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Abstract

Policy gradient methods have been frequently applied to prob-
lems in control and reinforcement learning with great success,
yet existing convergence analysis still relies on non-intuitive,
impractical and often opaque conditions. In particular, existing
rates are achieved in limited settings, under strict regularity
conditions. In this work, we establish explicit convergence
rates of policy gradient methods, extending the convergence
regime to weakly smooth policy classes with L2 integrable
gradient. We provide intuitive examples to illustrate the insight
behind these new conditions. Notably, our analysis also shows
that convergence rates are achievable for both the standard pol-
icy gradient and the natural policy gradient algorithms under
these assumptions. Lastly we provide performance guarantees
for the converged policies.

Introduction
Modern Reinforcement Learning (RL) has solved challenges
in diverse fields such as finance, healthcare, and robotics
(Deng et al. 2016; Yu, Liu, and Nemati 2019; Kober, Bag-
nell, and Peters 2013). Nonetheless, the theory behind these
methods remains poorly understood, with convergence re-
sults being limited to narrow classes of problems. Classical
approaches to RL theory focus on tabular problems where dis-
crete techniques can be applied (see Agarwal et al. (2020b);
Sidford et al. (2018)). However, most practical problems exist
in continuous, high-dimensional domains (Doya 2000), and
may even be infinite-dimensional or non-compact.

Theoretical results in continuous domains do not effec-
tively characterize practical algorithms. Value-based estima-
tors have obtained strong results in some regimes such as
linear MDPs, both in on- and off-line settings (Cai et al. 2019;
Yang and Wang 2019). In contrast to value-based methods,
direct policy estimators possess numerous advantages, in
that they are theoretically insensitive to perturbations in the
problem parameters, and typically satisfy better smoothness
assumptions. Nonetheless, bounds for direct parameteriza-
tions of the policy have been less successful. They either
restrict the cardinality or size of the space (Agarwal et al.
2020b), or apply strong assumptions on the policy and MDP
(Liu et al. 2019; Xu, Wang, and Liang 2020; Liu et al. 2020).
This conflicts with practical results, where convergence often
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occurs without boundedness or smoothness preconditions on
the function approximator.

Consequently, in this paper, we analyse two key questions:
(i) how can we relax existing conditions on MDPs while re-
taining guarantees for convergence, (ii) how can we bound the
performance of the policies under these conditions. Arguably,
the convergence of gradient algorithms needs to rely on some
constraints of the function class. Prior work has relied on as-
sumptions of (a) smoothness and (b) absolute boundedness of
the gradient. However, these conditions are overly restrictive
and exclude many useful function approximators.

Summary of Contributions. We make contributions with
respect to each of these assumptions: (a) strong smoothness is
relaxed to weak smoothness (Hölder conditions); (b) absolute
boundedness of the gradient is relaxed to L2 integrability
under the visitation distribution. While this is an important
theoretical development, it also expands the scope of practical
convergence results. We include many practical examples of
MDPs and policies that satisfy our criteria, with applications
to exploration and safety in reinforcement learning. To the
best of our knowledge, ours is the first study to consider this
setting.

Under these assumptions, we find (Corollary 1) that
with an appropriate learning rate, the gradients satisfy
1
T

∑T
t=1 E

[
∥∇J(θt−1)∥2

]
≤ ϵ for both the standard and

natural policy gradient for large enough T,B, where T is
the number of iterations and B is the batch size. We also
show (Corollary 2) that natural policy gradient satisfies the
following bound:

min
t=0,1,...T−1

J(θ∗)− E [J(θt)] ≤ ϵ+O
(√

EΠ

1− γ

)
, (1)

for large enough T,B, where EΠ can be tuned by choos-
ing an appropriately regular policy class and θ∗ is the max-
imizer of J . EΠ is formally defined in §5. Under a strong
additional assumption, standard policy gradient also satisfies
mint=0,1...T−1 J(θ∗)−E [J(θt)] ≤ ϵ for large enough T,B.
In the strictly smooth limit these results have previously been
discovered (Agarwal et al. 2020a; Xu, Wang, and Liang 2020;
Zou, Xu, and Liang 2019), although our results hold for a
wider range of functions and MDPs.

