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Abstract
Poisoning attacks are emerging threats to deep neural networks
where the adversaries attempt to compromise the models by
injecting malicious data points in the clean training data. Poi-
soning attacks target either the availability or integrity of a
model. The availability attack aims to degrade the overall
accuracy while the integrity attack causes misclassification
only for specific instances without affecting the accuracy of
clean data. Although clean-label integrity attacks are proven
to be effective in recent studies, the feasibility of clean-label
availability attacks remains unclear. This paper, for the first
time, proposes a clean-label approach, CLPA, for the poi-
soning availability attack. We reveal that due to the intrinsic
imperfection of classifiers, naturally misclassified inputs can
be considered as a special type of poisoned data, which we
refer to as “natural poisoned data”. We then propose a two-
phase generative adversarial net (GAN) based poisoned data
generation framework along with a triplet loss function for syn-
thesizing clean-label poisoned samples that locate in a similar
distribution as natural poisoned data. The generated poisoned
data are plausible to human perception and can also bypass
the singular vector decomposition (SVD) based defense. We
demonstrate the effectiveness of our approach on CIFAR-10
and ImageNet dataset over a variety type of models. Codes are
available at: https://github.com/bxz9200/CLPA.

Introduction
In the past years, machine learning, especially deep learn-
ing has achieved remarkable advancement in a wide range
of fields including computer vision (Krizhevsky, Sutskever,
and Hinton 2012; He et al. 2016), natural language process-
ing (Devlin et al. 2019; Bahdanau, Cho, and Bengio 2015),
and game playing (Silver et al. 2017, 2016). Despite un-
precedented progress, machine learning models are shown
to be susceptible to various types of adversarial attacks such
as evasion attacks (Goodfellow, Shlens, and Szegedy 2015;
Clements et al. 2021; Clements and Lao 2022b), backdoor
attacks (Clements and Lao 2018b,a, 2019; Saha, Subramanya,
and Pirsiavash 2020), and poisoning attacks (Biggio, Nelson,
and Laskov 2012), which raises serious concern of the robust-
ness and security for the real-world deployments (Clements
and Lao 2022a; Lao et al. 2022). A notable example of eva-
sion attacks is the adversarial example which fools machine
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learning classifiers by adding imperceptible perturbation to a
benign input. Evasion attacks occur at the inference phase and
require attackers to modify model inputs. Backdoor attacks in-
duce models to make wrong predictions on inputs embedded
with backdoor triggers, for instance, a pair of glasses (Chen
et al. 2017), a colored pattern (Gu, Dolan-Gavitt, and Garg
2017), or even invisible triggers (Nguyen and Tran 2021;
Doan et al. 2021; Doan, Lao, and Li 2021). However, it re-
quires the attacker to access both training and inference phase
to inject and activate backdoor triggers. Poisoning attacks,
on the other hand, manipulate model behavior at the train-
ing phase by injecting deliberately crafted malicious data in
the training set. The adversarial goals of poisoning attack
target model availability or integrity. The availability attack
attempts to subvert the overall model accuracy while the in-
tegrity attack attempts to only affect the prediction results
of specific inputs. Detailed comparison of these attacks is
summarized in Table 1.

Training Inference Adversarial Goals
Evasion
Attacks × ✓

Misclassify
Specific Inputs

Backdoor
Attacks ✓ ✓

Misclassify
Specific Inputs

Poisoning
Attacks ✓ ×

Degrade Overall
Performance
Misclassify

Specific Inputs

Table 1: Comparison of adversarial goals and capability.

Poisoning attacks are critical threats to scenarios where at-
tackers are able to find ways to supply new training data. For
instance, web-based repositories always provide such oppor-
tunities for attackers to inject poisoned training data through
malware. Benign models will be maliciously affected after
training with these data. With the rapid development of deep
learning, models become more complex and harder to train.
Thus, it is particularly worth studying poisoning availability
attacks since training with a poisoned dataset may lead to a
severe loss of time and computational resources and cause a
denial of service in real-world applications. Prior poisoning
availability attacks usually add large distortion to poisoned
samples in the pixel space (Yang et al. 2017) or assign incor-
rect labels (Muñoz-González et al. 2017, 2019; Xiao, Xiao,
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and Eckert 2012), which will introduce larger loss to the opti-
mization process for optimizing the adversarial effect. How-
ever, these distorted and mislabeled poisoned data can be de-
tected by techniques such as ℓ2 defense (Koh, Steinhardt, and
Liang 2018), label sanitization (Paudice, Muñoz-González,
and Lupu 2018), and even simple visual inspections. While
clean-label settings (i.e., the adversary can only manipulate
the data but not the label) have been extensively investigated
in poisoning integrity and backdoor attacks (Shafahi et al.
2018; Huang et al. 2020; Zhu et al. 2019; Saha, Subramanya,
and Pirsiavash 2020; Turner, Tsipras, and Madry 2019; Geip-
ing et al. 2021), the implication on poisoning availability
attacks however has entailed little study.

