Online Influence Maximization with Node-Level Feedback Using Standard Offline Oracles

Zhijie Zhang,1,2 Wei Chen,3 Xiaoming Sun,1,2 Jialin Zhang1,2,*

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China
3 Microsoft Research Asia, Beijing, China
{zhangzhijie,sunxiaoming,zhangjialin}@ict.ac.cn, weic@microsoft.com

Abstract

We study the online influence maximization (OIM) problem in social networks, where in multiple rounds the learner repeatedly chooses seed nodes to generate cascades, observes the cascade feedback, and gradually learns the best seeds that generate the largest cascade. We focus on two major challenges in this paper. First, we work with node-level feedback instead of edge-level feedback. The edge-level feedback reveals all edges that pass through information in a cascade, whereas the node-level feedback only reveals the activated nodes with timestamps. The node-level feedback is arguably more realistic since in practice it is relatively easy to observe who is influenced but very difficult to observe from which relationship (edge) the influence comes. Second, we use standard offline oracles instead of offline pair-oracles. To compute a good seed set for the next round, an offline pair-oracle finds the best seed set and the best parameters within the confidence region simultaneously, and such an oracle is difficult to compute due to the combinatorial core of the OIM problem. So we focus on how to use the standard offline influence maximization oracle which finds the best seed set given the edge parameters as input. In this paper, we resolve these challenges for the famous independent cascade (IC) diffusion model. The past research only achieves edge-level feedback, while we present the first $O(\sqrt{T})$-regret algorithm for the node-level feedback. For the first challenge above, we apply a novel adaptation of the maximum likelihood estimation (MLE) approach to learn the graph parameters and its confidence region (a confidence ellipsoid). For the second challenge, we adjust the update procedure to dissect the confidence ellipsoid into confidence intervals on each parameter, so that the standard offline influence maximization oracle is enough.

Introduction

Social networks have gained great attention in the past decades as a model for describing relationships between humans. Typically, researchers show great interest in how information, ideas, news, influence, etc spread over social networks, starting from a small set of nodes called seeds. To this end, a variety of diffusion models are proposed to formulate the propagation in reality, and the most well-known ones are the independent cascade (IC) model and the linear threshold (LT) model (Kempe, Kleinberg, and Tardos 2003). A corresponding optimization problem, known as influence maximization (IM), asks how to maximize the influence spread, under a specific diffusion model, by selecting a limited number of “good” seeds. The problem has found enormous applications, including advertising, viral marketing, news transmission, etc.

In the canonical setting, the IM problem takes as input a social network, which is formulated as an edge-weighted directed graph. The problem is NP-hard but can be well-approximated (Kempe, Kleinberg, and Tardos 2003). For the past decade, more efficient and effective algorithms have been designed (Borgs et al. 2014; Tang, Xiao, and Shi 2014; Tang, Shi, and Xiao 2015), leading to an almost complete resolution of the problem. However, the canonical IM is sometimes difficult to apply in practice, as edge parameters of the network are often unknown in many scenarios. A possible way to circumvent such difficulty is to learn the edge parameters from past observed diffusion cascades, and then maximize the influence based on the learned parameters. The learning task is referred to as network inference, and has been extensively studied in the literature (Gomez-Rodriguez, Leskovec, and Krause 2010; Myers and Leskovec 2010; Gomez-Rodriguez, Balduzzi, and Schölkopf 2011; Du et al. 2012; Netrapalli and Sanghavi 2012; Abrahao et al. 2013; Daneshmand et al. 2014; Du et al. 2013, 2014; Narasimhan, Parkes, and Singer 2015; Pouget-Abadie and Horel 2015; He et al. 2016; Chen et al. 2021). However, this approach does not take into account the cost of the learning process and fails to balance between exploration and exploitation when future diffusion cascades come. This motivates the study of online influence maximization (OIM) problem considered in this paper.

In OIM, the learner faces an unknown social network and runs T rounds in total. At each round, the learner chooses a seed set to generate cascades, observes the cascade feedback, and receives the influence value as a reward. The goal is to maximize the influence values received over T rounds, or equivalently, to minimize the cumulative regret compared with the optimal seed set that generates the largest influence. The most widely studied feedback in the literature is the edge-level feedback (Chen, Wang, and Yuan 2013; Chen et al. 2016; Wang and Chen 2017; Wen et al. 2017;
Wu et al. 2019), where the learner can observe whether an edge passes through the information received by its start point. The node-level feedback was only investigated very recently in (Vaswani, Lakshmanan, and Schmidt 2016; Li et al. 2020), where the learner can only observe which nodes receive the information at each time step during a diffusion process. In practice, the node-level feedback is more realistic than the edge-level feedback, not only because it reveals less information, but also because it is usually easy to observe who is influenced but very difficult to observe from which edge the influence comes from. For example, the social network platform is easy to learn whether and when a user buys some specific product or service but is difficult to learn based on whose recommendations or comments the user makes such a decision.

Besides the feedback type, one more challenge about the oracle model also emerges from the work (Li et al. 2020), and many other works in online learning. In (Li et al. 2020), the solution requires an offline pair-oracle, which takes the estimated edge parameters and their confidence regions as the input, and outputs the best seed set and parameters that maximize the social influence. However, though numerous works show that the offline influence maximization problem, which corresponds to the standard offline oracle, can be well approximated, to the best of our knowledge, we do not know how to efficiently compute such pair-oracle, even approximately. We may choose several parameters by either sampling the parameters or enumerating the parameters in a mesh grid, and compute the maximum influence value among such chosen parameters by the standard offline oracle. But such a method is quite time-consuming where the running time is typically exponential to the dimension of the confidence region, which is the number of parameters. Besides, we do not know how to guarantee the approximation ratio for such a pair-oracle. This difficulty in computation might be due to the complex combinatorial structure in the influence maximization problem. Therefore, in this paper, we focus on the weaker oracle model: the standard offline oracle which takes the edge-level parameters as the input and finds the best seed set accordingly.

