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Abstract

We consider the continuum-armed bandits problem, under a
novel setting of recommending the best arms within a fixed
budget under aggregated feedback. This is motivated by ap-
plications where the precise rewards are impossible or ex-
pensive to obtain, while an aggregated reward or feedback,
such as the average over a subset, is available. We constrain
the set of reward functions by assuming that they are from
a Gaussian Process and propose the Gaussian Process Opti-
mistic Optimisation (GPOO) algorithm. We adaptively con-
struct a tree with nodes as subsets of the arm space, where
the feedback is the aggregated reward of representatives of a
node. We propose a new simple regret notion with respect to
aggregated feedback on the recommended arms. We provide
theoretical analysis for the proposed algorithm, and recover
single point feedback as a special case. We illustrate GPOO
and compare it with related algorithms on simulated data.

1 Introduction
In the continuum-armed bandit problem with a fixed budget,
an agent adaptively chooses a sequence of N options from a
continuous set (arm space) in order to minimise some objec-
tive given an oracle that provides noisy observations of the
objective evaluated at the options (Agrawal 1995; Bubeck,
Munos, and Stoltz 2011). The objective may measure the to-
tal cost, for example the cumulative regret, or may give an
indication of the quality of the final choice, for example the
simple regret. The simple regret setting may be viewed as
black-box, zeroth order optimisation of the objective under
noisy observations. In practical settings, it is possible that
one cannot observe the objective directly. This motivates a
more flexible notion of an oracle. In this work we consider
an oracle that provides noisy average evaluations of the ob-
jective over some grid (defined in a precise sense in (1)).

For the problem of black-box optimisation of a function
f under single point stochastic feedback, Munos (2014) pro-
posed a continuum-armed bandit algorithm called Stochas-
tic Optimistic Optimisation (StoOO) with adaptive hierar-
chical partitioning of arm space, under the optimism in the
face of uncertainty principle. For bandits with aggregated
feedback, Rejwan and Mansour (2020) studied finite-armed
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case for the combinatorial bandits under full-bandit feed-
back. Other related settings are discussed in § 6. We consider
one important gap in the literature, best arm(s) identification
for continuum-armed bandits with average rewards under a
fixed budget.

Our goal is to recommend a local area with best aver-
age reward feedback. We propose aggregated regret (Defi-
nition 2) to reflect this objective, devise an algorithm in § 3,
and show upper bound of the aggregated regret under our
algorithm in § 4. In § 5, we compare our algorithm with
related algorithms in a simulated environment 1. Our algo-
rithm shows the best empirical performance in terms of ag-
gregated regret.

Our contributions are (i) a new continuum-armed ban-
dits setting under the aggregated feedback and correspond-
ing new simple regret notion, (ii) the first fixed budget best
arms identification algorithm (GPOO) for continuum-armed
bandit with noisy average feedback, (iii) theoretical analysis
for the proposed algorithm, and (iv) empirical illustrations
of the proposed algorithm.

2 Formulation and Preliminaries
Motivation
Two unique properties of the setting we consider are (i)
the reward signal is aggregated, and (ii) the aggregation oc-
curs on hierarchically partitioned continuous space. Gaus-
sian Process Optimistic Optimisation (GPOO) makes use of
both of these properties, as illustrated in Figure 1 and de-
scribed in Algorithm 1.

Aggregated Feedback. Quantitative observations of the
real-world are often made through smooth rather than in-
stantaneous measurements. Average observations may arise
from physical, hardware, privacy constraints. We provide
three potential applications to motivate our setting: 1) Radio
telescope. Arm cells are the spatial-frequency (orientation
and angular resolution) coordinates of objects in the sky. The
average radio wave energy (reward) can be inferred from the
radio telescope for the queried area. Only the aggregated re-
ward is observable due to frequency binning in hardware and
spatial averaging. The goal is to design a policy so that one

1Source code and Appendix are available at https://github.com/
Mengyanz/GPOO
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can identify the region with the average highest radio energy
with a fixed amount of querying. The first radio telescope
that was used to detect extra-terrestrial radio sources (Jan-
sky 1933) and was able to determine that the source of the
radiation was from the centre of the Milky Way. 2) Census
querying. Take the age of respondents as an example. Arms
are each respondent. The oracle will return the average age
(reward) of respondents inside each queried area and each
query cost is the same no matter what the query is. Only
the aggregated reward is allowed due to privacy concerns.
The goal is to design a policy so that one can identify the
region with the average highest age with a fixed amount of
querying. 3) DNA design. In synthetic biology, one can mod-
ify nucleotides to control protein expression level (reward)
(Zhang and Ong 2021a). The arms are all possible DNA se-
quences. The goal is to find DNA sequences with highest
possible protein expression level within a given budget. The
experiment is expensive and the search space is too large to
enumerate. We can make a mixed culture with similar DNAs
in a queried feature space and measure their aggregated re-
ward only.