In this paper, we make the first attempt, to the best of our
knowledge, to develop an algorithm for clean-label poisoning
availability attack, CLPA. We propose to generate poisoned
samples with the following four properties: 1) plausible to
human beings; 2) correctly-labeled (clean-label); 3) stealthy
against visual inspection and sanitization; 4) can achieve
the adversarial goal (i.e., degrade the inference accuracy).
However, it is challenging to systematically generate such
poisoned data since these constraints greatly limit the training
convergence towards adversarial goals (e.g., provide much
smaller loss in the optimization). In other words, the first
three properties contradict with the last property to a certain
extent. To tackle this challenge, we propose a novel approach
that uses generative adversarial nets (GAN) (Goodfellow et al.
2014) and introduces a carefully-designed triplet loss for poi-
soned data generation. We propose a two-phase framework
to decouple the training of the original GAN and the GAN
that generates poisoned data to ensure the quality of poisoned
images. We show the proposed method is able to successfully
generate desired poisoned data at scale.

Poisoning Availability Attacks
Poisoning availability attack on image classifiers was first
proposed in (Biggio, Nelson, and Laskov 2012) that compro-
mises a support vector machine (SVM) model on a binary
classification task. Later on, (Biggio et al. 2013; Mei and
Zhu 2015; Jagielski et al. 2018; Xiao et al. 2015) studied
attack strategies on a wider range of learning models such as
clustering, LASSO, and regression models. Most prior works
employ gradient-based optimization for poisoned data gen-
eration. A series of approaches were developed to improve
the efficiency for solving the optimization problem, includ-
ing the use of with stationary Karush-Kuhn-Tucker (KKT)
conditions (Mei and Zhu 2015), the back-gradient optimiza-
tion (Muñoz-González et al. 2017), and approximated non-
convex models to manipulate the functions (Koh and Liang
2017). However, it is still very hard and costly to generate
poisoned data at scale due to the computational complexity
of solving the gradient-based optimization. To address this,
(Yang et al. 2017; Muñoz-González et al. 2019) proposed
generative methods by using auto-encoder and GAN.

However, in these works, attackers are allowed to flip the
labels or assign arbitrary labels to the poisoned data. Such
poisoned data can be easily identified and removed by la-
bel sanitization (Paudice, Muñoz-González, and Lupu 2018)
or manually annotating the data, which limits the practical

effect of these approaches. Besides, the prior generative ap-
proaches rarely consider the cosmetic quality of poisoned
data, which makes the poisoned samples easy to distinguish
by visual inspection due to the large perturbation added on
top of natural inputs. (Koh and Liang 2017; Feng, Cai, and
Zhou 2019) proposed indistinguishable training-set attacks
using adversarial training examples, which however requires
a much more stringent capability for the attacker, i.e., direct
modification to the original training data. In this paper, we
propose a stronger and more practical poisoning availability
attack where the poisoned data are labeled consistently with
human annotation. While clean-label poisoned samples are
shown to be effective for both backdoor (Turner, Tsipras,
and Madry 2019) and poisoning integrity attacks (Shafahi
et al. 2018; Huang et al. 2020; Zhu et al. 2019; Geiping et al.
2021), satisfying such a requirement is more challenging in
poisoning availability attacks, as the adversary needs to alter
the decision boundary as much as possible instead of only
inducing malicious behaviors to specific instances.