Our contribution. We resolve the aforementioned challenges for the IC model and present the first $O(\text{poly}(|G|)\sqrt{T})$-regret algorithm with node-level feedback using standard offline oracles.

In the technical part, our main contribution is a novel adaptation of the maximum likelihood estimation (MLE) approach which can learn the edge-level parameters and their confidence ellipsoids based on the node-level feedback. Further, we adjust the update procedure to dissect the confidence ellipsoid into confidence intervals on each parameter, so that we can apply a standard offline influence maximization oracle instead of the pair-oracle.

Related work. The (offline) influence maximization problem has received great attention in the past two decades. We refer interested readers to the surveys of (Chen, Lakshmanan, and Castillo 2013; Li et al. 2018) for an overall understanding.

The online influence maximization problem falls into the field of multi-armed bandits (MAB), a prosperous research area that dates back to 1933 (Thompson 1933). In the classical multi-armed stochastic bandits (Robbins 1952; Lai and Robbins 1985), there is a set of n arms, each of which is associated with a reward specified by some unknown distribution. At each round t, the learner chooses an arm and receives a reward sampled from the corresponding distribution. The goal is to maximize the total expected rewards received over T rounds. The model was later generalized to the multi-armed stochastic linear bandits (Auer, Cesa-Bianchi, and Fischer 2002), where each arm is associated with a characteristic vector and its reward is given by the inner product of the vector and an unknown parameter vector. This model was extensively studied in the literature (Dani, Hayes, and Kakade 2008; Li et al. 2010; Rusmevichientong and Tsitsiklis 2010; Abbasi-Yadkori, Pál, and Szepesvári 2011). Further generalizations include combinatorial multi-armed bandits (CMAB) and CMAB with probabilistically triggered arms (CMAB-T) (Chen, Wang, and Yuan 2013; Chen et al. 2016; Wang and Chen 2017), where a subset of arms, called the super-arm, can be chosen, and the reward is defined over super-arms and may be non-linear. Besides, the arms beyond the chosen super-arm may also be triggered and observed. CMAB-T is a quite general bandits framework and indeed contains OIM with edge-level feedback as a special case. However, OIM with node-level feedback does not fit into the CMAB-T framework.

OIM has been studied extensively in the literature. For edge-level feedback, existing work (Chen, Wang, and Yuan 2013; Lei et al. 2015; Chen et al. 2016; Wang and Chen 2017; Wen et al. 2017; Wu et al. 2019) present both theoretical and heuristic results. The node-level feedback was first proposed in (Vaswani, Lakshmanan, and Schmidt 2016). However, only heuristic algorithms were presented. Very recently, an $O(\sqrt{T})$-regret algorithm was presented for the LT model with node-level feedback using pair-oracles in (Li et al. 2020). We will compare the regret bounds obtained in this paper with the previous results in the main text.

Preliminaries

Notations

Given a vector $x \in \mathbb{R}^d$, its transpose is denoted by x^\top. The Euclidean norm of x is denoted by $\|x\|$. For a positive definite matrix $M \in \mathbb{R}^{d \times d}$, the weighted Euclidean norm of x is defined as $\|x\|_M = \sqrt{x^\top M x}$. The minimum eigenvalue of M is denoted by $\lambda_{\min}(M)$, and its determinant and trace are denoted by $\det[M]$ and $\text{tr}[M]$, respectively. For a real-valued function $\mu : \mathbb{R} \rightarrow \mathbb{R}$, its first and second derivatives are denoted by μ' and μ'', respectively.

Social Network

A social network is a weighted directed graph $G = (V, E)$ with a node set V of $n = |V|$ nodes and an edge set E of $m = |E|$ edges. Each edge $e \in E$ is associated with a weight or probability $p(e) \in [0, 1]$. The edge probability vector is then denoted by $p = (p(e))_{e \in E}$, which describes the graph completely. For a node $v \in V$, let $N(v) = N^\circ(v)$
be the set of in-neighbors of v and $d_v = |N(v)|$ be its indegree. The maximum in-degree of the graph is denoted by $D = \max_{v \in V} d_v$. In this paper, we use E_v to denote the set of incoming edges of v and $p_v = (p(e))_{e \in E_v} \in [0,1]^{d_v}$ to denote the probability vector corresponding to these edges. The e-th entry of p_v is denoted by $p_v(e)$. Thus, $p(e)$ and $p_v(e)$ refers to the same edge probability and we will use them interchangeably throughout the paper. For an edge $e = (u,v) \in E_v$, we use e_{uv} to explicitly indicate e’s endpoints. Let $\chi(e_{uv}) \in \{0,1\}^{d_v}$ be the characteristic vector of e_{uv} over E_v such that all entries of $\chi(e_{uv})$ are 0 except that the entry corresponding to e_{uv} is 1. The characteristic vector of a subset $E' \subseteq E_v$ is then defined as $\chi(E') := \sum_{e \in E'} \chi(e) \in \{0,1\}^{d_v}$. For simplicity, we define $x_e := \chi(e)$.