These smoothing operations present in sensor hard-
ware designs, survey sampling methodologies and privacy-
preserving data sharing motivate data analysis techniques
that account for smooth or average rather than point or in-
stantaneous measurements (Zhang et al. 2020).

Tree Structures for Continuous Spaces. Function opti-
misation using bandits may be achieved by simultaneously
estimating and maximising some estimated statistic of a
black-box objective f . This usually involves an iterative al-
gorithm, whereby at each step a point (or points) is (are)
sampled and then the estimated statistic is updated and then
maximised. The estimated statistic is called an acquisition
function, and in continuous spaces, can be computationally
expensive to optimise. For example, in GP-UCB, the acqui-
sition function is the upper confidence bound, leading to an
overall computational complexity of O(N2d+3) for running
the algorithm.

Hierarchically forming arms allows adaptive discretisa-
tion over the arm space, which provides a computationally
efficient approach for exploring the continuous arm space.
Assuming smoothness of the unknown reward function and
given a budget, Munos (2014) proposed a Stochastic Op-
timistic Optimisation (StoOO) algorithm. They adaptively
construct a tree which partitions the design space. Each leaf
node in the tree represents a subset of the design space and
is a candidate to be expanded. The expanded leaf node is
chosen based on the optimisation under uncertainty crite-
ria. Here the notion of uncertainty captures both stochastic
uncertainty due to reward sampling and the inherent func-
tion variation. The reward of the leaf node is summarised by
the reward obtained by evaluating the noisy objective at a
some point in the subset (Munos (2014) calls these centres,
we call them representative points).

Our Proposed Algorithm, Gaussian Process Optimistic
Optimisation (GPOO, Algorithm 1), extends the StoOO al-
gorithm to the case where the f is sampled from an unknown
Gaussian Process (GP) and the reward feedback is an aver-

Figure 1: GPOO adaptively constructs a tree where the value
associated with each node is an estimate of the aggregated
reward over a cell. Red shows the reward function to be op-
timised. Solid horizontal lines show estimated mean aggre-
gated reward. Dark shaded regions shows probable objective
function ranges based on Bayesian uncertainty. Light shaded
regions additionally account for potential function variation
due to smoothness assumptions.

age over representatives in a subset. Using a GP allows us to
encode smoothness assumptions on the function f through
a choice of kernel (see Assumptions 1, 2). It also allows us
to exploit the closure of Gaussian vectors under linear maps
to update our belief of f under aggregated feedback in a
Bayesian framework. In order to build a well-behaved tree-
structure, we have to assume a certain regularity of the tree
with respect to the function f (see Assumptions 3, 4), mir-
roring those in the StoOO algorithm. Assumption 3 ensures
that as the depth of the tree grows, the allowable function
variation around any node decreases. Assumption 4 rules
out nodes that represent pathologically shaped subsets of the
design space, such as those consisting of sets with measure
zero like single points or curves.

Our problem setting recovers the single state reward feed-
back as a special case. To the best of our knowledge, we are
the first work address the continumm-armed bandits func-
tion optimisation problem under aggregated feedback.

Problem Setting
Let the decision space and the function to be optimised be
X ⊂ [0, 1]

d and f : X → R respectively. We consider a hi-
erarchical partitioning of the spaceX through an adaptively-
built K-ary tree. Each node (h, i) in the tree is placed at a
depth h and an index i. In order to partition the space, each
node (h, i) is associated with an attribute Xh,i called a cell.
At depth h, there are Kh cells. That is, 0 ≤ i ≤ Kh−1. For
any fixed h, the cells form a partition of X . Here partition is
meant in the formal sense, that is, a partition of X is a col-
lection of non-empty subsets of X such that every x ∈ X is
in exactly one of these subsets.

We may obtain a reward from a given node (h, i) through
some abstract reward signal R

(
(h, i)

)
, where the mapping

R takes as input the attributes of the node (h, i). These
attributes include the cell described above, and may also
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include other attributes like the representative points, de-
scribed below. Here we will focus only on a special case
ofR and leave other choices ofR for future work.