The remainder of the paper is structured as follows: in
§2 we cover the mathematical formulation of MDPs; in §3
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we introduce the policy gradient algorithm as well as our
assumptions. In §4, we list several candidate policies that sat-
isfy our assumptions, and demonstrate their utility in a variety
of contexts. §5 then states our main results; §6 summarizes
works related to optimization and RL theory.

Background

Markov Decision Processes

Let a state-space be denoted by S, and an action-space by
A. Let a transition measure P (·|s, a) and a reward mea-
sure R(·|s, a) be probability measures on S and R respec-
tively, both conditioned on variables (s, a) ∈ S × A. A
Markov Decision ProcessM is formally defined as a tuple
(S,A, P,R, γ), where γ ∈ [0, 1) is the discount factor. By
abuse of notation, we use the same notation for a measure
and its density, unless otherwise specified. Let ∥z∥ = ∥z∥2
the 2-norm for vectors, ∥z∥op the operator norm for matri-
ces, and ∥p− q∥TV ≜

∫
|p(x)− q(x)| dx the total variation

distance for signed measures. Hereafter we assume that the
absolute magnitude of the rewards are bounded, i.e. R(·|s, a)
only has support on [−α, α] for some α ≥ 0, and all s, a.

Policies: For a given state s ∈ S , we denote a stochastic
policy with π(·|s), which is a probability distribution over A.

Trajectories: To generate trajectories, we start from an
initial state distribution ρ, and then at each time t ∈ N, we
sample an action from the policy: at ∼ π(·|st). Subsequently
a state and reward are queried as st+1 ∼ P (·|at, st), rt ∼
R(·|at, st), and the process continues indefinitely. Conse-
quently π, ρ,M together parameterize a probability distribu-
tion on the set of trajectories. Letting ρ be fixed, we write
this as {(st, at), t = 0, 1, 2, . . .} ∼ MDP following π.

Value Functions: We can define the value function as:
Vπ(s) ≜ E[

∑∞
t=0 γ

trt|s0 = s], and the Q-function as:
Qπ(s, a) ≜ E[

∑∞
t=0 γ

trt|s0 = s, a0 = a]. Note that both
expectations are taken over trajectories following the policy π.
If |rt| ≤ α almost surely for all t, both functions are bounded
by [−α/(1−γ), α/(1−γ)] almost surely as well. We can also
define the advantage function Aπ(s, a) ≜ Qπ(s, a)− Vπ(s).

Discounted Visitation: It will be useful to define the sum
of time-discounted visitation probability densities through
the following: ds

′

π (s, a) = (1 − γ)
∑∞

t=0 γ
tpt(s, a|s0 = s′)

where pt(s, a|s0 = s′) is the conditional probability den-
sity for s, a being sampled at time t from the MDP fol-
lowing π, given the initial state s0 = s′. We overload no-
tation and write dρπ(s, a) =

∫
ds

′

π (s, a)ρ(s
′) ds′. This de-

fines a probability density function on S ×A. We also write
Hρ

θ (s) =
∫
dρθ(s, a) da for the state-component of the visita-

tion distribution.
Reinforcement Learning: A reinforcement learning agent

is one which produces a sequence of policies πt based on the
queries from the MDP, and seeks to iteratively maximize the
value function: J(π) =

∫
Vπ(s)ρ(s) ds. The existence of an

optimum in the space of stochastic functions has been shown
as a classical result (Bellman 1954).