Natural Poisoned Data
Our idea originates from the misclassified samples in the
vanilla DNN model that naturally exists due to the inherent
imperfection of classifiers as well as the ever-growing task
complexity. Even the recent advance of vision transformer
(ViT) (Dosovitskiy et al. 2021) still makes wrong predictions
for a considerable amount of clean data on ImageNet. We
show in Figure 1 that a Vgg16 (Simonyan and Zisserman
2015) classifier with a test accuracy of 93.56% misclassifies
some test data of CIFAR-10 with apparent human-perceptible
attributes. Our proposed approach leverages such deviation
to stealthily compromise well-trained classifiers. We refer
to authentic images misclassified by a well-trained classifier
as “natural poisoned data”. These “poisoned data” and the
corresponding labels will not be recognized distinctively by
human observers. These data can be captured from any arbi-
trary source in real-world scenarios, such as cameras, mobile
phones, and drones.

Pred: Bird Pred: Airplane

True: TruckTrue: Horse

Pred: Ship

True: Automobile

Figure 1: Examples of natural poisoned data. A well-trained
classifier still makes wrong prediction with high confidence.

We analyze the feasibility of using these “natural poisoned
data” to compromise the availability of a classifier. We adul-
terated the “natural poisoned data” in the original training
data with a ratio from 0% to 100% and assigned these data
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Figure 2: Illustration of the CLPA framework. Phase I is a normal GAN training process where the generator learns data
distribution and the discriminator learns to distinguish real and fake data. In the second phase, an embedding of a benign classifier
is used to guide the generator to learn the desired feature and generate poisoned data.

with ground-truth labels. We then trained the model and eval-
uated on the standard test dataset. We found that “natural
poisoned data” can affect the performance of the classifier
to a certain extent with different poisoning ratios. Notably,
training with full “natural poisoned data” causes a test error
of 50%, which demonstrates the potential of such data in
clean-label poisoning availability attacks.

Clean-Label Poisoning Availability Attack
We now describe our two-phase GAN framework, CLPA,
for clean-label poisoned data generation. Our objective is
to generate images with similar characteristics as “natural
poisoned data”, particularly those locate in the overlapped
area of multiple categories in the representation space.

Threat Model
Attacker’s Goal. In this work, our goal is to compromise the
availability and degrade the model performance on unseen
test data after training with the poisoned dataset, which can
be mathematically expressed as:

argmax
Dp

∑
(x,y)∼D̂

L (x, y, θp)

s.t. θp ∈ argmin
θp∈Θ

∑
(x,y)∼Dtr∪Dp

L (x, y, θ) ,
(1)

where Dtr is the training data, Dp is the crafted poisoned
data, D̂ is the untainted test dataset, L(·) is the loss function
(e.g. the cross-entropy), θ is the parameters of a benign model
and θp is the updated parameters over a possible space Θ. The
inner minimization stands for the poisoned training while the
outer maximization represents the evaluation on clean data
using the poisoned model.

Attacker’s Knowledge. There are two representative attack
scenarios in poisoning attacks, i.e., white-box and black-box
attacks. The attacker is assumed to have full knowledge of
the training data, learning algorithm and model parameters
in the white-box setting. The perfect knowledge setting is
wildly considered in previous work for both availability and
integrity attacks (Muñoz-González et al. 2017; Shafahi et al.
2018). In contrast, the attacker only has limited knowledge
of training data but not the learning algorithms and model
parameters in the black-box scenarios (Jagielski et al. 2018).
In the proposed method, we generate the poisoned data from
a generative model based on the statistical distribution of the
training data and feature set, which does not require direct
knowledge of the victim classifier.

Attacker’s Capability. We consider the most widely-used
setting as in (Shafahi et al. 2018; Huang et al. 2020; Zhu
et al. 2019; Saha, Subramanya, and Pirsiavash 2020) that
assumes the attacker has total control over the training data.
The attacker can only provide training dataset (e.g., upload
to web-based repositories) without directly modifying the
existing training data. Meanwhile, we consider that the train-
ing data would be labeled by human experts upon inspection,
i.e., the poisoned images have to be transparent with respect
to manual annotation. Such a “clean-label” requirement is
more stringent than prior works (Muñoz-González et al. 2017;
Yang et al. 2017; Muñoz-González et al. 2019; Zhao and Lao
2022, 2018), which also potentially enables more poisoned
data to be injected as the poisoned data are able to evade hu-
man inspection. The percentage of injected poisoned points
in a poisoned training set is defined as the poisoning ratio. To
maximize the poisoning effect, the attacker desires to inject
as many poisoned data as possible into the training dataset.
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Methodology
Theoretically, we can directly train a GAN to learn the distri-
bution of “natural poisoned data” if there is enough training
data. However, these data might not be sufficient for poison-
ing in practice. For instance, although exist, there are only
644 out of 10000 images are “natural poisoned data” in the
CIFAR10 test dataset for the aforementioned Vgg16 classi-
fier. Therefore, we propose to leverage generative models for
generating the desired poisoned data.