Each node is associated with S points xh,is , 1 ≤ s ≤ S,
where xh,is ∈ Xh,i. We stress that S is a quantity associated
with the problem and may not be controlled by the agent.
We call the collection Ch,i = {xh,is}1≤s≤S the representa-
tive points of Xh,i or (h, i). The reward of each node (h, i)
is summarised by the average reward evaluated over the rep-
resentative points of the cell. More precisely, we denote by
Xh,i ∈ RS×d the feature matrix of cell Xh,i with each row
being exactly one element of the representative points Ch,i
(where the order of the rows is not important). In the round
t, we select a cell Xht,it to obtain the reward rt of cell Xh,i,

rt = F̄ (Xht,it) + εt, F̄ (Xht,it) :=

∑
x∈Cht,it

f(x)

|Cht,it |
,

(1)

where εt
i.i.d.∼ N (0, σ2). XN , XN and xN will respectively

denote the recommended cell, feature matrix and point (if an
algorithm returns these objects). A typical goal of best arm
identification with fixed budget is to minimise the simple
regret (Audibert and Bubeck 2010).

Definition 1 (Simple regret). We denote an optimal arm
x∗ ∈ argmaxx∈X f(x). Let xN be our recommended point
after N rounds. The simple regret is defined as

R̂(xN ) = f(x∗)− f(xN ). (2)

In our setting, a slightly different surrogate notion of re-
gret will be easier to analyse. Correspondingly, we introduce
the aggregated regret under our setting in Definition 2. The
goal is to minimise the aggregated regret with a fixed budget
of N reward evaluations. That is, we aim to recommend a
local area with highest possible aggregated reward. This is
highly motivated by the applications where the measurement
is over a local area instead of precise point querying, for ex-
ample, the sensor hardware designs and radio telescope we
mentioned in the introduction. When S = 1, the aggregated
regret in Definition 2 is the same as simple regret.

Definition 2 (Aggregated regret). Let XN be our recom-
mended cell after N rounds and XN the corresponding fea-
ture matrix. The aggregated regret is defined as

RN = f(x∗)− F̄ (XN ). (3)

This surrogate may be used to upper bound the simple
regret. Note that min

x∈CN
R̂N (x) ≤ RN , where CN is the set of

representative points in XN . Given that cell XN minimises
the aggregated regret, one may apply a (finite) multi-armed
bandit algorithm over the set CN to solve min

x∈CN
R̂N (x).

We note that other choices of the abstract reward R are
also natural. For example, a continuous analogue of (1) re-
places the discrete sum over Cht,it with a continuous integral
over Xht,it . We sketch in Appendix D how our results might
extend to this setting, but leave the details for future work.

Gaussian Processes
In order to develop our algorithm and perform our analysis,
we will require f to possess a degree of smoothness. We will
also need to simultaneously estimate and maximise f .
Assumption 1. The black-box function f is a sample from
zero-mean GP with known covariance function k.

A GP {f(x)}x∈X is a collection of random vari-
ables indexed by x ∈ X such that every finite subset
{f(xi)}i=1,...m follows a multivariate Gaussian distribu-
tion (Rasmussen and Williams 2006). A GP is characterised
by its mean and covariance functions, respectively

µ(x) = E[f(x)] and

k(x,x′) = E[(f(x)− µ(x))(f(x′)− µ(x′))].

GPs find widespread use in machine learning as Bayesian
functional priors. Some function of interest f is a priori be-
lieved to be drawn from a Gaussian process with some co-
variance function k and some mean function µ, where in a
typical setting µ ≡ 0. After observing some data, the condi-
tional distribution of f given the data, that is, the posterior
of f , is obtained. If the likelihood is Gaussian, the prior is
conjugate with the likelihood and the posterior update may
be performed in closed form. We describe a precise instanti-
ation of this update tailored to our setting in § 3.

Modelling f as a GP allows us to encode smoothness
properties through an appropriate choice of covariance func-
tion and also to estimate f in a Bayesian framework. This
choice additionally allows us to take advantage of the clo-
sure of Gaussian distributions under linear transformations,
providing us with a tool to analyse aggregated feedback.
Assumption 2. The kernel k is such that for all j =
1, . . . , d, some a, b > 0 and any L > 0,

P
(

sup
x∈D
|∂f/∂xj | ≥ L

)
≤ a exp

(
−L

2b

2

)
.