Algorithms
Policy Class
In this work, we limit our discussion to exponential policy
classes which are continuously differentiable. In particular,
we denote the distribution of an exponential policy, param-
eterized by a variable θ ∈ Θ ⊆ RN , such that πνθ

(a|s) =
exp(νθ(s,a))∫

A exp(νθ(s,a)) da
where νθ : S×A 7→ R. We require that the

integral
∫
A exp(νθ(s, ·)) da <∞ is finite for all θ ∈ Θ, s ∈

S, and that νθ(s, a) is differentiable in θ for all s, a. Let us
define πθ ≜ πνθ

, J(θ) ≜ J(πθ) and use θ instead of πθ in
subscripts where there is no confusion. Let us denote the
score function as ψθ(s, a) = ∇θ log πθ(a|s). Then the gra-
dient can be written as∇J(θ) = Es,a∼dρ

θ
[Qθ(s, a)ψθ(s, a)].

While successful tabular approaches rely on explicit com-
putation of each softmax probability, this is not feasible for
most MDPs where the action space is infinite and possibly un-
countable. Typically some form of well-chosen function class
is required to address this issue. In this work, we consider
all softmax functions that satisfy the following smoothness
properties:
Assumption 1. (Smoothness of Policy Class) Consider poli-
cies πθ ∝ exp(νθ). We require that π obeys the following
two smoothness conditions:∫

A
πθ(a|s) log

πθ(a|s)
πθ+η(a|s)

da ≤ Cν,1 ∥η∥β1 , (2)

∥ψθ(s, a)− ψθ+η(s, a)∥≤Cν,2 ∥η∥β2, (3)
where the constants Cν,1, Cν,2 ≥ 0, β1 ∈ [1, 2], β2 ∈ (0, 1]
are valid for all θ, s, a. Consequently we define β0 =
min(β1/4, β2) as the dominant order of smoothness.

It will also be useful in our analysis to define βmax =
max(β1/4, β2). We note that (2) is a Hölder condition on the
Kullback–Leibler (KL) divergence of the policies, while (3)
is a Hölder requirement on the score function.

Remarks: β1 < 2, β2 < 1 are weakly smooth cases.
This is a weaker assumption than traditional assumptions
on Lipschitz smoothness; particularly, it allows for slow tail
decay. It is also possible to relax this assumption to local
conditions (i.e. only holding when ∥η∥ ≤ C), while having
Lipschitz conditions at large scales.

We introduce an additional assumption on the second mo-
ment of the score function:
Assumption 2. (Boundedness of Moments) Assume that the
score function is absolutely bounded in L2 across all policies
i.e. that the following holds for all θ∫

S

∫
A
∥ψθ(s, a)∥2 dρθ(s, a)da ds ≤ ψ∞, (4)

for any θ in our parameter space, where ψ∞ < ∞ is a
constant independent of θ.

Remarks: Higher order integrability assumptions are pos-
sible. In fact, if ∥ψθ∥ ≤

√
ψ∞ holds dρθ-almost surely, we

recover the standard bounded gradient assumption found in
other works (Xu, Wang, and Liang 2020; Liu et al. 2020).

Finally, we require the following standard assumption (see
e.g. Xu, Wang, and Liang (2020); Zou, Xu, and Liang (2019))
which we use to show smoothness of the objective function.
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Algorithm 1: Policy Gradient for Hölder Smooth Objectives
1: Initial parameter θ0.
2: for Step t = 1, . . . , T do
3: for i = 1, . . . B do
4: Let j ∼ Geom(1− γ), h ∼ Geom(1− γ1/2), τ =

j + h.
5: Sample (s0, a0, . . . sτ , aτ ) ∼ MDP following

πθt−1
.

6: st,i ← sj , at,i ← aj .
7: vt,i ←

∑τ
u=j γ

(u−j)/2ru, ru ∼ R(·|su, au).
8: end for
9: Choose ht specified in our learning rates section.

