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Abstract

We study the online influence maximization (OIM) problem
in social networks, where in multiple rounds the learner re-
peatedly chooses seed nodes to generate cascades, observes
the cascade feedback, and gradually learns the best seeds that
generate the largest cascade. We focus on two major chal-
lenges in this paper. First, we work with node-level feedback
instead of edge-level feedback. The edge-level feedback re-
veals all edges that pass through information in a cascade,
whereas the node-level feedback only reveals the activated
nodes with timestamps. The node-level feedback is arguably
more realistic since in practice it is relatively easy to observe
who is influenced but very difficult to observe from which re-
lationship (edge) the influence comes. Second, we use stan-
dard offline oracles instead of offline pair-oracles. To com-
pute a good seed set for the next round, an offline pair-oracle
finds the best seed set and the best parameters within the con-
fidence region simultaneously, and such an oracle is difficult
to compute due to the combinatorial core of the OIM prob-
lem. So we focus on how to use the standard offline influ-
ence maximization oracle which finds the best seed set given
the edge parameters as input. In this paper, we resolve these
challenges for the famous independent cascade (IC) diffusion
model. The past research only achieves edge-level feedback,
while we present the first Õ(

√
T )-regret algorithm for the

node-level feedback. For the first challenge above, we ap-
ply a novel adaptation of the maximum likelihood estimation
(MLE) approach to learn the graph parameters and its con-
fidence region (a confidence ellipsoid). For the second chal-
lenge, we adjust the update procedure to dissect the confi-
dence ellipsoid into confidence intervals on each parameter,
so that the standard offline influence maximization oracle is
enough.

Introduction
Social networks have gained great attention in the past
decades as a model for describing relationships between hu-
mans. Typically, researchers show great interest in how in-
formation, ideas, news, influence, etc spread over social net-
works, starting from a small set of nodes called seeds. To
this end, a variety of diffusion models are proposed to for-
mulate the propagation in reality, and the most well-known
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ones are the independent cascade (IC) model and the lin-
ear threshold (LT) model (Kempe, Kleinberg, and Tardos
2003). A corresponding optimization problem, known as in-
fluence maximization (IM), asks how to maximize the influ-
ence spread, under a specific diffusion model, by selecting
a limited number of “good” seeds. The problem has found
enormous applications, including advertising, viral market-
ing, news transmission, etc.

In the canonical setting, the IM problem takes as input
a social network, which is formulated as an edge-weighted
directed graph. The problem is NP-hard but can be well-
approximated (Kempe, Kleinberg, and Tardos 2003). For
the past decade, more efficient and effective algorithms have
been designed (Borgs et al. 2014; Tang, Xiao, and Shi 2014;
Tang, Shi, and Xiao 2015), leading to an almost complete
resolution of the problem. However, the canonical IM is
sometimes difficult to apply in practice, as edge parame-
ters of the network are often unknown in many scenarios.
A possible way to circumvent such difficulty is to learn
the edge parameters from past observed diffusion cascades,
and then maximize the influence based on the learned pa-
rameters. The learning task is referred to as network in-
ference, and has been extensively studied in the litera-
ture (Gomez-Rodriguez, Leskovec, and Krause 2010; My-
ers and Leskovec 2010; Gomez-Rodriguez, Balduzzi, and
Schölkopf 2011; Du et al. 2012; Netrapalli and Sanghavi
2012; Abrahao et al. 2013; Daneshmand et al. 2014; Du et al.
2013, 2014; Narasimhan, Parkes, and Singer 2015; Pouget-
Abadie and Horel 2015; He et al. 2016; Chen et al. 2021).
However, this approach does not take into account the cost of
the learning process and fails to balance between exploration
and exploitation when future diffusion cascades come. This
motivates the study of online influence maximization (OIM)
problem considered in this paper.

In OIM, the learner faces an unknown social network and
runs T rounds in total. At each round, the learner chooses
a seed set to generate cascades, observes the cascade feed-
back, and receives the influence value as a reward. The goal
is to maximize the influence values received over T rounds,
or equivalently, to minimize the cumulative regret compared
with the optimal seed set that generates the largest influ-
ence. The most widely studied feedback in the literature
is the edge-level feedback (Chen, Wang, and Yuan 2013;
Chen et al. 2016; Wang and Chen 2017; Wen et al. 2017;
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Wu et al. 2019), where the learner can observe whether an
edge passes through the information received by its start
point. The node-level feedback was only investigated very
recently in (Vaswani, Lakshmanan, and Schmidt 2016; Li
et al. 2020), where the learner can only observe which nodes
receive the information at each time step during a diffusion
process. In practice, the node-level feedback is more realis-
tic than the edge-level feedback, not only because it reveals
less information, but also because it is usually easy to ob-
serve who is influenced but very difficult to observe from
which edge the influence comes from. For example, the so-
cial network platform is easy to learn whether and when a
user buys some specific product or service but is difficult
to learn based on whose recommendations or comments the
user makes such a decision.