Assumption 2 implies a tail bound on |f(x1) − f(x2)|,
and may be shown to hold for a wide class of covariance
functions including the squared exponential and Matérn
class with smoothness ν > 2. Let ` denote the the L1 dis-
tance. By directly applying Theorem 5 of Ghosal and Roy
(2006), we show the following in Appendix A.
Proposition 1. Assumption 2 implies that for some con-
stants a, b > 0 and any L > 0, x1,x2 ∈ X ,

P
(
|f(x1)− f(x2)| ≥ L`(x1,x2)

)
≤ ae−L

2b/2.

If sup
x∈X

∂2

∂xj∂x′j
k(x, x′)

∣∣
x=x′

< ∞ and k has mixed deriva-

tives of order at least 4, then k satisfies Assumption 2.
Assumptions 1 and 2 were also made by (Srinivas et al.

2009), but to the best of our knowledge we are the first to
exploit closure of GPs under linear maps in the setting of
best arm identification under fixed budget.

3 Algorithm: GPOO
Inspired by StoOO (Munos 2014), we propose Gaussian
Process Optimistic Optimisation (GPOO), under the formu-
lations introduced in § 2. In order to describe our algorithm,
we first describe how to compute the posterior predictive GP.
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Gaussian Process Posterior Update
In round t ∈ 1, . . . , N , we represent our prior belief over
f using a GP. Our prior in round t is the posterior after
so-far observed noisy observations of groups up to round
t. The posterior update is a minor adjustment to the typical
posterior inference step that would be employed if we were
to consider only single point (not aggregated) reward feed-
back, exploiting the fact that multivariate Gaussian vectors
are closed under linear transformations.

Define X1:t ∈ RtS×d to be the vertical concatenation of
Xhj ,ij for j = 1, . . . , t. Similarly define Y1:t ∈ Rt to be a
vector with jth row equal to rj , where j = 1, . . . , t. In round

t we observe the feature-reward tuple
(
Xht,it , rt

)
. We may

write rt = a>f(Xht,it) + εt for corresponding a ∈ RS×1
having all entries equal to 1/S.

More compactly, all rounds t ∈ {1, . . . , N} may be rep-
resented through a vector equation. Let A1:t ∈ Rt×tS with
pqth entry equal to 1/K if the qth element ofX1:t is sampled
at round p and zero otherwise. In what follows, we define

Z1:t := (X1:t, Y1:t, A1:t),

which completely characterises the history of observations
up to round t. We may write Y1:t = A1:tf(X1:t) + ε1:t,
where ε1:t ∈ Rt denotes a vector with ith entry εi.

Let X∗ ∈ Rn∗×d denote a matrix of test indices, and let
a∗ ∈ Rn∗×1 denote some corresponding weights. The pos-
terior predictive distribution of a>∗ f(X∗) given all the his-
tory Z1:t up to round t is also a Gaussian and satisfies

a>∗ f(X∗) | Z1:t ∼ N
(
a>∗ µ(X∗ | Z1:t),a

>
∗ Σ(X∗ | Z1:t)a∗

)
,

µ(X∗ | Z1:t) = MY1:t,

Σ(X∗ | Z1:t) = k (X∗, X∗)−MA1:tk(Xt, X∗), (4)

where

M = k(Xt, X∗)
TA1:t

>
(
A1:tk(Xt, Xt)A1:t

> + σ2I
)−1

.

With an iterative Cholesky update we may perform all N
inference steps in one O(N3) sweep. See Appendix B.

Notions of Uncertainty and Function Variation
We introduce the key concept for selecting which node to
sample, the b-value b

(
X∗ | β, Z,a∗

)
, which is the sum of

three terms: the posterior mean of the corresponding feature
matrix X∗, the confidence interval and function variation,

b
(
X∗ | β, Z,a∗

)
:=

a>∗ µ(X∗ | Z) + CI(X∗ | β, Z,a∗) + δ(h).

The confidence interval is defined in terms of the posterior
variance and an exploitation/exploration parameter β,

CI
(
X∗ | β, Z,a∗

)
: = β1/2

√
a>∗ Σ(X | Z)a∗.

