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Abstract

Missing value imputation is crucial for real-world data sci-
ence workflows. Imputation is harder in the online setting, as
it requires the imputation method itself to be able to evolve
over time. For practical applications, imputation algorithms
should produce imputations that match the true data distribu-
tion, handle data of mixed types, including ordinal, boolean,
and continuous variables, and scale to large datasets. In this
work we develop a new online imputation algorithm for
mixed data using the Gaussian copula. The online Gaussian
copula model meets all the desiderata: its imputations match
the data distribution even for mixed data, improve over its of-
fline counterpart on the accuracy when the streaming data has
a changing distribution, and on the speed (up to an order of
magnitude) especially on large scale datasets. By fitting the
copula model to online data, we also provide a new method
to detect change points in the multivariate dependence struc-
ture with missing values. Experimental results on synthetic
and real world data validate the performance of the proposed
methods.

Introduction
Many modern datasets contain missing values; yet many
machine learning algorithms require complete data. Hence
missing value imputation is an important preprocessing step.
The progress in low rank matrix completion (LRMC) (Can-
des and Plan 2010; Recht, Fazel, and Parrilo 2010) has led
to widespread use in diverse applications (Bell and Koren
2007; Yang et al. 2019). LRMC succeeds when the data ma-
trix can be well approximated by a low rank matrix. While
this assumption is often reasonable for sufficiently large data
matrices (Udell and Townsend 2019), it usually fails when
one dimension of the data matrix is much larger than the
other. We refer to such matrices as long skinny datasets, or
high rank matrices.When a long skinny dataset has mixed
type, consisting of a combination of ordinal, binary, and
continuous (or real-valued) variables, the imputation chal-
lenge is even greater, and successful methods must account
for the different distribution of each column. For example,
survey dataset may contain millions of respondents but only
dozens of questions. The questions may include both real-
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valued responses such as age and weight, and ordinal re-
sponses on a Likert scale measuring how strongly a respon-
dent agrees with certain stated opinions. A Gaussian copula
imputation model, which adapts to the distribution of values
in each column, has recently shown state-of-the-art perfor-
mance on a variety of long skinny mixed datasets (Zhao and
Udell 2020b). Our work builds on the success of this model,
which we describe in greater detail below.

Missing values also appear in online data, generated by
sensor networks, or ongoing surveys, as sensors fail or sur-
vey respondents fail to respond. In this setting, online (im-
mediate) imputation for new data points is important to fa-
cilitate online decision-making processes. However, most
missing value imputation methods, including missForest
(Stekhoven and Bühlmann 2012) and MICE (Buuren and
Groothuis-Oudshoorn 2010), cannot easily update model
parameters with new observation in the online setting. Re-
applying offline methods after seeing every new observation
consumes too much time and space. Online methods, which
incrementally update the model parameters every time new
data is observed, enjoy lower space and time costs and can
adapt to changes in the data, and hence are sometimes pre-
ferred even in the offline setting.

Another common interest for online data (or time series)
is change point detection: does the data distribution change
abruptly, and can we pinpoint when the change occurs?
While there are many different types of temporal changes,
we focus on changes in the dependence structure of the data,
a crucial issue for many real world applications. For exam-
ple, classic Markowitz portfolio design uses the dynamic
correlation structure of exchange rates and market indexes
to design a portfolio of assets that balances risk and re-
ward (Markowitz 1991). In practice, the presence of missing
values and mixed data handicaps most conventional change
point detection approaches.

In this paper, we address all these challenges: our on-
line algorithm can impute missing values and detect changes
in the dependency structure of long skinny mixed data, in-
cluding real-valued data and ordinal data as special cases.
Our online imputation method builds on the offline Gaus-
sian copula imputation model (Zhao and Udell 2020b). This
model posits that each data point is generated by drawing a
latent Gaussian vector. This latent Gaussian vector is then
transformed to match the marginal distribution of each ob-
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served variable. Ordinals are assumed to result from thresh-
olding a real-valued latent variable. In the case of, say, prod-
uct ratings data, we can imagine the observed ordinal values
result from thresholding the customer’s (real-valued) affinity
for a given product.