Besides the feedback type, one more challenge about the
oracle model also emerges from the work (Li et al. 2020),
and many other works in online learning. In (Li et al. 2020),
the solution requires an offline pair-oracle, which takes the
estimated edge parameters and their confidence regions as
the input, and outputs the best seed set and parameters that
maximize the social influence. However, though numerous
works show that the offline influence maximization prob-
lem, which corresponds to the standard offline oracle, can
be well approximated, to the best of our knowledge, we do
not know how to efficiently compute such pair-oracle, even
approximately. We may choose several parameters by ei-
ther sampling the parameters or enumerating the parameters
in a mesh grid, and compute the maximum influence value
among such chosen parameters by the standard offline ora-
cle. But such a method is quite time-consuming where the
running time is typically exponential to the dimension of the
confidence region, which is the number of parameters. Be-
sides, we do not know how to guarantee the approximation
ratio for such a pair-oracle. This difficulty in computation
might be due to the complex combinatorial structure in the
influence maximization problem. Therefore, in this paper,
we focus on the weaker oracle model: the standard offline
oracle which takes the edge-level parameters as the input
and finds the best seed set accordingly.

Our contribution. We resolve the aforementioned
challenges for the IC model and present the first
Õ(poly(|G|)

√
T )-regret algorithm with node-level feed-

back using standard offline oracles.
In the technical part, our main contribution is a novel

adaptation of the maximum likelihood estimation (MLE) ap-
proach which can learn the edge-level parameters and their
confidence ellipsoids based on the node-level feedback. Fur-
ther, we adjust the update procedure to dissect the confi-
dence ellipsoid into confidence intervals on each parameter,
so that we can apply a standard offline influence maximiza-
tion oracle instead of the pair-oracle.

Related work. The (offline) influence maximization prob-
lem has received great attention in the past two decades.
We refer interested readers to the surveys of (Chen, Lak-
shmanan, and Castillo 2013; Li et al. 2018) for an overall
understanding.

The online influence maximization problem falls into the

field of multi-armed bandits (MAB), a prosperous research
area that dates back to 1933 (Thompson 1933). In the classi-
cal multi-armed stochastic bandits (Robbins 1952; Lai and
Robbins 1985), there is a set of n arms, each of which is
associated with a reward specified by some unknown dis-
tribution. At each round t, the learner chooses an arm and
receives a reward sampled from the corresponding distribu-
tion. The goal is to maximize the total expected rewards re-
ceived over T rounds. The model was later generalized to the
multi-armed stochastic linear bandits (Auer, Cesa-Bianchi,
and Fischer 2002), where each arm is associated with a char-
acteristic vector and its reward is given by the inner product
of the vector and an unknown parameter vector. This model
was extensively studied in the literature (Dani, Hayes, and
Kakade 2008; Li et al. 2010; Rusmevichientong and Tsitsik-
lis 2010; Abbasi-Yadkori, Pál, and Szepesvári 2011). Fur-
ther generalizations include combinatorial multi-armed ban-
dits (CMAB) and CMAB with probabilistically triggered
arms (CMAB-T) (Chen, Wang, and Yuan 2013; Chen et al.
2016; Wang and Chen 2017), where a subset of arms, called
the super-arm, can be chosen, and the reward is defined over
super-arms and may be non-linear. Besides, the arms beyond
the chosen super-arm may also be triggered and observed.
CMAB-T is a quite general bandits framework and indeed
contains OIM with edge-level feedback as a special case.
However, OIM with node-level feedback does not fit into
the CMAB-T framework.

OIM has been studied extensively in the literature. For
edge-level feedback, existing work (Chen, Wang, and Yuan
2013; Lei et al. 2015; Chen et al. 2016; Wang and Chen
2017; Wen et al. 2017; Wu et al. 2019) present both theoret-
ical and heuristic results. The node-level feedback was first
proposed in (Vaswani, Lakshmanan, and Schmidt 2016).
However, only heuristic algorithms were presented. Very re-
cently, an Õ(

√
T )-regret algorithm was presented for the

LT model with node-level feedback using pair-oracles in (Li
et al. 2020). We will compare the regret bounds obtained in
this paper with the previous results in the main text.

Preliminaries
Notations
Given a vector x ∈ Rd, its transpose is denoted by x>. The
Euclidean norm of x is denoted by ‖x‖. For a positive def-
inite matrix M ∈ Rd×d, the weighted Euclidean norm of x
is defined as ‖x‖M =

√
x>Mx. The minimum eigenvalue

of M is denoted by λmin(M), and its determinant and trace
are denoted by det[M ] and tr[M ], respectively. For a real-
valued function µ : R → R, its first and second derivatives
are denoted by µ̇ and µ̈, respectively.