10: θt ← θt−1 +
ht

B

∑B
i=1 vt,iψθt−1

(st,i, at,i).
11: end for
12: Return θT

Algorithm 2: Natural Policy Gradient for Hölder Smooth
Objectives

1: Initial parameter θ0, stability parameter ξ ∈ (0, 1].
2: for Step t = 1, . . . , T do
3: for i = 1, . . . B do
4: Let j ∼ Geom(1− γ), h ∼ Geom(1− γ1/2), τ =

j + h.
5: Sample (s0, a0, . . . sτ , aτ ) ∼ MDP following

πθt−1 .
6: st,i ← sj , at,i ← aj .
7: vt,i ←

∑τ
u=j γ

(u−j)/2ru, ru ∼ R(·|su, au).
8: end for
9: for i = 1, . . . B do

10: Let j ∼ Geom(1− γ).
11: Sample

(
s′0, a

′
0, . . . s

′
j , a

′
j

)
∼ MDP following

πθt−1
.

12: s′t,i ← s′j , a
′
t,i ← a′j .

13: end for
14: Choose ht specified in our learning rates section.
15: Kt ← 1

B

∑B
i=1 ψθt−1(s

′
t,i, a

′
t,i)ψ

⊤
θt−1

(s′t,i, a
′
t,i).

16: Mt ← (Kt + ξI)−1

17: θt ← θt−1 +
ht

B

∑B
i=1Mtvt,iψθt−1

(st,i, at,i).
18: end for
19: Return θT

Assumption 3. (Ergodicity) We have for all states s0 ∈ S:

∥Pn
θ (·|s0)− ρ∗(·)∥TV ≤ C0δ

n,

where Pn
θ is the n-step state transition kernel following πθ,

ρ∗ is the invariant state distribution, C0 ≥ 0, δ < 1 are
constants independent of s0, θ.

Policy Gradient
Given these assumptions on the policy class, we can apply

direct policy ascent on the space of parameters in order to get
the gradient update

θt = θt−1 + ht∇θJ(θt−1), (5)

where ht ∈ R is an adaptive step size. Alternatively, natural
policy gradient (NPG), first introduced by (Kakade 2001),

applies the following update

θt = θt−1 + htK
†(θt−1)∇θJ(θt−1), (6)

whereK(θ) = Es,a∼dρ
θ

[
ψθ(s, a)ψθ(s, a)

⊤]. Here (·)† is the
matrix pseudo-inverse. The advantage of this method is that
the optimization landscape becomes well-behaved.

Since the true loss function and Fisher information matrix
are not available to us, we estimate each of them through
sampling. In particular, we use the following minibatch esti-
mators for∇J and K:

̂∇J(θt−1) =
1

B

B∑
i=1

vt,iψθt−1
(st,i, at,i), (7)

Kt =
1

B

B∑
i=1

ψθt−1
(st,i, at,i)ψ

⊤
θt−1

(st,i, at,i), (8)

and we use (Kt + ξI)−1 to approximate the inverse of the
Fisher matrix, where ξ ∈ (0, 1] is a parameter that guaran-
tees the estimator is numerically stable, vt,i is an unbiased
estimator for Qθt−1

(s, a) given in Algorithms 1-2 wherein
we follow Zhang et al. (2020b, Algorithm 1), and to sample
from the occupancy measure dρθ , we sample trajectories fol-
lowing Agarwal et al. (2020b, Algorithm 1). This procedure
is summarized in Algorithms 1-2.

Learning Rates
In the sequel, we consider the following learning rates: (i)
constant ht = λ, (ii) dependent on the total number of steps

ht = λT
β0−1
β0+1 , (iii) decaying ht = λt−q, q ∈ [0, 1). We

also state our Theorems 1-2 more generally for any step size
sequence ht.

Applications
We note two prominant applications of our assumptions: (i)
an application of Assumption 1 to exploration has been ex-
plicitly shown in Chou, Maturana, and Scherer (2017), (ii)
Assumption 2 has been shown to apply to Safe RL via the
work of Papini, Pirotta, and Restelli (2019). Some additional
examples will serve to illustrate these points below.

For ease of demonstration, we consider policies and envi-
ronments which independently satisfy Assumptions 1-2 and
Assumption 3 respectively, so long as the other component is
sufficiently regular. The following policies illustrate why we
might value weak smoothness:
Example 1. (Generalized Gaussian Policy) If we choose
the parameter κ ∈ (1, 2], we can choose the generalized
Gaussian distribution to parameterize our policy:

νθ(a|s) = − |⟨ϕ(s, a), θ⟩|κ . (9)

See Figure 1(a) for a visualization of the smoothness of this
policy.