Contribution We make three major contributions: (1) We
propose an online algorithm for missing value imputation
using the Gaussian copula model, which incrementally up-
dates the model and thus can adapt to a changing data dis-
tribution. (2) We develop a mini-batch Gaussian copula fit-
ting algorithm to accelerate the training in the offline set-
ting. Compared to the offline algorithm (Zhao and Udell
2020b), our methods achieve nearly the same imputation
accuracy but being an order of magnitude faster, which al-
lows the Gaussian copula model to scale to larger datasets.
(3) We propose a Monte Carlo test for dependence structure
change detection at any time. The method tracks the mag-
nitude of the copula correlation update and reports a change
point when the magnitude exceeds a threshold. Inheriting the
advantages of the Gaussian copula model, all our proposed
methods naturally handle long skinny mixed data with miss-
ing values, and have no model hyperparameters except for
common online learning rate parameters. This property is
crucial in the online setting, where the best model hyperpa-
rameters may evolve.

Related work The Gaussian copula has been used to im-
pute incomplete mixed data in the offline setting using an
expectation maximization (EM) algorithm (Zhao and Udell
2020b). Here, we develop an online EM algorithm to in-
crementally update the copula correlation matrix, following
(Cappé and Moulines 2009), and an online method to esti-
mates the marginals, so that there is no need to store histori-
cal data except for the previous model estimate.

Existing online imputation methods mostly rely on ma-
trix factorization (MF). Online LRMC methods (Balzano,
Nowak, and Recht 2010; Dhanjal, Gaudel, and Clémençon
2014) assume a low rank data structure. Consequently, they
work poorly for long skinny data. Online KFMC (Fan and
Udell 2019) first maps the data to a high dimensional space
and assumes the mapped data has a low rank structure. It
learns a nonlinear structure and outperforms online LRMC
for long skinny data. However, its performance is sensitive to
a selected rank r, which should be several times larger than
the data dimension p and thus needs to be carefully tuned
in a wide range. As p increases, it also requires increas-
ing r to outperform online LRMC methods; for moderate p,
the O(r3) computation time of online KFMC becomes pro-
hibitive. For all aforementioned MF methods, their underly-
ing continuity assumptions can lead to poor performance on
mixed data. Moreover, the sensitivity to the rank poses a dif-
ficulty in the online setting, as the best rank may vary over
time, and the rank chosen by cross-validation early on can
lead to poor performance or even divergence later.

While recent deep generative imputation methods (Yoon,
Jordon, and Schaar 2018; Mattei and Frellsen 2019) look
like online methods (due to the SGD update), they actually
require lots of data, and are slow to adapt to changes in the
data stream, which are unsatisfying for real-time tasks. Deep

time series imputation methods (Cao et al. 2018; Fortuin
et al. 2020) use the future to impute the past, and thus do
not suit the considered online imputation task.

Change point detection (CPD) is an important topic with
a long history. See Aminikhanghahi and Cook (2017) for
an expansive review. Online CPD seeks to identify change
points in real-time, before seeing all the data. Missing data
is also a key challenge for CPD: most CPD algorithms re-
quire complete data. The simplest fix for this problem, im-
putation followed by a complete-data CPD method, can
hallucinate change points due to the changing missingness
structure or imputation method used. Our proposed method
avoids these difficulties. Another workaround, Bayesian on-
line CPD methods (Adams and MacKay 2007; Fearnhead
and Liu 2007), can fill out the missing entries by sampling
from its posterior distribution given all observed entries.

Methodology
Gaussian copula has two parameters: the transformation
function and the copula correlation matrix. We first review
Gaussian copula imputation with known model parameters.
Online imputation differs from offline imputation only in
how we estimate the model parameters. We assume the miss-
ing mechanism is missing completely at random (MCAR)
throughout the paper, same as in the offline setting (Zhao
and Udell 2020b), but show our method is robust to miss-
ing not at random (MNAR) mechanism empirically in the
supplement. We then show how to estimate the transforma-
tion online and how to estimate the copula correlation online
with a given marginal estimate in the following sections.

Notation Define [p] = {1, . . . , p} for p ∈ N+. We use
capital letters X to denote matrices and lower-case letters x
to denote vectors. For a matrix X, we refer to the i-th row, j-
th column, and (i, j)-th entry as xi,Xj and xij , respectively.
We use columns to represent variables and rows to represent
examples. For a vector x ∈ Rp, we use xI to denote the
subvector of x with entries in subset I ⊂ [p]. For each row
vector xi, we use Oi,Mi ⊂ [p] to denote the observed and
missing locations respectively, and thus xiOi

is observed and
xiMi

is missing. We use φ(·;µ,Σ) for the PDF of a normal
vector with mean µ and covariance matrix Σ.