Social Network
A social network is a weighted directed graph G = (V,E)
with a node set V of n = |V | nodes and an edge set E
of m = |E| edges. Each edge e ∈ E is associated with
a weight or probability p(e) ∈ [0, 1]. The edge probability
vector is then denoted by p = (p(e))e∈E , which describes
the graph completely. For a node v ∈ V , letN(v) = N in(v)
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be the set of in-neighbors of v and dv = |N(v)| be its in-
degree. The maximum in-degree of the graph is denoted by
D = maxv∈V dv . In this paper, we use Ev to denote the set
of incoming edges of v and pv = (p(e))e∈Ev ∈ [0, 1]dv to
denote the probability vector corresponding to these edges.
The e-th entry of pv is denoted by pv(e). Thus, p(e) and
pv(e) refers to the same edge probability and we will use
them interchangeably throughout the paper. For an edge e =
(u, v) ∈ Ev , we use euv to explicitly indicate e’s endpoints.
Let χ(euv) ∈ {0, 1}dv be the characteristic vector of euv
over Ev such that all entries of χ(euv) are 0 except that the
entry corresponding to euv is 1. The characteristic vector of a
subset E′ ⊆ Ev is then defined as χ(E′) :=

∑
e∈E′ χ(e) ∈

{0, 1}dv . For simplicity, we define xe := χ(e).

Offline and Online Influence Maximization
In this subsection, we introduce the influence maximization
(IM) problem in both the offline and online setting.

The input of the offline problem is a social network, over
which the information spreads. A node v ∈ V is called ac-
tive if it receives the information and inactive otherwise. We
first describe the independent cascade (IC) diffusion model.

In the IC model, the diffusion proceeds in discrete time
steps τ = 0, 1, 2, · · · . At the beginning of the diffusion
(τ = 0), there is an initially active set S0 of nodes called
seeds. For τ ≥ 1, the active node set Sτ after time τ is
generated as follows. First, let Sτ = Sτ−1. Next, for each
v ∈ V \ Sτ−1, every node u ∈ N(v) ∩ (Sτ−1 \ Sτ−2)
will try to activate v independently with probability p(euv)
(let S−1 = ∅). Hence, v will be activated with probability
1−
∏
u∈N(v)∩(Sτ−1\Sτ−2)

(1−p(euv)) and be added into Sτ
once being activated. The diffusion terminates if Sτ = Sτ−1
for some τ and therefore it proceeds in at most n time steps.
Let (S0, S1, · · · , Sn−1) be the sequence of the active node
sets during the diffusion process, where Sτ denotes the ac-
tive node set after time τ . The influence spread of S0 is
defined as σ(S0) = E[|Sn−1|], i.e. the expected number
of active nodes when the diffusion starting from S0 termi-
nates. Here, σ : 2V → R+ is called the influence spread
function. In this paper, we also use σ(S, p) to state the edge
probability vector p explicitly. The influence maximization
problem takes as input the social network G and an integer
K ∈ N+, and requires to find the seed set Sopt that gives
the maximum influence spread with at most K seeds, i.e.
Sopt ∈ argmaxS⊆V,|S|≤K σ(S).

It is well-known that the IM problem admits a (1−1/e−ε)
approximation under the IC model (Kempe, Kleinberg, and
Tardos 2003), which is tight assuming P 6= NP (Feige 1998).
Let ORACLE be an (offline) oracle of the IM problem. Un-
der the IC model, let S̃ = ORACLE(G,K, p) be its output
and Sopt ∈ argmaxS:|S|≤K σ(S, p) be the optimal seed
set. For α, β ∈ [0, 1], we say ORACLE is an (α, β)-oracle
if Pr[σ(S̃, p) ≥ α · σ(Sopt, p)] ≥ β, where the probabil-
ity is taking from the possible randomness of the algorithm
ORACLE. Existing works (Borgs et al. 2014; Tang, Xiao, and
Shi 2014; Tang, Shi, and Xiao 2015) show that there exists
(1− 1/e− ε, 1− o(1))-oracle of the IM problem under the
IC model.

In the online influence maximization problem (OIM) con-
sidered in this paper, there is an underlying social network
G = (V,E), whose edge parameter vector p∗ is unknown
initially. At each round t of total T rounds, the learner
chooses a seed set St with cardinality at most K, observes
the cascade feedback, and updates her knowledge about the
parameter p∗ for later selections. The feedback considered
in this paper is node-level feedback, which means that the
learner observes the realization of the sequence of active
nodes (St,0, St,1, · · · , St,n−1) after selecting St,0 = St.
Equipped with an (α, β)-oracle, the objective of OIM is to
minimize the cumulative (αβ)-scaled regret over T rounds:

R(T ) = E

[
T∑
t=1

Rt

]

= E

[
Tαβ · σ(Sopt, p∗)−

T∑
t=1

|St,n−1|

]
.

Due to the additivity of expectation, it is equal to

R(T ) = E

[
Tαβ · σ(Sopt, p∗)−

T∑
t=1

σ(St, p
∗)

]
.

