure 3: Inner loop-reset weight visualization: Top: Hand-
crafted pairwise weights for Depth 8 DAG; rows and
columns correspond to states in Fig. 2. Middle: Meta-
learned weights for Depth 8 DAG for Meta-PWR and Bot-
tom: Meta-PWTD.

gorithm is a promising candidate for setting the weights.

Visualizing the Learned Weights via Inner-loop Reset.
To clearly see the most effective weights that metagradient
learned for a random policy, we repeatedly reset the policy
parameters to a random initialization while continuing to
train the meta-parameters until convergence. More specifi-
cally: the meta-parameters η are trained repeatedly by ran-
domly initializing θ, ψ, and φ and running the inner loop
for 16 updates for each outer loop update. Following exist-
ing work in metagradient (Veeriah et al. 2019; Zheng et al.
2020), the outer loop objective is evaluated on all 16 trajec-
tories sampled with the updated policies. The gradient of the
outer loop objective on the ith trajectory with respect to η is
backpropagated through all of the preceding updates to θ.
Hyperparameters are provided in the appendix.

What pairwise weights would accelerate learning in this
domain? Figure 2 (top) visualizes a set of handcrafted
weights for Ψ̂PWR in the Depth 8 DAG; each row in the
grid represents the state in which an action advantage is esti-
mated, and each column the state in which a future reward is
experienced. For each state pair (si, sj) the weight is 1 (yel-
low) only if the reward at sj depends on the action choice at
si, else it is zero (dark purple; the white pairs are unreach-
able). Figure 2 (middle) shows the corresponding weights
learned by Meta-PWR. Importantly, the learned pairwise
weights have been increased for those state pairs in which
the handcrafted weights are 1 and have been decreased for
those state pairs in which the handcrafted weights are 0. As
in the analysis of the simple domain in §3, these weights will
result in lower variance advantage estimates.

The same reset-training procedure was applied to ΨPWTD.

Figure 4: (Top) The three phases in KtD. The blue circle de-
notes the agent. (Bottom left) Visualization of Handcrafted
weights in the KtD experiment. (Bottom right) Weights
learned by Meta-PWR in the µ = 5, σ = 5 configuration.

Figure 2 (bottom) visualizes the resulting weights. Since the
TD-errors depend on the value function which are nonsta-
tionary during agent learning, we expect different weights to
emerge at different points in training; the presented weights
are but one snapshot. But a clear contrast to reward weight-
ing can be seen: high weights are placed on transitions in the
first phase of the DAG, which yield no rewards—because
the TD-errors at these transitions do provide signal once the
value function begins to be learned. In the appendix, we ex-
plicitly probe the adaptation of ΨPWTD to different points
in learning by modifying the value function in reset exper-
iments, and show that the weights indeed adapt sensibly to
differences in the accuracy of the value function.

Evaluation of the Learned Pairwise Weights. After the
θ-reset training of the pairwise-weights completed, we used
them to train a new set of θ parameters, fixing the pair-
wise weights during learning. Figure 2 (right) shows the
number of episodes to reach 95% of the maximum score in
each DAG, for policies trained with regular returns, hand-
crafted weights (H-PWR), and meta-learned weights. Using
the meta-learned weights learned as fast as (indeed faster
than) using the handcrafted weights, and both were faster
than the regular returns, with the gap increasing for larger
DAG-depth. We conjecture that the learned weights per-
formed even better than the handcrafted weights because the
learned weights adapted to the dynamics of the inner-loop
policy learning procedure whereas the handcrafted weights
did not. Learning curves in the appendix show that all
method achieved the optimal performance in the end.

5.2 The Key-to-Door Experiments
We evaluated Meta-PWTD and -PWR the Key-to-Door
(KtD) environment (Hung et al. 2019) that is an elabo-
rate umbrella problem that was designed to show-off the
TVT algorithm’s ability to solve TCA. We varied proper-
ties of the domain to vary the credit assignment challenge.
We compared the learning performance of our algorithms
to a version of Ψ̂PWR that uses fixed handcrafted pairwise
weights and no metagradient adaptation, as well as to the
following five baselines (see related work in §2): (a) best
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fixed-λ: Actor-Critic (A2C) (Mnih et al. 2016) with a best
fixed λ found via hyperparameter search; (b) TVT (Hung
et al. 2019) (using the code accompanying the paper); (c)
A2C-RR: a reward redistribution method inspired by RUD-
DER (Arjona-Medina et al. 2019); (d) Meta-λ(s) (Xu, van
Hasselt, and Silver 2018): meta-learning a state-dependent
function λ(s) for λ-returns; and (e) RGM (Wang, Ye, and
Liu 2019): meta-learning a single set of weights for generat-
ing returns as a linear combination of rewards.