Offline and Online Influence Maximization

In this subsection, we introduce the influence maximization (IM) problem in both the offline and online setting.

The input of the offline problem is a social network, over which the information spreads. A node $v \in V$ is called active if it receives the information and inactive otherwise. We first describe the independent cascade (IC) diffusion model.

In the IC model, the diffusion proceeds in discrete time steps $\tau = 0,1,2,\ldots$. At the beginning of the diffusion ($\tau = 0$), there is an initially active set S_0 of nodes called seeds. For $\tau \geq 1$, the active node set S_τ after time τ is generated as follows. First, let $S_\tau = S_{\tau-1}$. Next, for each $v \in V \setminus S_{\tau-1}$, every node $u \in N(v) \cap (S_{\tau-1} \setminus S_{\tau-2})$ will try to activate v independently with probability $p(e_{uv})$ (let $S_{\tau-1} = \emptyset$). Hence, v will be activated with probability $1 - \prod_{u \in N(v) \cap (S_{\tau-1} \setminus S_{\tau-2})} (1 - p(e_{uv}))$ and be added into S_τ once being activated. The diffusion terminates if $S_\tau = S_{\tau-1}$ for some τ and therefore it proceeds in at most n time steps. Let $(S_0, S_1, \ldots, S_{n-1})$ be the sequence of the active node sets during the diffusion process, where S_τ denotes the active node set after time τ. The influence spread of S_0 is defined as $\sigma(S_0) = E[|S_n|]$, i.e. the expected number of active nodes when the diffusion starting from S_0 terminates. Here, $\sigma : 2^V \to \mathbb{R}_+$ is called the influence spread function. In this paper, we also use $\sigma(S,p)$ to state the edge probability vector p explicitly. The influence maximization problem takes as input the social network G and an integer $K \in \mathbb{N}_+$, and requires to find the seed set S_{opt} that gives the maximum influence spread with at most K seeds, i.e. $S_{opt} \in \arg \max_{S \subseteq V, |S| \leq K} \sigma(S)$.

It is well-known that the IM problem admits a $(1-1/e - \epsilon)$ approximation under the IC model (Kempe, Kleinberg, and Tardos 2003), which is tight assuming $P \neq \text{NP}$ (Feige 1998). Let Oracle be an (offline) oracle of the IM problem. Under the IC model, let $\tilde{S} = \text{Oracle}(G,K,p)$ be its output and $S_{opt} \in \arg \max_{S \subseteq V, |S| \leq K} \sigma(S)$ be the optimal seed set. For $\alpha, \beta \in [0, 1]$, we say Oracle is an (α, β)-oracle if $\Pr[\sigma(\tilde{S}, p) \geq \alpha \cdot \sigma(S_{opt}, p)] \geq \beta$, where the probability is taken from the possible randomness of the algorithm Oracle. Existing works (Borgs et al. 2014; Tang, Xiao, and Shi 2014; Tang, Shi, and Xiao 2015) show that there exists $(1 - 1/e - \epsilon, 1 - \alpha(1))$-oracle of the IM problem under the IC model.

In the online influence maximization problem (OIM) considered in this paper, there is an underlying social network $G = (V,E)$, whose edge parameter vector p^* is unknown initially. At each round t of total T rounds, the learner chooses a seed set S_t with cardinality at most K, observes the cascade feedback, and updates her knowledge about the parameter p^* for later selections. The feedback considered in this paper is node-level feedback, which means that the learner observes the realization of the sequence of active nodes $(S_{t,0}, S_{t,1}, \ldots, S_{t,n-1})$ after selecting $S_{t,0} = S_t$. Equipped with an (α, β)-oracle, the objective of OIM is to minimize the cumulative $(\alpha \beta)$-scaled regret over T rounds:

$$R(T) = \mathbb{E} \left[\sum_{t=1}^{T} R_t \right] = \mathbb{E} \left[T \alpha \beta \cdot \sigma(S_{opt}, p^*) - \sum_{t=1}^{T} |S_{t,n-1}| \right] .$$

Due to the additivity of expectation, it is equal to

$$R(T) = \mathbb{E} \left[T \alpha \beta \cdot \sigma(S_{opt}, p^*) - \sum_{t=1}^{T} \sigma(S_t, p^*) \right] .$$

OIM Algorithm under the IC Model

In this section, we present an algorithm for OIM under the IC model with node-level feedback (Algorithm 1). Our algorithm adopts the canonical upper confidence bound (UCB) framework in the bandits problem. Under the UCB framework, at each round t, we first compute an estimate \hat{p}_{t-1} of p^* and a corresponding confidence region (often in the shape of an ellipsoid) based on the feedback before round t. Then, a seed set S_t is selected by invoking the offline oracle with an appropriate edge probability vector within the confidence ellipsoid.

There are two difficulties of applying the framework to achieve our goals. First, it is unclear how to obtain an estimate with a good confidence region with node-level feedback, since we cannot observe the status of each edge from the feedback. Second, to invoke standard offline oracles, we must ensure the confidence region to be the intersection of confidence intervals for each edge parameter instead of just a general ellipsoid for the parameter vector. To see this, with a general ellipsoid as input, we have to invoke the pair-oracle to optimize the seed set and the parameter vector simultaneously. But with a set of confidence intervals, due to the additivity of influence functions, one can first fix the parameter vector formed by the right endpoints of those intervals, and then choose the best seed set by invoking standard offline oracles. So, the difficulty lies in how to dissect confidence intervals, and then choose the best seed set by invoking standard offline oracle applicable. We successfully resolve these two issues simultaneously by applying a novel adaptation of the classical maximum likelihood estimation approach fed by carefully handled data extracted from the observed feedback.