The proposed CLPA framework consists of two phases
along with a special triplet loss function, as illustrated in
Figure 2. Our goal in phase I is to train a GAN to learn the
distribution of clean training data and generate synthesized
images with high quality. While in phase II, we fine-tune a
well-trained GAN to learn the distribution of the “natural
poisoned data” and generate the desired poisoned images. In
particular, we use the triplet loss to effectively guide GAN
to generate poisoned data that share similar characteristics
as “natural poisoned data”. There are three main advantages
of such a flow: 1) By decoupling the training phases, we
can minimize the interference of the phase II to phase I and
generate high-quality poisoned data; 2) By leveraging the ca-
pability of GAN, we are able to generate unlimited poisoned
data without knowing the knowledge of the victim classifier;
3) The phase II training requires much fewer iterations than
phase I. We can generalize the approach by embedding it to
any well-trained GAN, which saves time and improves effi-
ciency for poisoned data generation. The completed poisoned
data generation framework is presented in Algorithm 1.

In phase I, we follow the standard GAN training procedure
and train a conditional GAN (Mirza and Osindero 2014)
that generates fake images based on label information on the
target dataset. The optimization can be expressed as:

min
G

max
D

V(D,G) = L(D) + L(G),

s.t. L(D) = Ex∼px(x)[logD(x|y)],
L(G) = Ez∼pz(z)[log(1−D(G(z|y)))],

(2)

where the discriminator is trained to distinguish fake images
from real images, while the generator is trained to learn the
distribution of real images and generate fake images to fool
the discriminator. x is the poisoned image generated by the
generator G where the input of which is a random noise z
sampled from prior distribution pz(z) and a corresponding
label y that associated with the image. We adopt the Big-
GAN (Brock, Donahue, and Simonyan 2019) architecture in
the proposed framework.

The objective of phase II is to guide the generator to learn
the distribution of desired poisoned data. Similar to the con-
cept in (Schroff, Kalenichenko, and Philbin 2015) that uses a
triplet loss function to guide model training in facial recog-
nition, our framework incorporates a modified triplet loss
function. The original triplet loss is designed to recognize
different faces by minimizing the distance between an anchor
(image of a specific person) and a positive (other images of
the same person) while maximizing the distance between the
anchor and a negative (images of any other person). Similarly,
for each image denoted as anchor, we call the ground-truth

class of the image as the positive and the desired misclassi-
fied class as the negative. Intuitively, we want the generator
to generate images that have features of both positive and
negative so that they will locate in the overlapped area in
the representation space. We achieve this by minimizing the
distance difference between the anchor to negative and the
anchor to positive. We formalize the problem as follows:∣∣d1 − d2

∣∣ < α,

s.t. d1 = ||R(x)−Rneg||2,
d2 = ||R(x)−Rpos||2,

(3)

where R(x) presents the embedding that embeds an im-
age x generated by G(z|y) into a d-dimensional Euclidean
space: Rn → Rd. We denote the distance between the anchor

Algorithm 1: Poisoned Data Generation
Input: Training dataset (x,y) ∼Dtr; Embedding R

of neural network C that is trained on Dtr;
Randomly initialized generative adversarial
model G and D

Output: Poisoned dataset Xp

1 // Phase I training
2 for number of training iterations do
3 for i steps do
4 Sample a mini-batch of noise samples

(z1, z2, . . . , zm) ∼ pz(z)
5 Sample a mini-batch of training examples

(x1, x2, . . . , xm) ∼ px(x)
6 Train the discriminator by gradient ascent:

∇θD
1
m

m∑
k=1

[logD(xk|yk) + log(1−

D(G(zk|yk)))]
7 end for
8 Sample a mini-batch of noise samples

(z1, z2, . . . , zm) ∼ pz(z)
9 Train the generator by gradient descent:

∇θG
1
m

m∑
k=1

log(1−D(G(zk|yk)))

10 end for
11 // Phase II training
12 for number of training iterations do
13 for i steps do
14 Same operation from line 10-12 to train

discriminator
15 end for
16 Sample a mini-batch of noise samples

(z1, z2, . . . , zm) ∼ pz(z)
17 Get Rpos and Rneg from Algorithm 2
18 Train the generator by gradient descent:

∇θG
1
m

m∑
k=1

log(1−D(G(zk|yk)) +

LR(G(zk|yk)))
19 // Poisoned data generation
20 Initialize Xp ← {}
21 Sample random noise samples z ∼ pz(z)
22 Xp ← G(z|y)
23 Return Xp
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Algorithm 2: Negative Class Selection
Input: Training dataset (x,y) ∼Dtr , let DY

represent the training sample corresponding to
class Y; Embedding R of neural network C
that is trained on Dtr

1 for each class Y do
2 Initialize listmis = []
3 Let n = |DY |, enumerate (x1, x2 . . . xn) ∼ DY

4 for i steps do
5 if C(xi) != Y then
6 listmis.append(C(xi))
7 Compute the numbers of misclassified images
8 of each class: nums = Count(listmis)
9 Ypos = Y

10 Yneg = argmax(nums)
11 Rpos = 1

nR(DYpos
)

12 Rneg = 1
nR(DYneg

)
13 end for
14 Return Rpos, Rneg

and the negative centroid as d1, and the distance between
the anchor and the positive centroid as d2, respectively. α
is the margin that enforces the distance gap. Concretely, we
eliminate the last fully connected layer of a high accuracy
neural network C and use the rest part as R, which outputs
a multi-dimensional feature vector. Rpos and Rneg are the
feature representations of positive centroid and negative cen-
troid of the corresponding classes. We select negative class
by following the strategy as described in Algorithm 2. We
analyze the distribution of naturally misclassified samples
of each class and pick the class with the most misclassified
images as the negative class to the ground-truth class.

We can then achieve our goal by minimizing the following
triplet loss function:

L(G,R) = 1

N

N∑
i

(|d1 − d2| − α), (4)

where N is the total number of poisoned images. The phase
II training can be expressed as follows:

min
G,R

max
D

V(D,G) + L(G,R). (5)

Experiments
Experimental Settings
We evaluate on scenarios where poisoning attacks are of
concern, i.e., downstream tasks are trained on pre-trained
models using images of interest (Shafahi et al. 2018; Yang
et al. 2017; Muñoz-González et al. 2017). Models pre-trained
on ImageNet dataset are used to further build a classifier
for the CIFAR-10 and ImageNet images classification tasks,
respectively. Four victim models (Inception V3, ResNet50,
Vgg16 and Vgg19) are trained on clean training dataset and
poisoned dataset, respectively. The poisoned data are gen-
erated by the GAN and the embedding R is trained on the

CIFAR-10 ImageNet
EmbeddingR Vgg16 Vgg19

Original accuracy ofR 93.56% 72.38%
Embedding dimension 512 4096

Training iterations of phase I 60000 138000
Training iterations of phase II 200 2000

Margin parameter α 0.5 0.8

Table 2: Experiment settings for CIFAR-10 and ImageNet.

original clean dataset for both tasks. The parameters selection
of embedding and GAN training are summarized in Table 2.

We consider two training strategies where we initialize
four networks with pre-trained weights on the ImageNet
dataset (Deng et al. 2009) and further train downstream tasks
on image classification on target dataset by using end-to-end
training or training the FC layer only.

Figure 3: Availability attack on CIFAR-10.

Evaluation on CIFAR-10
For the CIFAR-10 classification task, we train the down-
stream classifiers using 5000 training images from the train-
ing dataset combined with poisoned data. The neural net-
works are trained 10 epochs for end-to-end training and FC
layer only. We randomly select two classes (i.e., dog and frog)
for poisoned data injection and vary the poisoning ratio from
0 to 0.2 with an interval of 0.05 in both settings. SGD opti-
mizer is used for model training at a learning rate of 1×10−4

with a batch size of 16. The performance is evaluated on
the test dataset of 10000 images. As shown in Figure 3, the
CLPA attack effectively deteriorates model accuracy for all
victim neural networks in both training scenarios, which in-
dicates strong attack capability and decent transferability of
the poisoned data. The attack on Vgg16 model achieves the
best performance since we use Vgg16 as the embedding for
negative class selection and phase II GAN training. Moreover,
training only the FC layer renders more accuracy degradation
than training the entire network.