The last term δ(h) is the smoothness function depending on
the node depth h that satisfies Assumption 3. δ(h) gives an
upper bound of the function deviation of a cell in a given

Figure 2: Quantities taken just before line 4 of Algorithm 1
for t = 9 (top) and t = 10 (bottom). For each cell Xh,i,
solid and dashed horizontal lines show a>µ(Xh,i | Zt) and
F (Xh,i) respectively. Dark shaded regions show CIt(Xh,i)
with colours indicating depth of cell. One-sided b-values are
also shown by light shaded regions. Vertical black bars in-
dicate δ(h). Shown in orange is a probable Lipschitz bound
on the function value, due to event ξ and Proposition 1. Here
S = 2 and the representative points form a uniform grid, so
that the Lipschitz bounds form a W shape. This bound is in
turn bounded by the b-values. When t = 9, X2,3 is expanded
since it has the highest b-value. When t = 10, no cell will be
expanded since δ(4) < CI10(X4,6); instead the estimate of
the function will be refined by sampling the reward of X4,6.

depth. Figure 2 illustrates the above quantities. We further
define time-dependent b-value and confidence interval

bh,i(t) := b
(
Xht,it | βt, Z1:t−1,a

)
and (5)

CIt(X∗) := CI
(
X∗ | βt, Z1:t−1,a

)
, (6)

where βt ∼ O(log t) and will be specified in Lemma 1.
Assumption 3 (Decreasing diameter). There exists a de-
creasing sequence δ(h) > 0 such that for some L > 0
(in Assumption 2), any depth h and any cell Xh,i,
supx∈Xh,i L` (xh,i,x) ≤ δ(h) for any representative point
xh,i.

Assumption 3 means that at any depth h, the largest pos-
sible distance supx∈Xh,i L` (xh,i,x) between any point to
any representative point within cell Xh,i is decreasing with
respect to h. This is intuitive since we have assumed smooth-
ness (Assumption 2) and constructed cells hierarchically.
This assumption links the distance in reward space to a δ(h),
which is the core concept in theoretical analysis (see Figure
3). Compared with Munos (2014), we introduce a smooth-
ness parameter L to suit our analysis with GPs.

We present the GPOO in Algorithm 1. The key idea is that
we construct a tree by adaptively discretising over the arm
space. The algorithm includes two main parts:
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Algorithm 1: GPOO
Input: natural number K (-ary tree), function f to be op-
timised, smoothness function δ, budget N , the maximum
depth nodes can be expanded hmax.
Init: tree T0 = {(0, 0)} (corresponds toX ), leavesL0 = T0.

1: for t = 1 to N do
2: Select any (ht, it) ∈ argmax(h,i)∈Lt−1

bh,i(t).
3: Observe reward rt = F (Xht,it) + εt.
4: Update posteriors a>µ(·|Z1:t),a

>Σ(·|Z1:t)a
5: Update confidence intervals and b-values for all

nodes (h, i) ∈ Lt−1 according to E.q. (6)(5).
6: if δ(ht) ≥ CIt(Xht,it) and ht ≤ hmax then
7: Expand node (ht, it) (partition Xht,it into K

subsets) into children nodes
Ct = {(ht + 1, i1), . . . , (ht + 1, iK)}.
Tt = Tt−1 ∪ Ct.

8: Lt−1 = Lt−1\{(ht, it)};Lt = Lt−1 ∪ Ct.
9: end if

10: end for
11: Return The node with index (h′, i′) such

that h′ = argmaxh|(h,i)∈TN\LN h. and
i′ = argmaxi|(h′,i)∈TN µ(Xh′,i|Z1:t)

Select Node and Update: In each round t ∈ [1, N ], a node
(ht, it) is selected from leaves with the highest b-value (5).
The reward is sampled as the average of the function value
over S representative points plus Gaussian noise. We then
update the posteriors over cells of leaf nodes, allowing the
confidence interval and b-values to also be updated.
Expand Node: As we increase the number of samples for
a given node, the confidence interval of that node continues
to decrease. When the confidence interval is smaller than
or equal to the function variation, our function estimate is
more precise than the current cell range. That is, when the
condition on line 6 satisfied, the node can be expanded into
K children by partitioning cells into K subsets. When the
budget is reached, we return the node with the highest pos-
terior mean prediction among non-leaf nodes. We select rec-
ommendations from non-leaf nodes because predictions of
non-leaf nodes (satisfying event ξ2 in Section 4) are more
precise than leaves. Figure 2 shows various quantities in the
algorithm over two iterations.

Remark 1 (Comparison to StoOO). (i) StoOO assumes
known smoothness of the function but does not utilise cor-
relations between arms and recommend based on predic-
tions. GPOO recommends nodes with the GP predictions.
(ii) GPOO can address aggregated feedback, while StoOO
can only deal with single state feedback. We also extend
StoOO to address aggregated feedback in Appendix C.