The key part of the algorithm is how to update the estimation of p^* when the algorithm collects a set of node-
Algorithm 1: IC-UCB

Input: Graph $G = (V, E)$, seed set cardinality $K \in \mathbb{N}$, offline oracle ORACLE, parameter $\gamma \in (0, 1)$ in Assumption 1.

1: Initialize $M_{0,v} \leftarrow 0 \in \mathbb{R}^d_v \times d_v$ for all $v \in V$, $\delta \leftarrow 1/(3n \sqrt{T})$, $R \leftarrow \frac{\sqrt{2d_d \gamma}}{\gamma} (D^2 + \ln(1/\delta))$, $T_0 \leftarrow nR$ and $\rho \leftarrow \frac{2}{3} \sqrt{\ln(1/\delta)}$.
2: for each $v \in V$ do
3: \hspace{1em} Choose $\{u\}$ as the seed set for R rounds and construct data pairs from observations (see the text in this section for details).
4: \hspace{1em} end for
5: for $t = T_0 + 1, T_0 + 2, \ldots, T$ do
6: \hspace{1em} $\{\hat{p}_{-1,v}, M_{t-1,v}\}_{v \in V} \leftarrow \text{Estimate}\left(\begin{array}{l} (S_{k,0}, S_{k,1}, \ldots, S_{k,n-1})_{1 \leq k \leq t-1} \end{array}\right)$ (see Algorithm 2).
7: \hspace{1em} Construct \hat{p}_v such that $\hat{p}_v(e) = \hat{p}_{-1,v}(e) + \rho \cdot \|x_v\|_M^{-1}$ for each $e \in E_v$ and each $v \in V$.
8: \hspace{1em} Choose $S_t \leftarrow \text{ORACLE}(G, K, \hat{p}_v)$ and observe node-level feedback $(S_{t,0}, S_{t,1}, \ldots, S_{t,n-1})$.
9: end for

level feedback in all previous rounds (line 6). We first explain how to construct data pairs lying in $\{0, 1\}^d_v \times \{0, 1\}$ to extract information about p_v^* from the feedback $(S_{t,0}, S_{t,1}, \ldots, S_{t,n-1})$ in some round t. On the one hand, for any node $u \in N(v)$, if u is activated in some time step t while node v keeps inactive in time step $t + 1$, we know that the edge e_{uv} is not activated in this cascade process. Thus, we construct an data pair $(\chi(e_{uv}), 0)$ in this case. On the other hand, if the inactive node v is activated in time step t, then all nodes activated in time step $t - 1$ is possible to activate node v in this cascade process. More formally, let $E' := \{e_{uv} \in E_v \mid u \in (S_{t-1} \setminus S_{t-2}) \cap N(v)\}$ be the set of incoming edges to v from these nodes. We then construct a data pair $(\chi(E'), 1)$ to indicate that one of the edges in E' passes through the assumption. Assume that in this way $J_{t,v}$ pairs are constructed for node v in round t in total. We denote them by $(X_{t,j,v}, Y_{t,j,v})$ for $1 \leq j \leq J_{t,v}$. Note that if v is not activated in this cascade process, no pair has the form $(\cdot, 1)$; while if v is activated in this cascade process, there exists exactly one pair of the form $(\cdot, 1)$ and we assume this is the last pair so that $Y_{t,J_{t,v},v} = 1$. For the last regularization phase where $t \leq T_0$, the process to extract information is slightly different where only the first step activation is taken into account. More formally, let node u be chosen as the seed in round t. In the case $u \in N(v)$, we have $J_{t,v} = 1$ and construct data pair $(\chi(e_{uv}), 1)$ if $v \in S_{t,1}$, or data pair $(\chi(e_{uv}), 0)$ if $v \notin S_{t,1}$. In the case $u \notin N(v)$, no data pair is constructed.

Algorithm 2 provides the estimate process (line 6 in Algorithm 1) in detail based on the data pairs $\{(X_{t,j,v}, Y_{t,j,v})\}_{1 \leq j \leq t}$. Before giving the formal analysis of the regret, we explain our intuition in the algorithm design from the following four points.

Transformation of edge parameter p into parameter θ:

Algorithm 2: Estimate. Note that the code is written as a computation from scratch in each round to accommodate the initialization period of Algorithm 1, and it can be easily adapted to the incremental computation form.

Input: All observations $(S_{k,0}, S_{k,1}, \ldots, S_{k,n-1})_{1 \leq k \leq t}$ until round t.