OIM Algorithm under the IC Model
In this section, we present an algorithm for OIM under the
IC model with node-level feedback (Algorithm 1). Our algo-
rithm adopts the canonical upper confidence bound (UCB)
framework in the bandits problem. Under the UCB frame-
work, at each round t, we first compute an estimate p̂t−1 of
p∗ and a corresponding confidence region (often in the shape
of an ellipsoid) based on the feedback before round t. Then,
a seed set St is selected by invoking the offline oracle with
an appropriate edge probability vector within the confidence
ellipsoid.

There are two difficulties of applying the framework to
achieve our goals. First, it is unclear how to obtain an es-
timate with a good confidence region with node-level feed-
back, since we cannot observe the status of each edge from
the feedback. Second, to invoke standard offline oracles, we
must ensure the confidence region to be the intersection of
confidence intervals for each edge parameter instead of just a
general ellipsoid for the parameter vector. To see this, with a
general ellipsoid as input, we have to invoke the pair-oracle
to optimize the seed set and the parameter vector simulta-
neously. But with a set of confidence intervals, due to the
monotonicity of influence functions, one can first fix the pa-
rameter vector formed by the right endpoints of those in-
tervals, and then choose the best seed set by invoking stan-
dard offline oracles. So, the difficulty lies in how to dissect
the confidence ellipsoid for the parameter vector into con-
fidence intervals for each edge parameter, making the stan-
dard offline oracle applicable. We successfully resolve these
two issues simultaneously by applying a novel adaptation of
the classical maximum likelihood estimation approach fed
by carefully handled data extracted from the observed feed-
back.

The key part of the algorithm is how to update the es-
timation of p∗ when the algorithm collects a set of node-
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Algorithm 1: IC-UCB
Input: Graph G = (V,E), seed set cardinality K ∈ N,
offline oracle ORACLE, parameter γ ∈ (0, 1) in Assumption
1.

1: Initialize M0,v ← 0 ∈ Rdv×dv for all v ∈ V , δ ←
1/(3n

√
T ), R ←

⌈
512D
γ4

(
D2 + ln(1/δ)

)⌉
, T0 ← nR

and ρ← 3
γ

√
ln(1/δ).

2: for each u ∈ V do
3: Choose {u} as the seed set forR rounds and construct

data pairs from observations (see the text in this sec-
tion for details).

4: end for
5: for t = T0 + 1, T0 + 2, · · · , T do
6: {p̂t−1,v,Mt−1,v}v∈V =

Estimate((Sk,0, Sk,1, · · · , Sk,n−1)1≤k≤t−1) (see Al-
gorithm 2).

7: Construct p̃t such that p̃t,v(e) = p̂t−1,v(e) + ρ ·
‖xe‖M−1

t−1,v
for each e ∈ Ev and each v ∈ V .

8: Choose St ∈ ORACLE(G,K, p̃t) and observe node-
level feedback (St,0, St,1, · · · , St,n−1).

9: end for

level feedback in all previous rounds (line 6). We first
explain how to construct data pairs lying in {0, 1}dv ×
{0, 1} to extract information about p∗v from the feedback
(St,0, St,1, · · · , St,n−1) in some round t. On the one hand,
for any node u ∈ N(v), if u is activated in some time step
τ while node v keeps inactive in time step τ + 1, we know
that the edge euv is not activated in this cascade process.
Thus, we construct an data pair (χ(euv), 0) in this case. On
the other hand, if the inactive node v is activated in time step
τ , then all nodes activated in time step τ − 1 is possible to
activate node v in this cascade process. More formally, let
E′ := {euv ∈ Ev | u ∈ (St,τ−1 \ St,τ−2) ∩ N(v)} be
the set of incoming edges to v from these nodes. We then
construct a data pair (χ(E′), 1) to indicate that one of the
edges in E′ passes through the information. Assume that in
this way Jt,v pairs are constructed for node v in round t in
total. We denote them by (Xt,j,v, Yt,j,v) for 1 ≤ j ≤ Jt,v .
Note that if v is not activated in this cascade process, no pair
has the form (·, 1); while if v is activated in this cascade pro-
cess, there exists exactly one pair of the form (·, 1) and we
assume this is the last pair so that Yt,Jt,v,v = 1. For the ini-
tial regularization phase where t ≤ T0, the process to extract
information is slightly different where only the first step ac-
tivation is taken into account. More formally, let node u be
chosen as the seed in round t. In the case u ∈ N(v), we have
Jt,v = 1 and construct data pair (χ(euv), 1) if v ∈ St,1, or
data pair (χ(euv), 0) if v /∈ St,1. In the case u /∈ N(v), no
data pair is constructed.

Algorithm 2 provides the estimate process (line 6
in Algorithm 1) in detail based on the data pairs
{(Xk,j,v, Yk,j,v)}1≤k≤t. Before giving the formal analysis
of the regret, we explain our intuitive in the algorithm de-
sign from the following four points.

Transformation of edge parameter p into parameter θ:

Algorithm 2: Estimate. Note that the code is written as a
computation from scratch in each round to accommodate
the initialization period of Algorithm 1, and it can be eas-
ily adapted to the incremental computation form.
Input: All observations (Sk,0, Sk,1, · · · , Sk,n−1)1≤k≤t un-
til round t.