Remark 2 (Computational Complexity). The cost of per-
forming global maximisation of an acquisition function can
be exponential in the design space dimension d. The acquisi-
tion function for GP-UCB is the UCB at each point x ∈ X ,
leading to a total computational cost of O(N2d+3). The
problem of selecting an optimal arm from a finite subset of
arms is a case of combinatorial optimisation, and the com-

Figure 3: Proof Roadmap

putational cost can be exponential in the number of arms.
For GPOO, for every round t, we consume O(t2) for the
GP inference procedure. Every time a leaf node is expanded,
K− 1 new leaf nodes are added to the tree, so that less than
(K − 1)t b-values and confidence intervals must be com-
puted. This leads to a total cost of O(N4(K − 1)).

4 Theoretical Analysis for Aggregated Regret
In this section, we provide the theoretical analysis of GPOO.
We show our proof roadmap in Figure 3. The full proofs can
be found in Appendix A. Our technical contribution is adapt-
ing the analysis of the hierarchical partition idea (Munos
2014) to the case reward is sampled from a GP (Srinivas
et al. 2009) and is aggregated.

Recall N is the budget, hmax is a parameter representing
the deepest allowable depth of tree, x∗ ∈ argmax

x∈X
f(x) is an

optimal point in input space and f∗ = f(x∗). Let xh∗t ,j∗t be
a representative point inside the cell Xh∗t ,j∗t containing x∗ in
round t. We first define event ξ, under which we present our
aggregated regret upper bound in Theorem 1. Define event ξ
as ξ = ξ1 ∩ ξ2, where

ξ1 :=
{
∀1 ≤ t ≤ N f∗ − f

(
xh∗t ,j∗t

)
≤ L`(xh∗t ,j∗t ,x

∗)
}
,

ξ2 :=
{
∀0 ≤ h ≤ hmax, 0 ≤ i < Kh, 1 ≤ t ≤ N∣∣a>µ(Xh,i | Zt−1)− F (Xh,i)

∣∣ ≤ CIt(Xh,i)
}
.

The event ξ provides the probabilities environment for our
theoretical analysis, which is the union of two events: event
ξ1 describes the function f local smoothness around its max-
imum; event ξ2 captures a concentration property from the
estimation to representative summary statistics of reward,
which has been shown as an critical part for the regret analy-
sis (Lattimore and Szepesvári 2020; Zhang and Ong 2021b).
In the following lemma, b is the constant in Proposition 1.
Since θ is positive and less than 1− a, P(ξ) > 0.

Lemma 1. Define a = hmax exp(−L
2b
2 ) with L as a con-

stant specified in Assumption 3. Let βt = 2 log (Mπt/θ),
where M =

∑hmax

h=0 K
h, πt = π2t2/6. For K-ary tree and

all θ ∈ (0, 1− a), we have P(ξ) ≥ 1− a− θ.
To obtain the regret bound for our algorithm, we need to

upper bound two pieces: the number of expanded nodes in
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each depth of the tree (Lemma 2), which depends on the con-
cept of near-optimality dimension in Definition 4 proposed
in Munos (2014); and the number of times a node can be
sampled before expansion (Lemma 4), which can be inferred
from the GP posterior variance upper bound (Proposition 2).
We define the set of expanded nodes at depth h as Ih

Ih := {(h, i)|F̄ (Xht,jt) + 3δ(h) ≥ f∗}. (7)

To upper bound the number of nodes in Ih, we introduce
the concept of near-optimality dimension in Definition 4,
which relates to function f , ` and depends on the constant η.

Definition 3 (ε−optimal state). For any ε > 0, define the
ε−optimal states as Xε := {x ∈ X |f(x) ≥ f∗ − ε}.
Definition 4 ((η, `)-near-optimality dimension dη,`, (Munos
2014)). For any ε > 0, with ε−optimal states Xε defined in
Defition 3, dη,` is the smallest d ≥ 0 such that there exists
C > 0 such that the maximal number of disjoint `−balls of
radius ηε with centre in Xε is less than Cε−d.

We further introduce the well-shaped cells assumption,
which implies that the cells partitioned by our algorithm
should contain each representatives points in a `−ball, e.g.
the representatives points should not be on the boundary.
This helps us upper bound the number of expanded nodes
(Lemma 2). Unlike Munos (2014), we require it to hold for
any representative point to suit our aggregated feedback set-
ting. We then show that only the set of nodes in Ih are ex-
panded with GPOO in Lemma 3.