This distribution is covered by our assumptions; in contrast,
previous works only permitted the strictly Gaussian distribu-
tion, where κ = 2. In particular, the tails of this distribution
decay much more slowly than the tails of the Gaussian distri-
bution, which has applications to exploration-based strategies.
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Figure 1: (a) Tail Growth: Comparing the growth of ψθ in one-dimension for a hypothetical policy class with 1-Lipschitz gradient,
versus the Generalized Gaussian (Example 1) with α = 0.1, for the [0, 0] state in the MountainCar environment. The gradients
are normalized for ease of comparison. (b) Exploration Performance: Comparing the performance of Generalized Gaussian and
the standard Gaussian policy, with α = 0.7, for the reward function found in Equation (10), |θ∗ − θ| = 3.3. The Generalized
Gaussian significantly outperforms during the exploration phase. The result is similar for both PG and NPG.

Indeed, let us consider the following single-state exploration
problem with the following (deterministic) reward

r(at) =
(
1− (at − θ∗)2

)
1|at−θ∗|≤1, (10)

with policies νθ(a) = − |a− θ|κ for κ = 2 (a Gaussian
policy) and κ ∈ (1, 2] (a generalized Gaussian). θ∗ ∈ R is
an unknown target. If θ∗ is far from our initial parameter, the
agent will receive no gradient information so long as it does
not sample actions from the region of interest [θ∗−1, θ∗+1].
For a policy with exponent κ, this occurs with probability

πκ,θ0(at ∈ [θ∗ − 1, θ∗ + 1])

=
1

2Γ(κ+ 1/κ)

∫ θ∗+1

θ∗−1

exp(− |a− θ0|κ)da,

where πκ,θ0 is the policy measure under the generalized Gaus-
sian with exponent κ and parameter θ0. If U = [θ∗−1, θ∗+1]

πκ,θ0(at ∈ U)− π2,θ0(at ∈ U)

≥ 1

2Γ(κ+ 1/κ)

∫ θ∗+1

θ∗−1

exp(− |a− θ0|κ)

− exp(− |a− θ0|2 + log 2)da,

which is > 0 by simply comparing the terms in the expo-
nents, when κ ≪ 2 and |θ∗ − θ0| ≫ 0. This difference in
probability can improve sample efficiency by many orders of
magnitude. The empirical performance of the two policies is
found in Figure 1(b), with a large improvement in number of
samples needed to discover the correct action. This example
can be easily generalized to more complex bandits/MDPs.

Another example shows the richness of the weakly smooth
assumption:

Example 2. (p-Harmonic minimizers) It is known (Coscia
and Mingione 1999; Lindqvist 2017) that local minimizers ν

to the p-Harmonic functional, for p(x) : Rd 7→ R

F(ν) ≜
∫
Rd

∥∇ν∥p(x) dx, (11)

are weakly smooth of some order L(p) < 1 when p(x) > 1.
One can also restrict the integration above to a compact

set. Consequently, these can serve as interesting potential
functions. Note that we can add any potential with bounded
and Lipschitz gradient to such functions while preserving
Hölder regularity. Weak smoothness has also been shown for
many other elliptic families of PDEs (Høeg and Lindqvist
2020; Sciunzi 2014), which may also motivate some candi-
date policies.

To illustrate the distinction of Assumption 2 from standard
∥·∥∞ bounds, consider the following policy class:
Example 3. (Safe Policies) Consider the following potential
for θ ∈ [−1, 1], ∥ϕ∗∥ ≤ 1:

νθ(s, a) = −θ log ∥ϕ(s, a)− ϕ∗∥ . (12)
Under uniform dynamics and a uniform distribution of

ϕ(s, a) on a ball of radius 1 around the origin, this family
satisfies Assumption 2, but not the standard assumption of
absolute boundedness sups,a ∥ψθ(s, a)∥∞ < ∞. This pol-
icy explicits avoids the state-action region around ϕ∗; this
can arise practically when considering safety or instability
constraints in RL.