1: Construct data pairs $(X_{k,j,v}, Y_{k,j,v})_{1 \leq j \leq k, 1 \leq k \leq t, v \in V}$ from observations $(S_{k,0}, S_{k,1}, \ldots, S_{k,n-1})_{1 \leq k \leq t}$ (see the text in this section for details).
2: \hspace{1em} $L_{t,v}(\theta_v) \leftarrow \sum_{k=1}^t \sum_{j=1}^{J_{k,v}} [\exp(-X_{k,j,v}^\top \theta_v) - (1 - Y_{k,j,v}) X_{k,j,v}^\top \theta_v]$
3: \hspace{1em} $\hat{\theta}_{t,v} \leftarrow \arg\max_{\theta_{t,v}} L_{t,v}(\theta_v)$.
4: \hspace{1em} $p_{t,v}(e) \leftarrow 1 - \exp(-\hat{\theta}_{t,v}(e))$ for each $e \in E_v$.
5: \hspace{1em} $M_{t,v} \leftarrow \sum_{k=1}^t \sum_{j=1}^{J_{k,v}} X_{k,j,v} X_{k,j,v}^\top$

By the diffusion rule of the IC model, for each $v \in V$, given $X \in \{0, 1\}^{d_v}$, let $Y \in \{0, 1\}$ indicates whether v is activated in one time step. Then, $E[Y \mid X] = 1 - \Pi_v X(e) = 1 - \Pi_v X(e) = 1 - \exp(-x)$. This indeed forms an instance of the generalized linear bandit problem studied in (Filippi et al. 2010; Li, Lu, and Zhou 2017), where the MLE approach was adopted and analyzed. Besides, any confidence intervals for the entries of parameter θ also imply the confidence intervals for the entries of parameter p due to the following lemma:

Lemma 1. For any two vectors $\hat{p}, p \in [0, 1]^m$ and $\hat{\theta}, \theta$ as defined in Eq. (1), for each $e \in E$,

$$|\hat{p}(e) - p(e)| \leq |\hat{\theta}(e) - \theta(e)|.$$
likelihood function. Such an approach is of great independent interest and we leave it as an open problem to find a more intuitive explanation for it.

Special construction of data pairs \{\{X(t, \cdot, v), Y(t, \cdot, v)\}:

In the construction of data pairs, we treat pair type \((\cdot, 0)\) and \((\cdot, 1)\) differently. Suppose at some time step, a set of nodes \(V'\) fails to target node \(v\). Let \(E' = \{e_{uv} \mid u \in V' \cap N(v)\}\). Instead of constructing data pair \((\chi(E'), 0)\) like the way we treat for the activated case, we construct data pairs \((\chi(e), 0)\) for all edges \(e \in E'\). This does not make any difference in the pseudo log-likelihood function \(L_{t,v}\), but will make the update of \(M_{t,v}\) different. Intuitively, our choice of data pairs reveals more information of the diffusion process; while technically, such choice makes \(M_{t,v}\) more similar to the diagonal matrix and enables us to upper bound \(\|x\|_{M_{t,v}}^{-1}\) appears in Theorem 1 in the analysis.

Initial regularization step (line 2-4 in Algorithm 1):

In this part, the algorithm chooses each node \(u \in V\) as the seed set for \(R\) rounds, and then observes the activation of \(u\)'s all out-neighbors in order to gather information about its outgoing edges. By the regularization step, each edge will be observed exactly \(R\) times. Intuitively, this step leads to a coarse estimate of each individual probability \(p(e)\) for \(e \in E\) before MLE starts. Technically, this step guarantees a lower bound of the minimum eigenvalue of the Gram matrix \(M_{t,v}\), which ensures the correctness of condition (2) in Theorem 1 in the analysis.

Regret Analysis

We now give an analysis of the regret of Algorithm 1. First, we need to show that for each \(v \in V\), the estimate \(\theta(t,v)\) is close to the true parameter \(\theta^*\). To ensure this, we require Assumption 1 below. Similar or even stronger assumptions are adopted in all previous approaches for network inference (Netrapalli and Sanghavi 2012; Narasimhan, Parkes, and Singer 2015; Pouget-Abadie and Horel 2015; Chen et al. 2021). Assumption 1 means that node \(v \in V\) will remain inactive with probability at least \(\gamma\) even if all of its in-neighbors are simultaneously activated. It reflects the stubbornness of the agent (node). That is, the behavior of a node is partially determined by its intrinsic motivation, not by its neighbors. So, even when all its neighbors adopt a new behavior, there is a nontrivial probability that the node will still not adopt the new behavior. Intuitively, this allows us to observe the state of each incoming edge individually.

Assumption 1. There exists a parameter \(\gamma \in (0,1)\) such that \(\prod_{u \in N(v)} (1 - p^*(e_{uv})) \geq \gamma\) for all \(v \in V\).

Under Assumption 1, it is possible to show that \(\theta(t,v)\) and \(\theta^*\) are close to each other in all directions, as Theorem 1 stated. Most of its proof follows directly from Theorem 1 in (Li, Lu, and Zhou 2017). For completeness, we include the proof in the appendix.

Theorem 1. Suppose that Assumption 1 holds. For each \(v \in V\), \(\tilde{\theta}(t,v)\) and \(M_{t,v}\) are computed according to Algorithm 2. Given \(\delta \in (0,1)\), if

\[
\lambda_{\min}(M_{t,v}) \geq \frac{512d_v}{\gamma^2} \left(d_v^2 + \ln \frac{1}{\delta} \right).
\]

Then, with probability at least \(1 - 3\delta\), for any \(x \in \mathbb{R}^{d_v}\), we have

\[
|x^T (\hat{\theta}(t,v) - \theta^*)| \leq \frac{3}{\gamma} \sqrt{\ln(1/\delta)} \cdot \|x\|_{M_{t,v}}^{-1}.
\]

For each \(e \in E_v\), by plugging \(x = x_e\) into Theorem 1 and by Lemma 1, we obtain a confidence interval for each individual probability parameter \(p^*(e)\), which is upper bounded by \(\|x_{e}\|_{M_{t,v}}^{-1}\) times a factor.