Assumption 4 (Well-shaped cells). There exists ν > 0 s.t.
for any depth h ≥ 0, any cell Xh,i contains an `-ball of
radius νδ(h) centred in each point in the representative set
x ∈ Ch,i.

Lemma 2. Under Assumption 4, |Ih| ≤ C[3δ(h)]−d
η,`

.

Lemma 3. Under event ξ and Assumption 3 , GPOO only
expands nodes in the set I : ∪h≥0Ih.

We now move to derive an upper bound of the num-
ber of draws of expanded nodes. Following Proposition 3
of Shekhar, Javidi et al. (2018), using mutual information,
we upper bound the GP posterior variance in Proposition 2.

Proposition 2. Let f be a sample from a GP with zero mean
and covariance function k. Let X ∈ RS×d and let Σt(X)
denote the posterior predictive GP covariance Σ(X | Z1:t)
according to (4). If the history Z1:t contains at least TX(t)
observations following the model Y = a>f(X) + ε where
ε ∼ N (0, σ2), then we have

√
a>Σt(X)a ≤ σ√

TX(t)
,

where a ∈ RS×1 has all entries equal to 1/S.

With Proposition 2, we upper bound the number of draws
for any nodes under event ξ in the following lemma.

Lemma 4. Under event ξ, suppose a node (h, j) (with cor-
responding feature matrix Xh,j as defined in § 2) is sam-
pled at least TXh,j (t) times up to round t. Then we have

TXh,j (t) ≤
βtσ

2

δ2(h) , where σ2 is the noise variance, βt is de-
fined in Lemma 1.

Figure 4: Reward functions f (row 1) and aggregated regrets
(row 2), with shaded regions indicate one standard deviation.
We perform 30 independent runs with a budget N up to 80.

We show the aggregated regret bound for any δ under our
assumptions in Theorem 1, and show a special case of expo-
nential diameter in Corollary 1.
Theorem 1. Define hN as the smallest integer h′ up to
round N such that

N

βN
≤ K

h′∑
h=0

C[3δ(h)]−d
η,` σ2

δ2(h)
. (8)

For constant a specified in Lemma 1, and θ ∈ (0, 1 − a),
with probability 1−θ−a, the simple regret of GPOO satisfies

RN ≤ 3δ(hN ).

Corollary 1 (Regret bound for exponential diameters). As-
sume δ(h) = cρh for some constants c > 0, ρ < 1. For
constant a specified in Lemma 1, and θ ∈ (0, 1 − a), with
probability 1− θ − a, the simple regret of GPOO satisfies

RN ≤ c1
[βN
N

] 1

dη,`+2
,

where c1 = 3−d
η,`
KCσ2

ρ−(dη,`+2)−1
. Recall βN is in rate O(logN).

5 Experiments
We investigate the empirical performance of GPOO on sim-
ulated data. We compare the aggregated regret obtained by
GPOO with related algorithms, and illustrate how different
parameters influence performance.

We show regret curves of different algorithms for two
simulated reward functions in Figure 4. Our decision space
is chosen to beX = [0, 1]. The reward functions are sampled
from a GP posterior conditioned on hand-designed samples
(listed in Appendix E ), with radial basis function (RBF) ker-
nel having lengthscale 0.05 and variance 0.1. The GP noise

9079



standard variation was set to 0.005. The reward noise is i.i.d.
sampled zero-mean Gaussian distribution with standard de-
viation 0.1.

For our experiment, we consider two cases of feedback:
single point feedback (S = 1), where the reward is sampled
from the centre (representative point) of the selected cell and
average feedback (S = 10), where the reward is the average
of samples from the centre of each sub-cell, which are ob-
tained by splitting the cell into intervals of equal size. Fol-
lowing Corollary 1, we choose δ(h) = c2−h, where c is
chosen via cross-validation. The algorithms are evaluated by
the aggregated regret in Definition 2 (S = 1 for single point
feedback, S = 10 for average feedback).

The related algorithms we compare with include: (i)
StoOO (Munos 2014): the error probability needed for
StoOO is chosen to be 0.1. (ii) AVE-StoOO: We extend the
StoOO algorithm to the case where the rewards are aggre-
gated feedback in Appendix C. (iii) GPTree (Shekhar, Javidi
et al. 2018). We discuss the related algorithms in § 6.