Gaussian copula imputation We now formally introduce
the Gaussian copula model for mixed data (Hoff et al. 2007;
Fan et al. 2017; Feng and Ning 2019; Zhao and Udell
2020b). We say a random vector x ∈ Rp follows the
Gaussian copula model, x ∼ GC(Σ, f), if x = f(z) :=
(f1(z1), . . . , fp(zp)) with z ∼ N(0,Σ), for correlation ma-
trix Σ ∈ Rp×p and elementwise monotone f : Rp −→ Rp. In
other words, we generate a Gaussian copula random vector x
by first drawing a latent Gaussian vector z with mean 0 and
covariance Σ, and then applying the elementwise monotone
function f to z to produce x. If the cumulative distribution
function (CDF) for xj is given by Fj , then fj is uniquely
determined: fj = F−1

j ◦ Φ where Φ is the standard Gaus-
sian CDF. For ordinal xj , the CDF Fj and thus fj are step
functions, so f−1

j (xj) := {zj : fj(zj) = xj} is an inter-
val. If x ∼ GC(Σ, f) is observed at indices O, we map the
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Figure 1: Gaussian copula imputation for a 5-dim partially observed mixed vector. Curves indicate the marginal probability
density functions (for continuous) or probability mass function (for ordinal). First, compute the set of the latent normal vector
which maps to the observation (x1, x3 and x4) through f−1. Second, compute the conditional mean of the latent normal vector
at missing locations (ẑ2 and ẑ5) given the copula correlation Σ and that z1, z3 and z4 only take values from the computed inverse
set. Lastly, map the conditional mean through f to obtain the imputations x̂2 and x̂5.

conditional mean of zM given observations xO through f to
impute the missing values xM (Zhao and Udell 2020b), as
in Eq. (1) and visualized in Fig. 1.

x̂M = fM(E[zM|xO,Σ, f ])
= fM(ΣM,OΣ−1

O,OE[zO|xO,Σ, f ]). (1)

ΣI,J denotes the submatrix of Σ with rows in I and columns
in J . The expectation E[zO|xO,Σ, f ] is the mean of a nor-
mal vector zO truncated to the region

∏
j∈O f

−1
j (xj), which

can be estimated efficiently. For an incomplete matrix X, we
assume that the rows are iid samples from GC(Σ, f) with
some f and Σ. Each row is imputed separately as described
above with f and Σ replaced by their estimates. We now turn
to the problem of estimating the parameters f and Σ.

Online Marginal Estimation
In the offline setting, we estimate the transformation f based
on the observed empirical distribution (Liu, Lafferty, and
Wasserman 2009; Zhao and Udell 2020b,a): for j ∈ [p], us-
ing observations in Xj , we construct the estimates as:

f̂j = F̂−1
j ◦ Φ, f̂−1

j = Φ−1 ◦ F̂j . (2)

where Fj and F−1
j are the empirical CDF and quantile func-

tion on the observed entries of the j-th variable. In the online
setting, we simply update the observation set as new data
comes in for each column Xj . Specifically, we store a run-
ning window matrix X̃ ∈ Rk×p which records the k most
recent observations for each column, and update X̃ as new
data comes in. The window size is an online learning rate
hyperparameter that should be tuned to improve accuracy.
A longer window works better when the data distribution is

mostly stable but has a few abrupt changes. If the data distri-
bution changes rapidly, a shorter window is needed. Domain
knowledge should also inform the choice of window length.

Online Copula Correlation Estimation
We estimate copula correlation matrix Σ through maximum
likelihood estimation (MLE). The existing offline method
(Zhao and Udell 2020b) applies EM algorithm to find the
Σ that maximizes the likelihood value. The key idea of our
online estimation is to replace each offline EM iteration with
an online EM variant, which incrementally updates the like-
lihood objective as new data comes in. This online approach
does not need to retain all data to perform updates. We first
present the offline likelihood objective to be maximized and
then show how to update it in the online setting.

First when the data matrix X is fully observed with all
continuous columns, we can compute exactly the Gaus-
sian latent variable zi = f−1(xi) ∈ Rp for each row
i. The likelihood objective is simply Gaussian likelihood∑
i log φ(zi; 0,Σ), and the MLE of the correlation matrix

Σ is the empirical correlation matrix PE
(

1
n

∑n
i=1 z

i(zi)>
)
,

where PE scales its argument to output a correlation matrix:
for D = diag(Σ), PE(Σ) = D−1/2ΣD−1/2.