The key difficulty of applying Theorem 1 lies in how to get an upper bound for \(\|x_e\|_{M_{t,v}}^{-1}\). To gain some intuitions, let us first consider an ideal case where at each round \(k < t\) and each time step \(\tau\) before \(v\) becomes active, there is at most one newly active in-neighbor \(u\) of \(v\). We can therefore observe whether \(v\) is activated by \(u\) through edge \(e_{uv}\) in the next time step. In this case, every \(X_{k,j,v}\) equals to \(x_e\) for some edge \(e' \in E_v\), and \(M_{t,v}\) is a diagonal matrix where the \(e\)-th diagonal entry \(M_{t,v}(e,e)\) records the number of times \(e\) is observed. Therefore,

\[
\|x_e\|_{M_{t,v}}^{-1} = \sqrt{M_{t,v}^{-1}(e,e)} = 1 \sqrt{M_{t,v}(e,e)}.
\]

This bound coincides with the \(\sqrt{1/N}\)-accuracy of estimating a biased coin by tossing it \(N\) times. In general, however, \(M_{t,v}\) is not a diagonal matrix, and it is very difficult to compute \(\|x_e\|_{M_{t,v}}^{-1}\) from \(M_{t,v}\). Luckily, the construction of data pairs \((X_{k,j,v}, Y_{k,j,v})\) makes \(M_{t,v}\) as close as possible to some diagonal matrix. Specifically, define

\[
\tilde{M}_{t,v} := \sum_{k=1}^{t} \sum_{j:Y_{k,j,v}=0} X_{k,j,v} X_{k,j,v}^T.
\]

Then, \(\tilde{M}_{t,v}\) is a diagonal matrix since in each round \(k\), all data pairs with \(Y_{k,j,v} = 0\) have the form \((\chi(e'), \cdot)\) for some edge \(e'\). Besides, we know \(\|x_e\|_{M_{t,v}}^{-1} \leq \|x_e\|_{\tilde{M}_{t,v}}^{-1}\) since \(M_{t,v} - \tilde{M}_{t,v}\) is a positive semidefinite matrix. Thus, we only need to give an upper bound for \(\|x_e\|_{\tilde{M}_{t,v}}^{-1}\). Let \(e = e_{uv}\).

Consider the case when at time step \(\tau\), node \(u\) becomes active while node \(v\) keeps inactive, due to Assumption 1, node \(v\) will remains inactive in time step \(\tau + 1\) with probability at least \(\gamma\). Therefore, \(\tilde{M}_{t,v}(e,e)\) is at least \(\gamma M_{t,v}(e,e)\) in expectation and we have

\[
\|x_e\|_{\tilde{M}_{t,v}}^{-1} \leq 1 \sqrt{\gamma M_{t,v}(e,e)}.
\]

This bound still coincides with the previous bound, up to a \(\sqrt{1/\gamma}\) factor. The formal statements about these bounds are presented in the appendix.

The last ingredient in our regret analysis is a group observation modulated (GOM) bounded smoothness condition for the IC model. The condition is inspired by the GOM condition for the LT model (Li et al. 2020), which is used to handle node-level feedback. We remark that for edge-level feedback, there is a related triggering probability modulated (TPM) bounded smoothness condition (Wang and Chen 2017; Wen et al. 2017). However, the TPM condition does not suffice for node-level feedback.
We now state the GOM condition formally. Given a seed set \(S \subseteq V \) and a node \(v \in V \setminus S \), we say node \(u \in V \setminus S \) is relevant to node \(v \) if there is a path \(P \) from \(S \) to \(v \) such that \(u \in P \). Let \(V[S,v] \subseteq V \) be the set of nodes relevant to \(v \) given seed set \(S \). Given diffusion cascade \((S_0 = S, S_1, \ldots, S_{n-1}) \), let \(E_n^p \) be the set of incoming edges of \(v \) that have a chance to activate \(v \) before \(v \) becomes active, i.e., \(E_n^p = \{ e = (u,v) \in E_v \mid u \in S_{t-1} \text{ if } v \in S_t \setminus S_{t-1}; \text{ or } u \in S_n \text{ if } v \notin S_n \} \). Note that \(E_n^p \) is exactly the set of edges used for constructing the data pairs in the estimate procedure (Algorithm 2), and this links the algorithm with the following important condition. We have the following GOM condition for the IC model, whose proof is presented in the appendix.

Lemma 2 (GOM bounded smoothness for the IC model). For any seed set \(S \subseteq V \), and any two edge-probability vector \(\tilde{p}, p^* \in [0, 1]^{|E|} \) such that \(\tilde{p}(e) \geq p^*(e) \) for each \(e \in E \), it satisfies that
\[
\sigma(S, \tilde{p}) - \sigma(S, p^*) \leq \sum_{v \in V} \sum_{u \in V[S,v]} E \left[\sum_{e \in E_n^p} (\tilde{p}(e) - p^*(e)) \right],
\]
where the expectation is taken over the randomness of the diffusion cascade \((S_0, S_1, \ldots, S_{n-1}) \), which is generated with respect to parameter \(p^* \).

Given a seed set \(S \subseteq V \) and a node \(u \in V \setminus S \), define \(n_{S,u} := \sum_{v \in V \setminus S} \mathbb{1}[u \in V[S,v]] \) to be the number of nodes that \(u \) is relevant to. Further, define
\[
\zeta(G) := \max_{S \mid |S| \leq K} \sqrt{\sum_{u \in V} n_{S,u}^2} \leq O(n^{3/2}).
\]

We show the following regret of Algorithm 1, which is presented in Theorem 2.