The first reward function (first row) is designed to show
the performance of algorithms when there are several rela-
tively similar local maximums. To find the global optimal
region, the algorithm needs to predict the function values of
high-value cells in high precision quickly. The second re-
ward function is designed to show the case where the re-
ward function is periodic-like. To achieve low regret, the
algorithm needs to avoid disruptions by the patterns hid-
den in rewards, e.g. avoid consistently sampling points with
similar function values. GPOO (for both single and average
feedback cases) has the best performance for the two reward
functions. The aggregated regret convergences quickly and
remains stable. GPTree tends to stuck in local maximum (in
a finite budget) since their parameter βN , balancing the pos-
terior mean and standard deviation, only depends on the bud-
get N and does not increase over different rounds, while
in our algorithm βt increases like O(log t). As expected,
StoOO-based algorithms converge more slowly, since they
only use empirical means instead of GP predictions and they
are designed with a more broad family of reward functions in
mind. We also show an example where aggregated feedback
can be beneficial for recommendations in Figure 5, which is
deferred to Appendix E due to the page limit.

6 Related Work
We mainly review the related work in two aspects: GP-
elated bandits and bandits work considering the aggregated
feedback. Refer to Lattimore and Szepesvári (2020) for a
comprehensive review of bandits literature.

Gaussian Process Bandits By assuming the unknown re-
ward is sampled from a GP, bandit algorithms can be ap-
plied to black-box function optimisation. Srinivas et al.
(2009) studied regret minimisation under single arm feed-
back, where arms are recommended sequentially under a
Upper Confidence Bound (UCB) policy. They covered both
the finite arm space and continuous arm space. GP bandit is
also studied and applied in Bayesian optimisation in a sim-
ple regret setting (Shahriari et al. 2016).

As far as we know, no current GP bandit works address

aggregated feedback. Accabi et al. (2018) studied the semi-
bandit setting where both the individual labels of arms and
the aggregated feedback in the selected subset are observed
in each round, while we consider a harder setting where only
the aggregated feedback is observed. For non-aggregated
feedback, the most related work to ours is Shekhar, Javidi
et al. (2018), which extends the StoOO algorithm to the case
where the f is sampled from unknown GP with theoretical
analysis. They did not provide empirical evaluations on the
proposed algorithm and their algorithm highly depends on
large amount of theoretical-based parameters. We compared
with their algorithm in Section 5.

Aggregated Feedback Related Settings The “aggregated
feedback” is first used in Pike-Burke et al. (2018), in which
they studied bandits with Delayed, Aggregated Anonymous
Feedback. At each round, the agent observes a delayed, sum
of previously generated rewards. Different from our setting,
they considered finite, independent arms setting and cumu-
lative (pseudo-)regret minimisation problem.

There are two types of bandits problems that are related to
the aggregated feedback setting. One related setting is full-
Bandits (Rejwan and Mansour 2020; Du, Kuroki, and Chen
2021) which is studied under combinatorial bandits (Chen,
Wang, and Yuan 2013) with finite arm space, where only the
aggregated feedback over a combinatorial set is observed.
No work has addresses GP bandits with full-bandit feed-
back. Our setting is different from full-bandits since we con-
sider a continuous arm space and the objective is to identify
local areas for function optimisation. Another related setting
is slate bandits (Dimakopoulou, Vlassis, and Jebara 2019),
where a slate has fixed number of positions named slots. The
slate-level reward can be an aggregation over slot-level re-
wards. However, the slate bandits setting assumes slate-slot
two levels rewards and each slate has fixed choices of slots,
which is significantly different from our setting.

7 Conclusion and Future Work
We introduced a novel setting for continuum-armed ban-
dits where only the aggregated feedback can be observed.
This is motivated by applications where aggregated reward
is the only feedback or precise reward is expensive to ac-
cess. We proposed Gaussian Process Optimistic Optimisa-
tion (GPOO) in Algorithm 1 which adaptively searches a
hierarchical partitioning of the space. We provided an upper
bound on the aggregated regret in Theorem 1 and empiri-
cally evaluated our algorithm on simulated data in § 5.

It may be possible to extend our framework to some other
interesting settings. For example, instead of only observing
the aggregated function value corrupted by Gaussian noise,
one may consider the case where the gradient is addition-
ally observed. This is recently studied in Shekhar and Ja-
vidi (2021) on GP bandits with cumulative regret bound. It
would be interesting to study the simple regret (pure explo-
ration), under the aggregated feedback setting. Since GPs are
closed under linear operators (including integrals, deriva-
tives and Fourier transforms), one can potentially handle the
case where some combination of these is observed.
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