Main Results
In the sequel, define the quantity EΠ as
maxθ∈Θ Es,a∼dρ

θ

[∥∥ψθ(s, a)
⊤K(θ)†∇J(θ)−Aπθ

(s, a)
∥∥2]

and the quantity D∞ = supθ1,θ2

∥∥∥∥dρ
θ1

dρ
θ2

∥∥∥∥
∞

+ 1. For brevity,

we will let Σ = σ
(1−γ)

√
B

, where σ = 3α
√
ψ∞ controls the

variance of the gradient and B is the batch size.
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Theorem 1. Under Assumptions 1-3, Policy Gradient and
Natural Policy Gradient achieves the following convergence:

T∑
t=1

htE
[
∥∇J(θt)∥2

]
≤ Ck,1 (J∗ − J(θ0))

+
Ck,2

1− γ

T∑
t=1

(
h

β1
4

+1

t

(
E
[
∥∇J(θt)∥

β1
4

+1
]
+Σ

β1
4

+1
)

+ hβ2+1
t

(
E
[
∥∇J(θt)∥β2+1

]
+Σβ2+1

))
,

where Ck,1, Ck,2 depend on whether policy gradient or nat-
ural policy gradient is considered, and are defined in the
Appendix. They do not depend on ϵ, γ for either algorithm.
J(θ0) is the initial performance and J∗ = supθ∈Θ J(θ),
which is finite due to the boundedness of the reward. The
remaining constants are specified in the Appendices.

Remarks: If we replace Assumption 2 with an almost
sure bound on ∥ψθ∥, the exponent β1/4+ 1 becomes instead
β1/2 + 1, which recovers previous results.

With respect to the ergodicity mixing rate δ, Ck,2 scales
as 1/(1 − δ) for either algorithm, which is analogous to
other works with ergodicity (Xu, Wang, and Liang 2020,
Proposition 1).
Corollary 1. (Rates under various step-size schemes)
Table 1 encapsulates the orders of growth of
1
T

∑T
t=1 E

[
∥∇J(θt)∥2

]
for each of the learning rates

examined in our paper, for the choice of λ sufficiently small
and B ≳ σ2

(1−γ)2 .

For our subsequent results, policy gradient requires another
opaque assumption:
Assumption 4. (Requirements for Policy Gradient) Assume
that there is a θ∗ ∈ Θ where J attains its maximum. Further-
more, let θ ∈ Θ be any parameter. Then, we assume that J is
m-dominated for any m > 0, i.e. that the following holds

J(θ∗)− J(θ) ≤
m

1− γ
⟨θ∗ − θ,∇J(θ)⟩ .

Assume Diam(Θ) ≜ supθ1,θ2∈Θ ∥θ1 − θ2∥ <∞ as well.
See (Bhandari and Russo 2019, Lemma 3(a)) for analogous

conditions, which are often violated in practice.
Theorem 2. Let θ∗ = argmaxθ∈Θ J(θ). Under Assump-
tions 1-3, Natural Policy Gradient is bounded with the fol-
lowing for t ∈ 1 . . . T :

J(θ∗)− E [J(θt−1)]

≤ CNPG,2

1− γ
hβ1−1
t

((
ξ−1Σ

)β1
+ E

[
∥∇J(θt−1)∥β1

])
+
CNPG,3

1− γ
hβ2
t

((
ξ−1Σ

)β2+1
+E

[
∥∇J(θt−1)∥β2+1

])
+
CNPG,4

1− γ

(
ξ−1Σ+

√
EΠ√
ψ∞

+
1

ξ
E [∥∇J(θt−1)∥]

)
.

Here, EΠ is a policy dependent parameter, σ is the variance
from Theorem 1, and ξ is the stability constant found in
Algorithm 2.