Theorem 2. When we use a standard \((\alpha, \beta)\)-oracle in Algorithm 1, under Assumption 1, the \(\alpha \beta \)-scaled regret of Algorithm 1 satisfies that
\[
R(T) = \tilde{O} \left(\frac{\zeta(G) \sqrt{mDT}}{\gamma^2} \right) = \tilde{O}(n^{3/2}).
\]

Proof. Let \(H_t \) be the history of past rounds by the end of round \(t \). For \(t \leq T_0 \), \(E[R_t] \leq n \). Now consider the case where \(t > T_0 \). By the definition of \(R_t \),
\[
E[R_t \mid H_{t-1}] = E[\alpha \beta \cdot \sigma(S^{opt}, p^*) - \sigma(S_t, p^*) \mid H_{t-1}],
\]
where the expectation is taken over the randomness of \(S_t \).

For any \(T_0 < t \leq T \) and \(v \in V \), define event \(\xi_{t-1,v} \) as
\[
\xi_{t-1,v} := \{ x_v^T (\hat{\theta}_{t-1,v} - \theta_v^*) \leq \rho \cdot \| x_v \|_{M_{t-1,v}} \forall v \in E_v \},
\]
and let \(\xi_{t-1,v} \) be its complement. By the choices of \(\delta, R, T_0, \rho \) as in Algorithm 1, the fact that \(\lambda_{min}(M_{t-1,v}) \geq \lambda_{min}(M_{t,v}) = R \) and Theorem 1, we have \(\Pr[\xi_{t-1,v}] \leq 3\delta \).

Further define event \(\xi_{t-1} := \wedge_{v \in V} \xi_{t-1,v} \) and let \(\xi_{t-1} \) be its complement. By union bound, \(\Pr[\xi_{t-1}] \leq 3\delta n \). Note that under event \(\xi_{t-1} \), by Lemma 1, for any \(v \in V \) and \(e \in E_v \),
\[
|p_{t-1,v}(e) - p_{v}^*(e)| = |x_v^T (\hat{\theta}_{t-1,v} - \theta_v^*)| \\
\leq |x_v^T (\hat{\theta}_{t-1,v} - \theta_v^*)| \\
\leq \rho \cdot \| x_v \|_{M_{t-1,v}}.
\]

Thus, by the definition of \(\tilde{p}_{t,v} \), we have \(p^*_v(e) \leq \tilde{p}_{t,v}(e) \) for all \(v \in V \) and \(e \in E_v \). Hence,
\[
E[R_t] \leq E[\xi_{t-1} \cdot E[\alpha \beta \cdot \sigma(S^{opt}, p^*) - \sigma(S_t, p^*) \mid \xi_{t-1}] + \Pr[\xi_{t-1}] \cdot n \leq E[\sigma(S_t, \tilde{p}_t) - \sigma(S_t, p^*) \mid \xi_{t-1}] + 3\delta n^2 \leq E[\sigma(S_t, \tilde{p}_t) - \sigma(S_t, p^*)] + 3\delta n^2.
\]

The last inequality holds since \(S_t \) is obtained from an \((\alpha, \beta)\)-oracle under parameter \(\tilde{p} \).

To bound \(\sigma(S_t, \tilde{p}_t) - \sigma(S_t, p^*) \), we develop the GOM bounded smoothness for the IC model in Lemma 2, whose proof is presented in the appendix. With it, we obtain that
\[
E[R_t] \leq 3\delta n^2.
\]

\[
\leq E \left[\sum_{v \in V} \sum_{u \in V \setminus S_v, v} \sum_{e \in E_v} (\tilde{p}_{t,u}(e) - p^*_v(e)) \right] \xi_{t-1} \leq 2\rho \cdot E \left[\sum_{v \in V} \sum_{u \in V \setminus S_v, v} \sum_{e \in E_v} \| x_v \|_{M_{t-1,v}}^2 \right] = 2\rho \cdot E \left[\sum_{u \in V \setminus S_v, v} \sum_{e \in E_v} \| x_v \|_{M_{t-1,v}} \sum_{v \in V \setminus S_v, v} \mathbb{1}_{u \in V[S,v]} \right] = 2\rho \cdot E \left[\sum_{u \in V \setminus S_v, v} \sum_{e \in E_v} n_{S,u} \cdot \| x_v \|_{M_{t-1,v}} \right].
\]

The second inequality holds since under event \(\xi_{t-1} \), it holds that \(|p_{t-1,v}(e) - p^*_v(e)| \leq 2\rho \cdot \| x_v \|_{M_{t-1,v}} \) for all \(u \in V \) and \(e \in E_v \).

Recall that the above derivation holds for \(t > T_0 \), and for \(t \leq T_0 \), \(E[R_t] \leq n \). We thus have
\[
R(T) \leq 2\rho \cdot E \left[\sum_{t>T_0} \sum_{v \in V \setminus S_v} \sum_{e \in E_v} \| x_v \|_{M_{t-1,v}}^2 \right] + 3\delta n^2 (T - T_0) + n T_0.
\]

We next bound the above term by carefully dealing with \(\| x_v \|_{M_{t-1,v}}^2 \).