As discussed above, the stealthiness of the clean-label at-
tack brings more opportunities for injecting poisoned data
without being detected. Therefore, it is of interest to examine
the full potential of the poisoned data by raising the poison-
ing ratio to 1. We show the results in Figure 4, where the
attack successfully subverts all victim models, resulting in a
significant 55.22% accuracy drop on average.
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Poisoning
Ratio

End-to-end training
Metapoison Acc. (%) CLPA (ours) Acc. (%) PERF. ↑

(CLPA- MP)Incv3 ResNet50 Vgg16 Vgg19 Acc. ↓ Incv3 ResNet50 Vgg16 Vgg19 Acc. ↓

0 85.62
(±0.6)

86.32
(±0.7)

87.97
(±0.1)

88.99
(±0.2) - 85.62

(±0.6)
86.32
(±0.7)

87.97
(±0.1)

88.99
(±0.2) - -

0.05 83.45
(±0.8)

85.38
±(0.4)

78.29
±(3.6)

84.81
(±2.2) 4.25 ↓ 83.35

(±0.3)
83.83
(±0.7)

77.84
(±2.7)

82.31
(±3.7) 5.40 ↓ 1.15 ↑

0.10 82.83
(±0.6)

82.89
(±0.6)

71.67
(±5.2)

79.25
(±1.7) 8.22 ↓ 77.31

(±0.6)
78.81
(±0.6)

67.34
(±4.5)

77.99
(±2.6) 11.87 ↓ 3.65 ↑

0.15 80.50
(±1.1)

79.98
(±0.6)

67.36
(±3.7)

74.70
(±4.6) 11.60 ↓ 73.41

(±0.8)
74.19
(±0.7)

71.39
(±1.5)

78.55
(±0.9) 12.85 ↓ 1.25 ↑

0.20 77.62
(±1.1)

76.66
(±0.6)

70.55
(±3.6)

77.32
(±2.2) 11.69 ↓ 68.96

(±1.1)
69.07
(±0.3)

65.10
(±5.5)

72.32
(±4.3) 18.37 ↓ 6.68 ↑

Table 3: Comparison of CLPA and Metapoison on availability attacks.

Inception V3 ResNet50 Vgg16 Vgg19
Networks
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Figure 4: Test accuracy when training with full poisoned data
on CIFAR-10 (end-to-end training).

Comparison to Metapoison
Although clean-label poisoning availability attacks are not
well studied before, there has been a line of works focusing
on clean-label integrity attacks (Huang et al. 2020; Geiping
et al. 2021; Shafahi et al. 2018; Zhu et al. 2019). We adapt
the state-of-the-art integrity attack, Metapoison (Huang et al.
2020), for degrading the availability as a baseline method
for comparison. We download the poisoned data generated
by Metapoison1 and keep all other experimental settings
unchanged. The results are presented in Table 3. It can be
seen that it is possible to adapt the integrity attack against
the availability and undermine the overall model accuracy.
However, the effectiveness of such attacks is limited. For
instance, Metapoison achieves the best performance with
only a 11.67% accuracy drop in attacking the Vgg19 network.
Meanwhile, the CLPA attack outperforms the Metapoison
attack at almost all levels of poisoning ratio for all models.

Evaluation on Poisoned Data Quality
We evaluate the poisoned image quality from two perspec-
tives, i.e., human inspection and the Fréchet inception dis-
tance (FID) score (Heusel et al. 2017). FID score is a more
widely-used metric that captures the similarity of synthetic
images to real ones, compared to Inception Score (IS) (Sali-
mans et al. 2016). Lower FID scores indicate that two groups
of images have more similar statistics or a better image qual-

1https://github.com/wronnyhuang/metapoison

ity compared to real images. We first showcase the visual
results of the poisoned data. We take “automobile” as an
example for demonstration. Recall that we refer to the syn-
thetic fake data from phase I as synthesized images and the
synthetic poisoned data from phase II as poisoned images.
Comparison of clean images, synthesized images, and poi-
soned images is shown in Figure 5. It can be seen that both
synthesized and poisoned images have decent quality and are
hard to distinguish by human perception.

Clean Synthesized Poisoned

Figure 5: Comparison of clean images, GAN synthesized
images, and poisoned images.