Environment and Parametric Variation. KtD is a fixed-
horizon episodic task where each episode consists of three
phases (Figure 4 top). In the Key phase (15 steps in dura-
tion) there is no reward and the agent must navigate to the
key to collect it. In the Apple phase (90 steps in duration) the
agent collects apples; apples disappear once collected. Each
apple yields a noisy reward with mean µ and variance σ2.
In the Door phase (15 steps in duration) the agent starts at
the center of a room with a door but can open the door only
if it has collected the key earlier. Opening the door yields
a reward of 10. Crucially, picking up the key or not has no
bearing on the ability to collect apple rewards. The apples
are the noisy rewards that distract the agent from learning
that picking up the key early on leads to a door-reward later.
In our experiments, we evaluate methods on 9 different en-
vironments representing combinations of 3 levels of apple
reward mean and 3 levels of apple reward variance.

Implementation. The agent observes the top-down view
of the current phase rendered in RGB and a binary variable
indicating if the agent collected the key or not. The policy
(θ) and the value functions (ψ and φ) are implemented by
separate convolutional neural networks. The meta-network
(η) computes the pairwise weight wij as follows: First, it
embeds the observations si and sj and the time difference
(j−i) into separate latent vectors. Then it takes the element-
wise product of these three vectors to fuse them into a vector
hij . Finally it maps hij to a scalar output that is bounded
to [0, 1] by sigmoid. We tuned hyperparameters for each
method on the mid-level configuration 〈µ = 5, σ = 25〉 and
kept them fixed for the other 8 configurations. Each method
has a distinct set of parameters (e.g. outer-loop learning
rates, λ). We referred to the original papers for the parameter
ranges searched over. More details are in the appendix.

Empirical Results. Figure 5 presents learning curves for
Meta-PWTD, Meta-PWR, and baselines in three KtD con-
figurations (the remaining configurations are in the ap-
pendix). Learning curves are shown separately for the total
episode return and the door phase reward, the latter a mea-
sure of success at the long-term credit assignment. Not unex-
pectedly, H-PWR which uses handcrafted pairwise weights
performs the best. The gap in performance between H-PWR
and the best fixed-λ shows that this domain provides a credit
assignment challenge that the pairwise-weighted advantage
estimate can help with. The TVT and A2C-RR methods used
a low discount factor and so relied solely on their heuristics
for learning to pick up the key, but neither appears to en-
able fast learning in this domain. In the door phase, Meta-
PWR is generally the fastest learner after H-PWR. Meta-
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Figure 5: Learning curves for the KtD domain. Each column
corresponds to a different configuration. The x-axis denotes
the number of frames. The y-axis denotes the episode return
in top row and the door phase reward in bottom row. The
solid curves show the average over 10 independent runs and
the shaded area shows the standard errors.

PWTD, though slower, achieves optimal performance. Al-
though RGM performs third best in the door phase, it does
not perform well overall, suggesting that the inflexibility of
its single set of reward weights (vs. pairwise of Meta-PWR)
forces a trade off between short and long-term credit as-
signment. In summary, Meta-PWR outperforms all the other
methods and Meta-PWTD is comparable to the baselines.

Figure 4 presents a visualization of the handcrafted
weights for H-PWR (bottom left) and weights learned by
Meta-PWR (bottom right). In each heatmap, the element on
the i-th row and the j-th column denotes wij , the pairwise
weight for computing the contribution of the reward upon
transition to the j-th state to the return at the i-th state in the
episode. In the heatmap of the handcrafted weights, the top-
right area has non-zero weights because the rewards in the
door phase depend on the actions selected in the key phase.
The weights in the remaining part of the top rows are zero
because those rewards do not depend on the the actions in the
key phase. For the same reason, the weights in the middle-
right area are zero as well. The weights in the rest of the area
resemble the exponentially discounted weights with a dis-
count factor of 0.92. This steep discounting helps fast learn-
ing of collecting apples. The learned weights largely resem-
ble the handcrafted weights, which indicate that the meta-
gradient procedure was able to simultaneously learn (1) the
important rewards for the key phase are in the door phase,
and (2) a quick-discounting set of weights within the apple
phase that allows faster learning of collecting apples.