If there exist missing entries and ordinal variables in the
data X, the likelihood given observation xiOi

is the integral
over the latent Gaussian vector ziOi

that maps to xiOi
through

f : zj ∈ f−1
j (xj) for j ∈ Oi and ziMi

∈ R|Mi|. For sim-
plicity, we write zi ∈ f−1(xi) by defining that f−1

j maps
missing values to R. Thus the observed likelihood objective
we seek to maximize (over Σ) is:

`(Σ; {xiOi
}ni=1) =

1

n

n∑
i=1

log

(∫
zi∈f−1(xi)

φ(zi; 0,Σ)dzi

)
,
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The EM algorithm in Zhao and Udell (2020b) avoids maxi-
mizing this difficult integral; instead, the M-step at iteration
l+1 maximizes the expectation of the complete likelihood
`(Σ; {zi,xiOi

}ni=1), conditional on the observations xiOi
, the

previous estimate Σl and the marginal estimate f̂ , computed
in the E-step. We denote this objective function as below:

Q(Σ; Σl, {xiOi
}ni=1) =

1

n

n∑
i=1

E[`(Σ; zi,xiOi
)|xiOi

,Σl, f̂ ].

(3)
Now the maximizer for Eq. (3) is simply the expected “em-
pirical covariance matrix” of the latent variables zi:

Σl+1 =
n∑
i=1

1

n
E[zi(zi)>|xiOi

,Σl, f̂ ]. (4)

The expectation weights these zi by their conditional like-
lihood value. These expectations are fast to approximate
(Zhao and Udell 2020b; Guo et al. 2015). At last the the
obtained estimate is scaled to have unit diagonal to satisfy
the copula model constraints: Σl+1 ← PE

(
Σl+1

)
.

Now we show how to adjust and maximize the objective
Q in the online setting. When data points come in different
batches, i.e. rows St+1 observed at time t + 1, Cappé and
Moulines (2009) propose to update the objective function Q
with new rows as:

Qt+1(Σ) = (1− γt)Qt(Σ) + γtQ(Σ; Σt, {xiOi
}i∈St+1

),
(5)

with Q1(Σ) = Q(Σ; Σ0, {xiOi
}i∈S1

) given initial estimate
Σ0 and a monotonically decreasing stepsize γt ∈ (0, 1). Us-
ing Eq. (5), we derive a very natural update rule, stated as
Lemma 1: in each step we simply take a weighted average
of the previous covariance estimate and the estimate we get
with a single EM step on the next batch of data. We require
the batch size to be larger than the data dimension p to obtain
a valid update. One can still make an immediate prediction
for each new data point, but to update the model we must
wait to collect enough data or use overlapping data batches.
Lemma 1. For data batches {xi}i∈S1

, ..., {xi}i∈St
with

xi ∈ Rp and minl∈[t] |Sl| > p, and objective Qt(Σ) as in
Eq. (5) for γt ∈ (0, 1). Given a marginal estimate f̂ , for
l = 1, . . . , t, Σl := argmaxΣQl(Σ) satisfies

Σt+1 = (1− γt)Σt +
γt
|St+1|

∑
i∈St+1

E[zi(zi)>|xiOi
,Σt, f̂ ].

(6)
We also project the resulting matrix to a correlation matrix

as in the offline setting. The update takes O(αp3|St|) time
with missing fraction α and |St| rows. The proof (in the sup-
plement) shows that online EM formally requires a weighted
update to the expectation computed in the E-step. But for our
problem, the parameter Σ, computed as the maximizer (in
the M-step), is a linear function of the computed expectation
(from the E-step). Hence the maximizer also evolves accord-
ing to the same simple weighted update. A weighted update
rule for the parameter fails — leading to divergence — for
more general models, when the maximizer is not linear in

Algorithm 1: Online Imputation with the Gaussian Copula

Input: Window size k, step size γt for t ∈ [T ].
1: Initialize Σ0 and running window matrix X̃ ∈ Rk×p.
2: for t = 1, 2, . . . , T do
3: Obtain new data batch {xi}i∈St

, with xi partially ob-
served at Oi and missing atMi.

4: Replace the oldest point in X̃j with xij for j ∈ Oi, i ∈
St.

5: Estimate marginals f̂ , f̂−1 using X̃ as in Eq. (2) .
6: EM step update: obtain Σt+1 as in Eq. (6).
7: Scale to a correlation matrix: Σt+1 = PE

(
Σt+1

)
.