1: Construct data pairs (Xk,j,v, Yk,j,v)1≤j≤Jk,v,1≤k≤t,v∈V
from observations (Sk,0, Sk,1, · · · , Sk,n−1)1≤k≤t (see
the text in this section for details).

2: Lt,v(θv) ←
∑t
k=1

∑Jk,v
j=1 [− exp(−X>k,j,vθv) − (1 −

Yk,j,v)X
>
k,j,vθv].

3: θ̂t,v ← argmaxθv Lt,v(θv).
4: p̂t,v(e)← 1− exp(−θ̂t,v(e)) for each e ∈ Ev
5: Mt,v ←

∑t
k=1

∑Jk,v
j=1 Xk,j,vX

>
k,j,v.

By the diffusion rule of the IC model, for each v ∈ V ,
given X ∈ {0, 1}dv , let Y ∈ {0, 1} indicates whether
v is activated in one time step. Then, E[Y | X] = 1 −
Πe:X(e)=1(1− p(e)) which is a complex relationship of pa-
rameter p(e). We therefore consider a transformation of edge
parameter p into a new parameter θ where

θ(e) = − ln(1− p(e)) for each e ∈ E. (1)

Thus, we have E[Y | X] = µ(X>θv) where the link
function µ : R→ R is defined as µ(x) := 1− exp(−x).

This indeed forms an instance of the generalized linear
bandit problem studied in (Filippi et al. 2010; Li, Lu, and
Zhou 2017), where the MLE approach was adopted and an-
alyzed. Besides, any confidence intervals for the entries of
parameter θ also imply the confidence intervals for the en-
tries of parameter p due to the following lemma:

Lemma 1. For any two vectors p̃, p ∈ [0, 1]m and θ̃, θ as
defined in Eq. (1), for each e ∈ E,

|p̃(e)− p(e)| ≤ |θ̃(e)− θ(e)|.

Pseudo log-likelihood function Lt,v:
In previous works (Filippi et al. 2010; Li, Lu, and

Zhou 2017), a standard log-likelihood function Lstdt,v (θv) :=∑t
k=1

∑Jk,v
j=1 [Yk,j,v lnµ(X>k,j,vθv) + (1 − Yk,j,v) ln(1 −

µ(X>k,j,vθv)) is used in the update process. However, the
analysis in their work requires that the gradient of the
log-likelihood function has the form

∑t
k=1

∑Jk,v
j=1 [Yk,j,v −

µ(X>k,j,vθv)]Xk,j,v . We remark that such requirement is met
in (Filippi et al. 2010; Li, Lu, and Zhou 2017) by assum-
ing the distribution of Y conditioned on X falls into some
sub-class of the exponential family of distributions, which
is not satisfied in our case. Here we present an alternative
way to overcome such technical difficulty. The pseudo log-
likelihood function Lt,v defined in line 2 in Algorithm 2 is
constructed by “integrating” the gradient so that we guaran-
tee the gradient of Lt,v has the specific form we need. In
the regret analysis part, we show this pseudo log-likelihood
function can successfully take the place of the standard log-
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likelihood function. Such an approach is of great indepen-
dent interest and we leave it as an open problem to find a
more intuitive explanation for it.

Special construction of data pairs {(Xt,j,v, Yt,j,v)}:
In the construction of data pairs, we treat pair type (·, 0)

and (·, 1) differently. Suppose at some time step, a set of
nodes V ′ fails to activate target node v. Let E′ = {euv | u ∈
V ′∩N(v)}. Instead of constructing data pair (χ(E′), 0) like
the way we treat for the activated case, we construct data
pairs (χ(e), 0) for all edges e ∈ E′. This does not make
any difference in the pseudo log-likelihood function Lt,v ,
but will make the update of Mt,v different. Intuitively, our
choice of data pairs reveals more information of the dif-
fusion process; while technically, such choice makes Mt,v

more similar to the diagonal matrix and enables us to upper
bound ‖x‖M−1

t,v
appears in Theorem 1 in the analysis.

Initial regularization step (line 2- 4 in Algorithm 1):
In this part, the algorithm chooses each node u ∈ V as

the seed set for R rounds, and then observes the activation
of u’s all out-neighbors in order to gather information about
its outgoing edges. By the regularization step, each edge will
be observed exactly R times. Intuitively, this step leads to a
coarse estimate of each individual probability p(e) for e ∈ E
before MLE starts. Technically, this step guarantees a lower
bound of the minimum eigenvalue of the Gram matrix Mt,v ,
which ensures the correctness of condition (2) in Theorem 1
in the analysis.