If, additionally, Assumption 4 is added, then the standard
Policy Gradient is bounded by the following for t ∈ 1 . . . T :

J(θ∗)− E[J(θt−1)] ≤
mDiam(Θ)

1− γ
E [∥∇J(θt−1)∥] , (13)

where Diam(Θ) is defined in Assumption 4.

Here, θ∗ is the minimizer from Assumption 4, and
CNPG,2−4 are not dependent on ht, B, T, γ and are stated
explicitly in the appendices. For natural policy gradient, there
are no additional assumptions apart from the bias term EΠ

being finite; this is bounded under standard assumptions (see
Agarwal et al. (2020b, Remark 6.4)). This is a major advan-
tage of NPG over its vanilla counterpart, which requires a
strong additional regularity condition.

For both natural and standard policy gradient, if we take
the minimum over t = 1 . . . T , we obtain the rates in the
following corollary.

Corollary 2. For λ sufficiently small, B ≳ σ2

(1−γ)2 , and

the learning rate ht = λT
β0−1
β0+1 , for Policy Gradient the

following holds under Assumptions 1-4

min
t=0,...T−1

J(θ∗)− E [J(θt)] ≤ ϵ.

For Natural Policy Gradient the following holds under As-
sumptions 1-3

min
t=0,...T−1

J(θ∗)− E [J(θt)] ≤ ϵ+
√
D∞EΠ

1− γ
.

Recall that EΠ is an approximation error, and D∞ measures
the irregularity of the initial distribution. For either algorithm,
we need to choose

T ≳ ϵ−
β0+1
β0 (1− γ)

− 2β2
0+3β0+1

2β2
0 ,

B ≳ ϵ−2(1− γ)−
4β2

0+5β0−1

β0(β0+1) ,

where we only track dependencies on γ, ϵ.

Please refer to the extended version of our paper at
https://arxiv.org/abs/2111.00185 for the technical appendices
containing proofs of these statements.

Related Work
Optimization and Stochastic Approximation
We primarily refer to work on stochastic approximation,
which began with the work by authors Polyak and Juditsky
(1992); Kushner and Yin (2003), who established basic con-
ditions for convergence for linear approximation procedures,
with rates being obtained under strong assumptions. Tighter
bounds have recently been achieved through improved analy-
sis and techniques, both in asymptotic and non-asmyptotic
contexts (Chen et al. 2016; Lakshminarayanan and Szepes-
vari 2018; Jain et al. 2018).

The theory for optimizing weakly smooth rather than Lip-
schitz functionals was primarily developed in the follow-
ing works Devolder, Glineur, and Nesterov (2014); Nesterov
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ht Order Considerations

λ O(λ−1T−1) +O((
√
B(1− γ))−β0−1) + Bias Additional Bias

λT
β0−1
β0+1 O(λ−1T− 2β0

1−β0 ) +O(T
β2
0−β0
β0+1 (

√
B(1− γ))−β0−1)

λt−q Õ(λ−1T−f(q,β0)) +O(T−qβ0(
√
B(1− γ))−β0−1)

Table 1: Results for various learning rate schemes, for both policy gradient and natural policy gradient. We only track the primary
dependence in T,B, γ. For the decaying learning rate, we define the coefficient f(q, β0) = min( 2qβ0

1−β0
, 1− q). In each case we

require λβ0 ≲ 1−γ
C where C does not depend on γ, ϵ.

(2015); Yashtini (2016), introducing the definition of weak-
smoothness through Hölder conditions, and showing conver-
gence via smoothing or fast decaying learning rates. Lastly,
our analysis relies heavily on the theory of ergodicity for
MDPs. We build on the works of Mitrophanov (2005) which
yields perturbation bounds on the state distribution, and sub-
sequent improvements in the assumptions and condition num-
bers (Ferré, Hervé, and Ledoux 2013; Rudolf, Schweizer
et al. 2018; Mao and Song 2020).