We then compute the FID score of images from phase
I and phase II. We follow the original setting that uses the
Inception-V3 model to capture the feature of images and com-
pare our results to the baseline models reported in (Shmelkov,
Schmid, and Alahari 2018). As shown in Table 4, both synthe-
sized and poisoned images show comparable performance to
DCGAN (Radford, Metz, and Chintala 2016) and achieve a
much lower score compared to PixelCNN++ (Salimans et al.
2017), indicating a high similarity to real images. Note that
the poisoned data only has a slightly higher FID score than
the synthesized images, which further validates the advan-
tages of the two-phase design, as it enables the poisoned data
to inherit decent image quality from a well-trained GAN.

Performance against Detection and Sanitization
As shown above, the generated poisoned data are close to real
images and have decent FID scores. Thus, inspection in the
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Model FID Score
Phase I (synthesized) 41.8
Phase II (poisoned) 47.1
DCGAN (baseline 1) 36.5

PixelCNN++ (baseline 2) 119.5

Table 4: FID of synthesized and poisoned data (CIFAR-10).

pixel space cannot effectively remove the poisoned data. We
further evaluate the performance of the poisoned data against
the data sanitization technique introduced in (Tran, Li, and
Madry 2018), which aims at removing outliers based on the
representation space for defending poisoning attacks. The
approach leverages singular vector decomposition to detect
outliers. We use the same default threshold as in (Tran, Li,
and Madry 2018) where the removal budget is 1.5× of total
poisoned data. For instance, if 100 poisoned data are injected,
150 data points that have the highest outlier score will be
removed from the training dataset. Note that the algorithm
assumes the defender knows which object class is poisoned.
We take the class “airplane” as an example and vary the poi-
soning ratio from 0.05 to 0.40. The results are presented in
Table 5. It can be seen that even with such a strong removal
budget, the poisoned data can still mostly bypass the defense.
Since the triplet loss helps to guide the generator to learn
features from both positive and negative classes, the gener-
ated images do not reveal a distinctive spectral signal in the
representation space.

Poisoned
Image

Remove
Budget

Clean Data
Removed

Poisoned
Removed

50 75 66 (88%) 9 (12%)
100 150 119 (79%) 31 (21%)
150 225 170 (76%) 55 (24%)
200 300 222 (74%) 78 (26%)
250 375 270 (72%) 105 (28%)
300 450 315 (70%) 135 (30%)
350 525 360 (69%) 165 (31%)
400 600 402 (67%) 198 (33%)

Table 5: Performance against spectral signal detection with
1000 clean images.

Evaluation on ImageNet
The proposed approach shows superior performance on the
CIFAR-10 dataset. However, it is way more challenging to
scale up poisoning attacks to large-scale datasets such as
ImageNet. To comprehensively understand the effectiveness
of our attack, we then evaluate the method on the ImageNet
dataset. Training GAN for ImageNet is extremely hard and
time-consuming. However, by using the proposed method,
we can simply skip the phase I training and fine-tune a pre-
trained GAN model for poisoned data generation, which only
takes about 2 hours in our experiments.

The FID scores of the phase I and phase II GAN model
are presented in Table 6. The corresponding images of clean
data, phase I and II are shown in Figure 6. Similar to the

results of CIFAR-10, the synthetic images of ImageNet are
of good quality, and the poisoned images successfully inherit
the image quality and are plausible upon human inspection.

Model FID Score
Phase I (synthesized) 17.79
Phase II (poisoned) 37.94

Table 6: FID of synthesized and poisoned data (ImageNet).

Clean Synthesized Poisoned

Figure 6: Comparison of clean images, GAN synthesized
images, and poisoned images (ImageNet).

In Figure 7, we present the results of the attack effect.
Given the high image quality, we examine the full capabil-
ity of CLPA on ImageNet. Our attack significantly corrupts
all the victim models and achieves an average 44.68% ac-
curacy drop, indicating that the proposed poisoning attack
generalizes well on large-scale dataset.
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Networks
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Figure 7: Test accuracy when training with full poisoned data
on ImageNet (end-to-end training).

Conclusion
In this work, we propose a novel framework, CLPA, for
clean-label poisoning availability attacks. Inspired by the
“natural poisoned data”, we exploit the generative adversarial
net to synthesize effective poisoned samples efficiently. We
propose a two-phase GAN training methodology with the
triplet loss function to guarantee the quality of poisoned
images and achieve a higher accuracy drop. The performance
of the proposed method is evaluated comprehensively from
multiple aspects over different datasets.
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