Regret Analysis
We now give an analysis of the regret of Algorithm 1. First,
we need to show that for each v ∈ V , the estimate θ̂t,v is
close to the true parameter θ∗v . To ensure this, we require
Assumption 1 below. Similar or even stronger assumptions
are adopted in all previous approaches for network infer-
ence (Netrapalli and Sanghavi 2012; Narasimhan, Parkes,
and Singer 2015; Pouget-Abadie and Horel 2015; Chen et al.
2021). Assumption 1 means that node v ∈ V will remain
inactive with probability at least γ even if all of its in-
neighbors are simultaneously activated. It reflects the stub-
bornness of the agent (node). That is, the behavior of a node
is partially determined by its intrinsic motivation, not by its
neighbors. So, even when all its neighbors adopt a new be-
havior, there is a nontrivial probability that the node will still
not adopt the new behavior. Intuitively, this allows us to ob-
serve the state of each incoming edge individually.
Assumption 1. There exists a parameter γ ∈ (0, 1) such
that

∏
u∈N(v)(1− p∗(euv)) ≥ γ for all v ∈ V .

Under Assumption 1, it is possible to show that θ̂t,v and
θ∗v are close to each other in all directions, as Theorem 1
stated. Most of its proof follows directly from Theorem 1 in
(Li, Lu, and Zhou 2017). For completeness, we include the
proof in the appendix.
Theorem 1. Suppose that Assumption 1 holds. For each v ∈
V , θ̂t,v and Mt,v are computed according to Algorithm 2.
Given δ ∈ (0, 1), if

λmin(Mt,v) ≥
512dv
γ4

(
d2v + ln

1

δ

)
. (2)

Then, with probability at least 1 − 3δ, for any x ∈ Rdv , we
have

|x>(θ̂t,v − θ∗v)| ≤ 3

γ

√
ln(1/δ) · ‖x‖M−1

t,v
.

For each e ∈ Ev , by plugging x = xe into Theorem 1 and
by Lemma 1, we obtain a confidence interval for each indi-
vidual probability parameter p∗(e), which is upper bounded
by ‖xe‖M−1

t,v
times a factor.

The key difficulty of applying Theorem 1 lies in how to
get an upper bound for ‖xe‖M−1

t,v
. To gain some intuitions,

let us first consider an ideal case where at each round k < t
and each time step τ before v becomes active, there is at
most one newly active in-neighbor u of v. We can therefore
observe whether v is activated by u through edge euv in the
next time step. In this case, every Xk,j,v equals to xe′ for
some edge e′ ∈ Ev , andMt,v is a diagonal matrix where the
e-th diagonal entry Mt,v(e, e) records the number of times e
is observed. Therefore,

‖xe‖M−1
t,v

=
√
M−1t,v (e, e) = 1

/√
Mt,v(e, e).

This bound coincides with the
√

1/N -accuracy of estimat-
ing a biased coin by tossing it N times. In general, how-
ever, Mt,v is not a diagonal matrix, and it is very difficult to
compute ‖xe‖M−1

t,v
from Mt,v . Luckily, the construction of

data pairs (Xk,j,v, Yk,j,v) makesMt,v as close as possible to
some diagonal matrix. Specifically, define

M̃t,v :=
t∑

k=1

∑
j:Yk,j,v=0

Xk,j,vX
>
k,j,v.

Then, M̃t,v is a diagonal matrix since in each round k, all
data pairs with Yk,j,v = 0 have the form (χ(e′), ·) for some
edge e′. Besides, we know ‖xe‖M−1

t,v
≤ ‖xe‖M̃−1

t,v
since

Mt,v−M̃t,v is a positive semidefinite matrix. Thus, we only
need to give an upper bound for ‖xe‖M̃−1

t,v
. Let e = euv .

Consider the case when at time step τ , node u becomes ac-
tive while node v keeps inactive, due to Assumption 1, node
v will remains inactive in time step τ + 1 with probability
at least γ. Therefore, M̃t,v(e, e) is at least γMt,v(e, e) in ex-
pectation and we have

‖xe‖M−1
t,v
≤ 1
/√

γMt,v(e, e).

This bound still coincides with the previous bound, up to a√
1/γ factor. The formal statements about these bounds are

presented in the appendix.
The last ingredient in our regret analysis is a group ob-

servation modulated (GOM) bounded smoothness condition
for the IC model. The condition is inspired by the GOM
condition for the LT model (Li et al. 2020), which is used
to handle node-level feedback. We remark that for edge-
level feedback, there is a related triggering probability mod-
ulated (TPM) bounded smoothness condition (Wang and
Chen 2017; Wen et al. 2017). However, the TPM condition
does not suffice for node-level feedback.
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We now state the GOM condition formally. Given a seed
set S ⊆ V and a node v ∈ V \ S, we say node u ∈ V \ S is
relevant to node v if there is a path P from S to v such
that u ∈ P . Let V [S, v] ⊆ V be the set of nodes rele-
vant to v given seed set S. Given diffusion cascade (S0 =
S, S1, · · · , Sn−1), let Eov be the set of incoming edges of
v that have a chance to activate v before v becomes ac-
tive, i.e., Eov = {e = (u, v) ∈ Ev | u ∈ Sτ−1 if v ∈
Sτ \ Sτ−1; or u ∈ Sn−1 if v 6∈ Sn−1}. Note that Eov is ex-
actly the set of edges used for constructing the data pairs in
the estimate procedure (Algorithm 2), and this links the al-
gorithm with the following important condition. We have the
following GOM condition for the IC model, whose proof is
presented in the appendix.