5.3 Experiments on Standard RL Benchmarks
Both the DAG and KtD domains are idealized credit as-
signment problems. However, in domains outside this ide-
alized class, Meta-PWTD and -PWR may learn slower than

9230



Catch Catch Noise Catch Scale Umbr. Length Umbr. Distract Cartpole Discount Chain
A2C 5975 42221 56800 38050 37524 76874 3554
A2C-RR 5950 42295 57033 38083 37433 71506 3548
RGM 7849 48268 54421 40397 40159 119102 2444
Meta-PWTD 6096 41106 48199 37973 37226 65945 1040
Meta-PWR 5967 43076 49361 38168 36554 61752 161

Table 1: Total regret on selected bsuite domains (low is good).

baseline methods due to the additional complexity they in-
troduce. To evaluate this possibility we compared them to
baseline methods on bsuite (Osband et al. 2019) and
Atari (Bellemare et al. 2013), both standard RL benchmarks.
For these experiments, we did not compare to Meta-λ(s) be-
cause it performed similarly to the fixed-λ baseline in pre-
vious experiments as noted in the original paper (Xu, van
Hasselt, and Silver 2018).

bsuite is a set of unit-tests for RL agents: each domain
tests one or more specific RL-challenges, such as explo-
ration, memory, and credit assignment, and each contains
several versions varying in difficulty. We selected all do-
mains that are tagged by “credit assignment” and at least
one other challenge. These domains are not designed solely
as idealized credit assignment problems. We ran all meth-
ods for 100K episodes in each domain except Cartpole,
which we ran for 50K episodes. Each run was repeated 3
times with different random seeds. Table 1 shows the total
regret. Overall Meta-PWTD or -PWR achieved the lowest
total regret in all domains except for Catch. It shows that
Meta-PWTD and -PWR perform better than or comparably
to the baseline methods even in domains without the ideal-
ized umbrella-like TCA structure.

To test scalability to high-dimensional environments, we
conducted experiments on Atari. Atari games often have
long episodes of more than 1000 steps thus episode trunca-
tion is required. However, the returns in RGM and Meta-
PWR are not in a recursive additive form thus the com-
mon way of correcting truncated trajectories by bootstrap-
ping from the value function is not applicable. TVT also re-
quires full episodes for value transportation. Therefore, we
excluded RGM, TVT, and Meta-PWR and only ran Meta-
PWTD, A2C-RR and A2C. For each method we conducted
hyperparameter search on a subset of 6 games and ran each
method on 49 games with the fixed set of hyperparameters;
see appendix for details. An important hyperparameter for
the A2C baseline is λ, which was set to 0.95.

Figure 6 (inset) shows the median human-normalized
score during training. Meta-PWTD performed slightly better
than A2C over the entire period, and both performed better
than A2C-RR Figure 6 shows the relative performance of
Meta-PWTD over A2C. Meta-PWTD outperforms A2C in
30 games, underperforms in 14, and ties in 5. These results
show that Meta-PWTD can scale to high-dimensional envi-
ronments like Atari. We conjecture that Meta-PWTD pro-
vides a benefit in games with embedded umbrella problems
but this is hard to verify directly.
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Figure 6: Relative performance of Meta-PWTD over A2C
(λ = 0.95). All scores are averaged over 5 independent runs
with different random seeds. Inset: Learning curves of me-
dian human normalized score of all 49 Atari games. Shaded
area shows the standard error over 5 runs.

6 Conclusion
We presented two new advantage estimators with pairwise
weight functions as parameters to be used in policy gradi-
ent algorithms, and a metagradient algorithm for learning
the pairwise weight functions. Simple analysis and empirical
work confirmed that the additional flexibility in our advan-
tage estimators can be useful in domains with delayed con-
sequences of actions, e.g., in umbrella-like problems. Em-
pirical work also confirmed that the metagradient algorithm
can learn the pairwise weights fast enough to be useful for
policy learning, even in large-scale environments like Atari.
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