8: Impute x̂iMi
using Σt+1 and f̂ as in Eq. (1) for i ∈ St.

9: end for
Output: Imputation {x̂iMi

}i∈St
and Σt for t ∈ [T ].

the expectation, such as for the low-rank-plus-diagonal cop-
ula correlation model of Zhao and Udell (2020a).

Cappé and Moulines (2009) prove an online EM algo-
rithm converges to the stationary points of the KL diver-
gence between the true distribution of the observation π (not
necessarily the assumed model) and the learned model dis-
tribution, under some regularity conditions. We adapt their
result to Theorem 1.

Theorem 1. Let π(xO) be the distribution function of the
true data-generating distribution of the observations and
gΣ(xO) be the distribution function of the observed data
from GC(Σ, f), assuming data is missing uniformly at ran-
dom (MCAR). Suppose the step-sizes γt ∈ (0, 1) satisfy∑∞
t=1 γ

2
t <

∑∞
t=1 γt = ∞. Let L = {Σ ∈ Sp++ :

∇ΣKL(π||gΣ) = 0} be the set of stationary points of
KL(π||gΣ) for a fixed f . Under two regularity conditions on
π (see the supplement), the iterates Σt produced by online
EM (Eq. (6)) converge to L with probability 1 as t −→∞.

The conditions on stepsize γt are standard for stochastic
approximation methods. If the true correlation Σ generating
the data evolves over time, a constant stepsize γt ∈ (0, 1)
should be used to adapt the estimate to the changing corre-
lation structure. We find using γi = c/(i+ c) with c = 5 for
the offline setting and γi = 0.5 for the online setting gives
good results throughout our experiments.

Online versus offline implementation We may estimate
f̂ in Eq. (6) either online or offline. The decision entails
some tradeoffs. When the storage limit is the main con-
cern, as in the streaming data setting, we can employ the on-
line marginal estimate, storing only a running window and
a correlation matrix estimate. We call such an implementa-
tion fully online EM. When the data marginal distribution
evolves over time, it is also important to use online EM to
forget the old data. On the other hand, when training time is
the main concern but the whole dataset is available, the on-
line EM algorithm can be implemented as an offline mini-
batch EM algorithm to accelerate convergence. In that set-
ting, the offline marginals are used to provide more accurate
and stable estimates as well as to reduce the time for esti-
mating the marginals. We call this implementation (offline)
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mini-batch EM. We present the fully online algorithm in Al-
gorithm 1 with data batches observed sequentially.

Parallelization Noting the computation of expectation in
Eq. (4) and Eq. (6) are separable over the rows, we have de-
veloped a parallel algorithm to accelerate the both the offline
and the online EM algorithms. For the long skinny datasets
we target, this parallel algorithm allows for faster imputation
by exploiting multiple computational cores.

Online Change Point Detection
We first outline the change point detection (CPD) prob-
lem in the context of the Gaussian copula model. Con-
sider a sequence of incomplete mixed data observations
x1, . . . ,xT ∼ GC(Σ, f), where xi is observed at loca-
tions Oi for i ∈ [T ]. We wish to identify whether there
is a change point t0 — a time when the copula corre-
lation Σ changes substantially — and if so, when this
change occurs. We formulate the single CPD problem as
the following hypothesis test, for fixed t0: x1, . . . ,xt0 ∼
GC(Σ, f), and xt0+1, . . . ,xT ∼ GC(Σ̃, f),

H0 : Σ̃ = Σ versus H1 : Σ̃ 6= Σ. (7)

We assume time-invariant marginal f . In practice, it suffices
for f to be stable in a small local window. The latent cor-
relation matrix changes, reflecting the changing dependence
structure. To detect a change-point, a test statistic is com-
puted for each point to measure the deviation of new points
from old distribution. A change is detected if the test statis-
tic exceeds a certain threshold. We consider the online de-
tection problem instead of a retrospective analysis with all
data available. Specifically, to test whether a change occurs
at time t0, we may use only the data xt0+1, . . . ,xT for a
small window length T − t0 and the fitted model at time t0.