Lemma 2 (GOM bounded smoothness for the IC model).
For any seed set S ⊆ V , and any two edge-probability vec-
tor p̃, p∗ ∈ [0, 1]|E| such that p̃(e) ≥ p∗(e) for each e ∈ E,
it satisfies that

σ(S, p̃)− σ(S, p∗)

≤
∑

v∈V \S

∑
u∈V [S,v]

E

∑
e∈Eou

(p̃(e)− p∗(e))

 ,
where the expectation is taken over the randomness of the
diffusion cascade (S0, S1, · · · , Sn−1), which is generated
with respect to parameter p∗.

Given a seed set S ⊆ V and a node u ∈ V \ S, define
nS,u :=

∑
v∈V \S 1{u ∈ V [S, v]} to be the number of nodes

that u is relevant to. Further, define

ζ(G) := max
S:|S|≤K

√∑
u∈V

n2S,u ≤ O(n3/2).

We show the following regret of Algorithm 1, which is pre-
sented in Theorem 2.

Theorem 2. When we use a standard (α, β)-oracle in Algo-
rithm 1, under Assumption 1, the αβ-scaled regret of Algo-
rithm 1 satisfies that

R(T ) = Õ

(
ζ(G)

√
mDT

γ2

)
= Õ(n3

√
T/γ2).

Proof. Let Ht be the history of past rounds by the end of
round t. For t ≤ T0, E[Rt] ≤ n. Now consider the case
where t > T0. By the definition of Rt,

E[Rt | Ht−1] = E[αβ · σ(Sopt, p∗)− σ(St, p
∗) | Ht−1],

where the expectation is taken over the randomness of St.
For any T0 < t ≤ T and v ∈ V , define event ξt−1,v as

ξt−1,v := {|x>e (θ̂t−1,v − θ∗v)| ≤ ρ · ‖xe‖M−1
t−1,v

, ∀ e ∈ Ev},

and let ξt−1,v be its complement. By the choices of
δ,R, T0, ρ as in Algorithm 1, the fact that λmin(Mt−1,v) ≥
λmin(MT0,v) = R and Theorem 1, we have Pr[ξt−1,v] ≤
3δ. Further define event ξt−1 := ∧v∈V ξt−1,v and let ξt−1 be

its complement. By union bound, Pr[ξt−1] ≤ 3δn. Note that
under event ξt−1, by Lemma 1, for any v ∈ V and e ∈ Ev ,

|p̂t−1,v(e)− p∗v(e)| = |x>e (p̂t−1,v − p∗v)|
≤ |x>e (θ̂t−1,v − θ∗v)|
≤ ρ · ‖xe‖M−1

t−1,v
.

Thus, by the definition of p̃t,v , we have p∗v(e) ≤ p̃t,v(e) for
all v ∈ V and e ∈ Ev . Hence,

E[Rt] ≤ Pr[ξt−1] ·E[αβ · σ(Sopt, p∗)− σ(St, p
∗) | ξt−1]

+ Pr[ξt−1] · n
≤ E[αβ · σ(Sopt, p̃t)− σ(St, p

∗) | ξt−1] + 3δn2

≤ E[σ(St, p̃t)− σ(St, p
∗) | ξt−1] + 3δn2.

The last inequality holds since St is obtained from an (α, β)-
oracle under parameter p̃.

To bound σ(St, p̃t) − σ(St, p
∗), we develop the GOM

bounded smoothness for the IC model in Lemma 2, whose
proof is presented in the appendix. With it, we obtain that

E[Rt]− 3δn2

≤ E

 ∑
v∈V \St

∑
u∈V [St,v]

∑
e∈Eot,u

(p̃t,u(e)− p∗u(e))

∣∣∣∣ ξt−1


≤ 2ρ ·E

 ∑
v∈V \St

∑
u∈V [St,v]

∑
e∈Eot,u

‖xe‖M−1
t−1,u


= 2ρ ·E

 ∑
u∈V \St

∑
e∈Eot,u

‖xe‖M−1
t−1,u

∑
v∈V \St

1u∈V [St,v]


= 2ρ ·E

 ∑
u∈V \St

∑
e∈Eot,u

nSt,u · ‖xe‖M−1
t−1,u

 .
The second inequality holds since under event ξt−1, it holds
that |p̃t,u(e) − p∗u(e)| ≤ 2ρ · ‖xe‖M−1

t−1,u
for all u ∈ V and

e ∈ Eu.
Recall that the above derivation holds for t > T0, and for

t ≤ T0, E[Rt] ≤ n. We thus have

R(T ) ≤ 2ρ ·E

 T∑
t=T0+1

∑
v∈V \St

nSt,v
∑
e∈Eot,v

‖xe‖M−1
t−1,v


+ 3δn2(T − T0) + nT0.