Recall that \(E_v^0 = \{ e = (u,v) \in E_v \mid v \in S_{t,v} \setminus S_{t-1, v} \} \) or \(u \in S_{t,v} \setminus S_{t-1, v} \), i.e., the set of incoming edges of \(v \) at round \(t \) that have a chance to activate \(v \) before \(v \) becomes active. Define \(\hat{E}_v^0 := \{ e \in E_v^0 \mid e \text{ fails to activate } v \} \) and \(\hat{M}_v^0 \) as
\[
\hat{M}_v^0 := \sum_{k=1}^{t} \sum_{j:k,j,v=0} X_{k,j,v} X_{k,j,v}^T = \sum_{k=1}^{t} \sum_{e \in \hat{E}_v^0} x_e x_e^T.
\]

9158
Clearly, $\tilde{M}_{t,v}$ is a diagonal matrix and $M_{t,v} - \tilde{M}_{t,v}$ is positive semi-definite. We have the following simple but crucial observation, whose proof is presented in the appendix.

Lemma 3. Under Assumption 1, for any $v \in V$ at round t, it satisfies that

$$E \left[\sum_{e \in E_{t,v}} \|x_e\|_{M_{t-1,v}}^{-1} \right] \leq \frac{1}{\gamma} E \left[\sum_{e \in E_{t,v}} \|x_e\|_{\tilde{M}_{t-1,v}}^{-1} \right].$$

We thus turn to give an upper bound on $\sum_{s=0}^{T} \sum_{v \in V \setminus S_i} n_{S_t,v} \sum_{e \in E_{t,v}} \|x_e\|_{\tilde{M}_{t-1,v}}^{-1}$ in Lemma 4, whose proof is presented in the appendix.

Lemma 4. For any $v \in V$, it satisfies that

$$\sum_{t=T_0+1}^{T} \sum_{v \in V \setminus S_i} n_{S_t,v} \sum_{e \in E_{t,v}} \|x_e\|_{\tilde{M}_{t-1,v}}^{-1} \leq \zeta(G) \sqrt{2mD(T - T_0)} \ln \left(1 + \frac{T - T_0}{\rho} \right).$$

Combining the above two lemmas, we obtain that

$$R(T) \leq \frac{2\rho}{\gamma} E \left[\sum_{t=T_0+1}^{T} \sum_{v \in V \setminus S_i} n_{S_t,v} \sum_{e \in E_{t,v}} \|x_e\|_{\tilde{M}_{t-1,v}}^{-1} \right] + 3\Delta n^2(T - T_0) + nT_0$$

$$\leq \frac{2\rho \zeta(G)}{\gamma} \sqrt{2mD(T - T_0)} \ln \left(1 + \frac{T - T_0}{\rho} \right) + 3\Delta n^2(T - T_0) + nT_0$$

$$\leq \frac{6\zeta(G)}{\gamma^2} \sqrt{2mD \ln (1 + T) \ln (3nT)}$$

$$+ n\sqrt{T} + \frac{512D n^2}{\gamma^4} (D^2 + \ln (3nT/\delta)) + 1$$

$$= \tilde{O} \left(\frac{(\zeta(G) \sqrt{mD})}{\gamma^2} \right).$$

The last inequality is obtained by plugging $\delta = 1/(3n\sqrt{T})$, $R = \left[\frac{512D}{\gamma^4} (D^2 + \ln (1/\delta)) \right]$, $T_0 = nR$ and $\rho = \frac{3}{\gamma} \sqrt{\ln (1/\delta)}$ defined in Algorithm 1 into the formula.

We remark that the worst-case regret for the IC model with edge-level feedback is $\tilde{O}(n^3 \sqrt{T})$ in (Wen et al. 2017) and $\tilde{O}(n^3 \sqrt{T})$ in (Wang and Chen 2017). Thus, our regret bound under node-level feedback matches the previous ones under edge-level feedback in the worst case, up to a $1/\gamma^2$ factor.

To get an intuition about γ’s value, assume that each edge probability $\leq 1 - c$ for some constant $c \in (0, 1)$. Then, $\gamma = O(c^\alpha)$, where D is the maximum in-degree of the graph. Thus, in the worst case, $1/\gamma$ is exponential in n. But when $D = O(\log n)$, $1/\gamma$ is polynomial in n and so is the regret bound. We think $D = O(\log n)$ is reasonable in practice, since a person only has a limited attention and cannot pay attention to too many people in the network. In practical applications, the exact value of γ is often unknown. To address this issue, for each $v \in V$, we can choose $N(v)$ (not necessarily feasible) and observe whether v is activated in the first few rounds to obtain a good estimate of γ. This only causes little loss in the regret.

Conclusion

In this paper, we investigate the OIM problem with node-level feedback. We presents $\tilde{O}(\sqrt{T})$-regret OIM algorithms for the IC model. Our algorithm is the first one with node-level feedback that almost matches the optimal regret bound. Unlike in the LT model (Li et al. 2020), our algorithm uses standard offline oracles instead of the unrealistic pair oracle.

Our novel adaptation of MLE to fit the generalized linear bandits (GLB) model is of great independent interest, which might be combined with the GLB model to handle rewards generated from a broader classes of distributions. Our technique for dissect confidence ellipsoids into confidence intervals may also be used in other learning problem to gain more accurate estimation.

There still remain some open problems on the node-level feedback setting. An immediate one is to either remove our assumptions for edge weights, or remove the assumption parameter from the regret bound, while still using standard offline oracles. Besides, for the LT model with node-level feedback, there still lacks an optimal-regret algorithm using standard offline oracles. Finally, it is interesting to develop a general bandit framework which includes OIM with node-level feedback as a special case, just like CMAB-T containing OIM with edge-level feedback.

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China Grants No. 61832003, 61872334, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No. XDA27000000.

References