To derive a test statistic, notice that Σ−1/2Σ̃Σ−1/2 = Ip
under H0. Thus for some matrix norm h, we use the ma-
trix distance d(Σ, Σ̃;h) = h(Σ−1/2Σ̃Σ−1/2 − Ip) to mea-
sure the deviation of new points from old distribution. While
Σ and Σ̃ are unknown, we replace them with the estimates
Σt0 and ΣT , generated by the EM iteration up to time t0
and time T , respectively. Thus we construct our test statistic
as d(Σt0 ,ΣT ;h): large values indicate high probability of a
change point. Experimentally, we find that different choices
of h give very similar trends. Hence below we report results
using the Frobenius norm as h, to reduce computation.

The change point is detected when d(Σt0 ,ΣT ;h) exceeds
some threshold bα, which is chosen to control the false-
alarm rate α. Calculating bα analytically requires the asymp-
totic behaviour of the statistic under the null distribution,
which is generally intractable including our case. We use
Monte Carlo (MC) methods to simulate the null distribution
of our test statistic and select the threshold. This method is
similar to the permutation test for CPD (Matteson and James
2014). We present our test for the hypothesis in Eq. (7) as Al-
gorithm 2 . Notice comparing d(Σt0 ,ΣT ;h) to bα is equiv-
alent to comparing the returned empirical p-value with the
desired false-alarm rate α. See (Davison and Hinkley 1997;
North, Curtis, and Sham 2002) for the use of empirical p-

Algorithm 2: Monte Carlo test for Gaussian copula correla-
tion change point detection

Input: New data {xi}Ti=t0+1, the number of samplesB, es-
timated model Σt0 ,ΣT and f t0 .

1: Compute the test statistic s = d(Σt0 ,ΣT ).
2: for j = 1, 2, . . . , B do
3: Sample yi ∼ GC(Σt0 , f t0) and mask yi at where

xi+t0 is missing for i = 1, ..., T − t0.
4: Update the model at t0 with new points {yi}T−t0i=1 .
5: Compute sj = d(Σt0 ,ΣT,j) with the updated corre-

lation ΣT,j .
6: end for

Output: The p-value (|{sj : s ≤ sj}|+ 1)/(B + 1).

values. In practice, α can be regarded as a hyperparameter
to tune the false positive/negative rate.

We have shown how to test if a change point happens at
a time t0. Repeating this test across time points may detect
multiple change points, but also yield many false positives.
We discuss in the supplement how to alleviate this issue us-
ing recent development from online FDR (Javanmard, Mon-
tanari et al. 2018; Ramdas et al. 2017, 2018).

Experiments
The experiments are divided into two parts: online datasets
(rows obtained sequentially) and offline datasets (rows ob-
tained simultaneously). The online setting examine the abil-
ity of our methods to detect and learn the changing distri-
bution of the steaming data. The offline setting evaluate the
speedups and the potential accuracy lost due to minibatch
training and online marginal estimation compared to offline
EM. See the supplement for more experimental details and
more experiments under different data dimension, missing
ratio and missing mechanisms.

Algorithm implementation: we implement the offline EM
algorithm (Zhao and Udell 2020b), the minibatch EM with
online marginal estimate denoted by online EM, and the
minibatch EM with offline marginal estimate denoted by
minibatch EM. For imputation comparison, we implement
GROUSE (Balzano, Nowak, and Recht 2010) and online
KFMC (Fan and Udell 2019). For fair comparison, we use 1
core for all methods, but report the acceleration brought by
parallelism for all Gaussian copula methods in the supple-
ment. We also implement the online Bayesian change point
detection (BOCP) algorithm (Adams and MacKay 2007),
one of the best performing CPD method according to a re-
cent evaluation paper (van den Burg and Williams 2020).
The norm of subspace fitting residuals for GROUSE can also
serve for CPD: a sudden peak of large residual norm indi-
cates abrupt changes. We compare our test statistic, defined
in Algorithm 2, with the residual norms from GROUSE, to
see which identifies change points more accurately.

Tuning parameters selection: we do not use tuning pa-
rameter for offline EM and minibatch EM. We use 1 tun-
ing parameter for online EM: the window size m for online
marginal estimates, 2 tuning parameters for GROUSE, the
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Method Runtime (s) Continuous Ordinal Binary
Offline EM 187.7(0.8) 0.79(.04) 0.84(.03) 0.63(.07)
Minibatch EM 48.2(0.5) 0.79(.04) 0.83(.03) 0.63(.07)
Online EM 54.5(3.4) 0.80(.04) 0.84(.02) 0.63(.07)
Online KFMC 79.6(1.6) 0.92(.03) 0.92(.02) 0.67(.08)
GROUSE 7.7(.3) 1.17(.03) 1.67(.05) 1.10(.07)

Table 1: Mean(sd) for runtime, imputation error of each data
type for synthetic offline data over 10 trials.

rank and the step size, and 2 tuning parameters for online
KFMC, the rank in a latent space and the regularization pa-
rameter. BOCP requires 4 hyperparameters for its priors and
its hazard function (Adams and MacKay 2007).