Reinforcement Learning
The general formulation of reinforcement learning can be
attributed to Bellman’s formulation of Markov Decision pro-
cesses (Bellman 1954). Gradient-based approaches were pro-
posed to solve direct policy parameterizations (Williams
1992); developments in this classical setting include Sut-
ton, Precup, and Singh (1999); Konda and Tsitsiklis (2000);
Kakade et al. (2003). These works established asymptotically
tight bounds for convergence in the tabular setting, while
outlining rough conditions for convergence when feature
transformations were applied. The introduction of natural
gradient techniques (Kakade 2001), which borrowed from
similar work in standard optimization (Amari 1998), yielded
improved convergence with respect to policy condition num-
bers. In particular, strong convergence holds for domains
such as the linear quadratic regulator (Fazel et al. 2018; Tu
and Recht 2018) and other linearized problems.

Even so, lower bounds for general problems can be quite
pessimistic, especially when the conditions are ill-specified
(Sutton et al. 2000). This debate has attracted renewed focus
in recent years, with an on-going discussion on the quality of
representation and its effect on learnability (Du et al. 2019;
Van Roy and Dong 2019). Nonetheless, real world problems
are either continuous or well-approximated by continuous
algorithms, with smooth state-space. Agarwal et al. (2020a,b)
provided a convergence and optimality result for both tabu-
lar and linear settings, but only when the action space was
discrete and the problem was deterministic. Other results in
this setting include Mei et al. (2021); Zhang et al. (2020a);
Mei et al. (2020); Zhang et al. (2021). Xu, Wang, and Liang
(2020); Kumar, Koppel, and Ribeiro (2019) focus on general
settings, but only under generous smoothness and bound-
edness assumptions. Numerous works have since focused
on feature representations in policy learning, particularly
through use of neural networks (Thomas and Brunskill 2017;
Wang et al. 2019; Liu et al. 2019); these apply similarly strict

assumptions on the problem class in order to achieve good
rates of convergence.

We would like to comment extensively on the results of
Liu et al. (2020), which obtains highly competitive rates for
PG and NPG, of O(ϵ−4) and O(ϵ−3) respectively. While our
rate for NPG is worse at O(ϵ−4), β0 → 1, this is because of
numerous differences between our formulations. Liu et al.
(2020) rely on more complex sampling and natural gradient
procedures, particularly requiring stochastic gradient descent
in order to solve for the NPG update vector. It is unclear
whether this technique can generalize to the weakly smooth
regime. Instead, we analyze a much simpler algorithm that
involves direct estimation of the Fisher information matrix,
with an additional cost in ϵ, while also handling non-constant
learning rates.

Our results are simultaneously valid for continuous set-
tings, while removing many of the strict assumptions found
in previous results. In particular, smoothness of the policy
class and boundedness of the gradient limited the scope of
policies. We build upon work in weakly smooth optimization
to relax these assumptions.

Discussion
In this work, we established the convergence guarantees for
the policy gradient for weakly smooth and continuous action
space settings. To the best of our knowledge, this is the first
work to establish the convergence of policy gradient methods
under an unbounded gradient without Lipschitz smoothness
conditions. Thus, our work significantly generalizes the scope
of existing analysis while opening numerous lines of future
research. Our assumptions are also practically applicable, as
we demonstrate through several examples.

Nonetheless, there are many important limitations for our
analysis. Firstly, it is likely that Assumption 4 can be signif-
icantly relaxed, as in other recent work (Liu et al. 2020). A
more careful analysis would have more complex dependence
on the problem parameters ϕ, ν. It may also be interesting
to consider weaker assumptions than ergodicity, by adding
regularization conditions on the initial distribution of poli-
cies. For practical problems, this is often necessary since
the smoothness coefficients can be unbounded except in a
reasonable starting set. We also believe that weak smooth-
ness can be relaxed further to locally non-smooth problems
(β0 = 0), by applying smoothing techniques from optimiza-
tion (Nesterov 2015). In addition, no practical studies on
empirical performance have been done when considering the
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trade-off between smoothness conditions and convergence
rates. Finally, we can quantify the convergence of the distri-
bution of J(θ) using functionals such as the KL divergence
or Wasserstein metric.
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