We next bound the above term by carefully dealing with
‖xe‖M−1

t−1,v
.

Recall that Eot,v = {e = (u, v) ∈ Ev | u ∈ St,τ−1 if v ∈
St,τ \ St,τ−1; or u ∈ St,n−1 if v 6∈ St,n−1}, i.e. the set of
incoming edges of v at round t that have a chance to activate
v before v becomes active. Define Ẽot,v := {e ∈ Eot,v |
e fails to activate v} and M̃t,v as

M̃t,v :=
t∑

k=1

∑
j:Yk,j,v=0

Xk,j,vX
>
k,j,v =

t∑
k=1

∑
e∈Ẽot,v

xex
>
e .
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Clearly, M̃t,v is a diagonal matrix and Mt,v − M̃t,v is posi-
tive semi-definite. We have the following simple but crucial
observation, whose proof is presented in the appendix.

Lemma 3. Under Assumption 1, for any v ∈ V at round t,
it satisfies that

E

 ∑
e∈Eot,v

‖xe‖M−1
t−1,v

 ≤ 1

γ
E

 ∑
e∈Ẽot,v

‖xe‖M̃−1
t−1,v

 .
We thus turn to give an upper bound on∑T
t=T0+1

∑
v∈V \St nSt,v

∑
e∈Ẽot,v

‖xe‖M̃−1
t−1,v

in Lemma
4, whose proof is presented in the appendix.

Lemma 4. For any v ∈ V , it satisfies that

T∑
t=T0+1

∑
v∈V \St

nSt,v
∑
e∈Ẽot,v

‖xe‖M̃−1
t−1,v

≤ ζ(G)

√
2mD(T − T0) ln

(
1 +

T − T0
R

)
.

Combining the above two lemmas, we obtain that

R(T ) ≤ 2ρ

γ
·E

 T∑
t=T0+1

∑
v∈V \St

nSt,v
∑
e∈Ẽot,v

‖xe‖M̃−1
t−1,v


+ 3δn2(T − T0) + nT0

≤ 2ρζ(G)

γ

√
2mD(T − T0) ln

(
1 +

T − T0
R

)
+ 3δn2(T − T0) + nT0

≤ 6ζ(G)

γ2

√
2mDT ln(1 + T ) ln(3nT )

+ n
√
T +

512Dn2

γ4
(
D2 + ln(3nT/δ)

)
+ 1

= Õ

(
ζ(G)

√
mDT

γ2

)
.

The last inequality is obtained by plugging δ = 1/(3n
√
T ),

R =
⌈
512D
γ4

(
D2 + ln(1/δ)

)⌉
, T0 = nR and ρ =

3
γ

√
ln(1/δ) defined in Algorithm 1 into the formula.

We remark that the worst-case regret for the IC model
with edge-level feedback is Õ(n4

√
T ) in (Wen et al. 2017)

and Õ(n3
√
T ) in (Wang and Chen 2017). Thus, our regret

bound under node-level feedback matches the previous ones
under edge-level feedback in the worst case, up to a 1/γ2

factor.
To get an intuition about γ’s value, assume that each edge

probability ≤ 1 − c for some constant c ∈ (0, 1). Then,
γ = O(cD), where D is the maximum in-degree of the

graph. Thus, in the worst case, 1/γ is exponential in n. But
when D = O(log n), 1/γ is polynomial in n and so is the
regret bound. We think D = O(log n) is reasonable in prac-
tice, since a person only has a limited attention and cannot
pay attention to too many people in the network. In practical
applications, the exact value of γ is often unknown. To ad-
dress this issue, for each v ∈ V , we can choose N(v) (not
necessarily feasible) and observe whether v is activated in
the first few rounds to obtain a good estimate of γ. This only
causes little loss in the regret.

Conclusion
In this paper, we investigate the OIM problem with node-
level feedback. We presents Õ(

√
T )-regret OIM algorithms

for the IC model. Our algorithm is the first one with node-
level feedback that almost matches the optimal regret bound.
Unlike in the LT model (Li et al. 2020), our algorithm uses
standard offline oracles instead of the unrealistic pair oracle.

Our novel adaptation of MLE to fit the generalized lin-
ear bandits (GLB) model is of great independent interest,
which might be combined with the GLB model to handle re-
wards generated from a broader classes of distributions. Our
technique for dissect confidence ellipsoids into confidence
intervals may also be used in other learning problem to gain
more accurate estimation.

There still remain some open problems on the node-level
feedback setting. An immediate one is to either remove our
assumptions for edge weights, or remove the assumption pa-
rameter from the regret bound, while still using standard
offline oracles. Besides, for the LT model with node-level
feedback, there still lacks an optimal-regret algorithm using
standard offline oracles. Finally, it is interesting to develop
a general bandit framework which includes OIM with node-
level feedback as a special case, just like CMAB-T contain-
ing OIM with edge-level feedback.
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