We note one other issue. For online algorithms, it is typ-
ical to choose hyperparameters during an initial “burn-in”
period. For example, in GROUSE, choosing the step-size
from initial data can result in divergence later on as the
data distribution changes. As a result, the maximum num-
ber of optimization iterations is also difficult to choose: the
authors’ default settings are often insufficient to give good
performance, while allowing too many iterations may lead
to (worse) divergence. We will report and discuss an exam-
ple of divergence in our online real data experiment.

Imputation evaluation: for ordinal or real valued data, we
use mean absolute error (MAE) and root mean squared error
(RMSE). For mixed data, we use the scaled MAE (SMAE),
the MAE divided by the MAE of the median imputation. A
method that imputes better than the median has SMAE < 1.

Offline synthetic experiment We construct a dataset
consisting of 6000 i.i.d. data points drawn from a 15-
dimensional Gaussian Copula, with 5 continuous, 5 ordi-
nal with 5 levels, and 5 binary entries. We randomly mask
40% entries as missing. Shown in Table 1, the minibatch
and online variants of the EM algorithm converge substan-
tially faster than offline EM and provide similar imputation
accuracy. The results are especially remarkable for online
EM, which estimates the marginals using only 200 points.
The minibatch variant is three times faster than offline EM
with the same accuracy. All EM methods outperform online
KFMC and GROUSE, and even median imputation outper-
forms GROUSE. Interestingly, the best rank for GROUSE is
1. The results here show LRMC methods fit poorly for long
skinny datasets, although the selected best rank, 1, mislead-
ingly indicates the existence of low rank structure.

Online synthetic experiment Now we consider streaming
data from a changing distribution. To do this, we generate
and mask the dataset similar to the offline setting, but set two
change points at which a new correlation matrix is chosen:
x1, . . . ,xt ∼ GC(Σ1, f), xt+1, . . . ,x2t ∼ GC(Σ2, f) and
x2t+1, . . . ,x3t ∼ GC(Σ3, f), with t = 2000. We implement
all online algorithms from a cold start and make only one
pass through the data, to mimic the streaming data setting.
For comparison, we also implement offline EM and allow it
to make multiple passes.

Shown in Fig. 2, online EM clearly outperforms the of-
fline EM on average, by learning the changing correlation.
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Figure 2: Mean imputation error and change point tracking
statistics over 10 trials for online synthetic datasets. Each
point stands for an evaluation over a data batch of 40 points.
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Figure 3: Change points from online EM detection (ours)
and BOCP over 10 trials in online synthetic experiments.
Each bar stands for a decision over a data batch of 40 points.

Online EM has a sharp spike in error as the correlation
abruptly shifts, but the error rapidly declines as it learns the
new correlation. Both online EM and online KFMC outper-
form missForest. Surprisingly, online KFMC cannot even
outperform offline EM. GROUSE performs even worse in
that it cannot outperform median imputation as in the of-
fline setting. The results indicate online imputation methods
can fail to learn the changing distribution when their un-
derlying model does not fit the data well. Our correlation
deviation statistic provides accurate prediction for change
points, while the residual norms from GROUSE remains sta-
ble after the burn-in period for model training, which verifies
GROUSE cannot adapt to the changing dependence here.

Show in Fig. 3, online EM successfully detects both
change points in all repetitions. In fact, the algorithm de-
tects a change point (of decreasing magnitude) during sev-
eral batches after each true change, showing how long it
takes to finally learn the new dependence structure. To avoid
the repeated false alarms, one could set a burn-in period fol-
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Method Runtime (s) MAE RMSE
Offline EM 1690(9) 0.583(.002) 0.883(.004)

Minibatch EM 252(2) 0.585(.003) 0.886(.003)
Online EM 269(3) 0.590(.002) 0.890(.003)

Online KFMC 176(21) 0.631(.005) 0.905(.006)
GROUSE 27(2) 0.634(.003) 0.933(.004)

Table 2: Mean(sd) for runtime and imputation error on a sub-
set of MovieLens1M data over 10 trials.

lowing each detected change point. In contrast, BOCP only
reports one false discovery, showing its inability to detect
the changing dependence structure.

Offline real data experiment To further show the
speedup of the minibatch algorithms, we evaluate on a sub-
set of the MovieLens 1M dataset (Harper and Konstan 2015)
that consists of all movies with more than 1000 ratings, with
1-5 ordinal ratings of size 6939 × 207 with over 75% en-
tries missing. Table 2 shows that the minibatch and online
EM still obtain comparable accuracy to the offline EM. The
minibatch EM is around 7 times faster than the offline EM.
All EM methods significantly outperform online KFMC and
GROUSE. Interestingly, as the dataset gets wider, online
KFMC loses its advantage over GROUSE. The results here
indicate the nonlinear structure learned by online KFMC
fails to provide better imputation than the linear structure
learned by GROUSE. In contrast, the structural assumptions
of our algorithm retain their advantage over GROUSE even
on wider data.

Online real data experiment We now evaluate both im-
putation and CPD on the daily prices and returns of 30 stocks
currently in the Dow Jones Industrial Average (DJIA) across
5030 trading days. We consider two tasks: predicting each
stock’s price (or log return) today using only yesterday’s
data and a learned model. After prediction, we reveal today’s
data to further update the model.

In Fig. 4, the left 2 plots show that all methods pre-
dict prices well early on, but GROUSE and online KFMC
both diverge eventually. The residuals norm from GROUSE
also indicate divergence. In contrast, online EM has ro-
bust performance throughout. Although the imputation er-
ror peaks around the start of 2020, online EM is able to
quickly adjust to the changing distribution: the imputation
error quickly falls back. Thus online EM stands out in that
it obviates the need of online hyperparameter selection to
have stable performance. The right 2 plots show that on-
line EM and GROUSE perform similarly on log returns:
their error curves almost overlap each other. Online KFMC
underperforms: it makes large errors more often. We con-
jecture GROUSE and online KFMC perform better on the
log returns than on the price data because the scale of the
data is stable, so that hyperparameters chosen early on still
exhibit good performance later. The good performance of
GROUSE indicates the asset log returns are approximately
low rank, Still, online EM is robust to different (even chang-
ing) marginal data distributions and performs well on ap-
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Figure 4: The imputation error and change tracking statis-
tics for the DJIA daily price (left 2) and the DJIA daily log-
returns (right 2), averaged over all stocks. Each point stands
for an evaluation over a time interval of 40 points.

proximately low rank data.

As for CPD: online EM shows similar results for both the
price and log returns datasets, identifying fluctuating (often
large) changes but no very distinct spikes on either dataset.
In fact, the algorithm classifies every (40-day) data batch as
a change point, indicating the instability of stock data! In
contrast, GROUSE detects two large changes in the log re-
turns dataset and none in the price dataset. In the absence of
ground-truth for change points, it is hard to compare the per-
formance, but the improved stability of online EM to rescal-
ings of the data is a clear advantage. BOCP quickly diverged
on both the price and the log-returns dataset and did not re-
turn meaning results before divergence.

Conclusion

We presented an online missing data imputation algorithm
and change point detection method using Gaussian copula
for long skinny mixed datasets. The imputation performance
can match or even exceed offline imputation, and improves
on other state-of-the-art online imputations methods. Our
algorithm also provides speedup for offline Gaussian cop-
ula imputation. The method can detect changes in the de-
pendence structure, assuming the marginal remains stable
over time. Developing a method to identify changes in the
marginal distribution is an important future work.
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matrix completion through nuclear norm regularisation. In
Proceedings of the 2014 SIAM International Conference on
Data Mining, 623–631. SIAM.

Fan, J.; Liu, H.; Ning, Y.; and Zou, H. 2017. High dimen-
sional semiparametric latent graphical model for mixed data.
Journal of the Royal Statistical Society. Series B: Statistical
Methodology, 79(2): 405–421.

Fan, J.; and Udell, M. 2019. Online high rank matrix com-
pletion. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 8690–8698.

Fearnhead, P.; and Liu, Z. 2007. On-line inference for mul-
tiple changepoint problems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 69(4): 589–605.

Feng, H.; and Ning, Y. 2019. High-dimensional mixed
graphical model with ordinal data: Parameter estimation and
statistical inference. In The 22nd International Conference
on Artificial Intelligence and Statistics, 654–663.

Fortuin, V.; Baranchuk, D.; Rätsch, G.; and Mandt, S. 2020.
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