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Abstract

Categorical data is common and, however, special in that its
possible values exist only on a nominal scale so that many
statistical operations such as mean, variance, and covariance
become not applicable. Following the basic idea of the neigh-
bour correlation coefficient (nCor), in this study, we propose
a new measure named the categorical nCor (CnCor) to ex-
amine the association between categorical variables through
using indicator functions to reform the distance metric and
product-moment correlation coefficient. The proposed mea-
sure is easy to compute, and enables a direct test of statisti-
cal dependence without the need of converting the qualitative
variables to quantitative ones. Compared with previous ap-
proaches, it is much more robust and effective in dealing with
multi-categorical target variables especially when highly non-
linear relationships occur in the multivariate case. We also
applied the CnCor to implementing feature selection by the
scheme of backward elimination. Finally, extensive experi-
ments performed on both synthetic and real-world datasets
are conducted to demonstrate the outstanding performance of
the proposed methods, and draw comparisons with state-of-
the-art association measures and feature selection algorithms.

Introduction
Detecting the associations between variables is one of the
most important issue in data analysis and machine learning.
In the past decades, a number of association measures have
been proposed to enable capturing a wide range of com-
plex data relationships. These methods, however, may some-
times exhibit less detection power when dealing with certain
types of data. Developing more powerful association detec-
tion methods has been a challenging research.

One of the most widely used measures is mutual informa-
tion (MI), which detects the dependence between variables
in the context of information theory. A number of techniques
have been proposed to estimate the score of MI, such as
kernel density estimation (KDE) (Sohan and Prı́ncipe 2009;
Wang, Shen, and Zhang 2005), k-nearest neighbor distances
(kNN) (Darbellay and Vajda 1999; Kraskov, Stögbauer, and
Grassberger 2004), and bining (partitioning) (Reshef et al.
2011; Heller et al. 2016). Gao et al.(2017) proposed a
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KSG estimator (MKSG) to provide a better handling of
discrete-continuous mixtures. Zeng, Xia, and Tong(2018)
proposed a Jackknife version of kernel estimation of MI
to free the estimation from bandwidth selection. Distance
correlation (dCor) (Székely et al. 2007; Székely and Rizzo
2009) has a compact representation analogous to Cor, but
enables detecting various nonlinear relationships. Random-
ized dependence coefficient (RDC) is proposed based on
the Hirschfeld-Gebelein-Renyi maximum correlation coef-
ficient (Lopez-Paz, Hennig, and Scholkopf 2013), and can
capture a variety of complex associations between ran-
dom variables of arbitrary dimension. Other approaches in-
clude kernel canonical correlation analysis (KCCA) (Bach
and Jordan 2003), principal curve based methods (Delicado
2001; Delicado and Smrekar 2009), Hilbert-Schmidt inde-
pendence criterion (HSIC) (Gretton et al. 2005), and non-
linear spectral correlation (Liu, Sohn, and Jeon 2017). Re-
cently, (Zhang 2020) introduced an order statistics based as-
sociation detection method called the neighbour correlation
coefficient (nCor). Since association detection is a basic
primitive in machine learning, it is useful in many learning
tasks. Various MI estimators and correlation measures have
been widely used as selection criteria for constructing filter
type feature selection (FS) algorithms (Fleuret 2004; Brown
et al. 2012; Shishkin et al. 2016). From the other point of
view, assisting in FS has been also commonly considered as
a way to evaluate the performance of association measures
(Lopez-Paz, Hennig, and Scholkopf 2013; Gao et al. 2017).

To maximize the effectiveness, these measures are usually
restricted to certain types of data such as continuous, dis-
crete, or binary. Categorical (qualitative) data, mainly multi-
level categorical data, is always difficult to analyze because
its possible values are incomparable, and have no signifi-
cance beyond simply providing a convenient label for a par-
ticular value. In such a situation, the data is not appropriate
to apply many statistical methods such as mean, variance,
and covariance. In many cases, it needs to be converted to
quantitative data in order to be able to analyze the data. This
conversion can usually be achieved by coding the categorical
values into high-dimensional vector spaces, and however in-
evitably leads to a redundancy of data dimensionality while
no additional information is gained. It is clearly that all the
product-moment correlation based approaches become inap-
plicable when dealing with categorical data since they are all
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composed of mean, variance, and covariance operations. MI
estimators may also become less effective in handling cate-
gorical data, and probably be significantly influenced by the
label configuration that describes the way in which labels
are assigned to each category.

To overcome this problem, We propose a new statisti-
cal measure named categorical nCor (CnCor) to realize
a straightforward dependence detection between categori-
cal variables, that is, not only categorical features but also
categorical target. It is easy to implement and does not re-
quire any data processing or tuning of parameters. Moreover,
we reformulate the coefficient of essentialness (COE) with a
fast distance matrix updating strategy to measure the impor-
tance of one or more features in analysing the target variable
with respect to some others. In some sense, the purpose of
COE is similar to that of the partial correlation and CMI.
Then, we use the COE test to implement FS tasks via the
mechanism of backward elimination. Experimental studies
are conducted to demonstrate the outstanding performance
of the proposed methods in comparison with the existing as-
sociation measures and FS techniques.

Background of The nCor
The nCor has been introduced recently in the study of
(Zhang 2020) for measuring the functional relationships
between quantitative variables. The basic idea behind the
nCor is that if there exists a functional relationship between
(x, y), a pair of data points should be of similar values of y
when their values of x are sufficiently similar. That means,
knowing the features determines the value of the target vari-
able, in other words, the value of y is predictable from x.

Consider data (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))
that consists of N independent observations from the joint
distribution of (x, y), where x(t) = (xi(t)|1 ≤ i ≤ M).
The procedure of computing the nCor can be summarised
as follows. First, the sample points need to be reordered
by using the permutation {nk|1 ≤ k ≤ N} that satis-
fies the criterion of minimizing the total Euclidean distance
λnk,nk+1

= ‖x(nk+1) − x(nk)‖ between the neighbouring
data points as given in (1).

{nk|1 ≤ k ≤ N} = arg min
nk∈{1,··· ,N},∀1≤k≤N

ni 6=nj,∀i 6=j

N−1∑
k=1

λnk,nk+1
(1)

In the bivariate case, data reordering can be achieved us-
ing order statistics which involves, arranging x in increas-
ing numerical order x(n1) ≤ x(n2), · · · ,≤ x(nN ) known
as order statistics {x(k:N)|1 ≤ k ≤ N}, and then corre-
spondingly reordering y(n1), y(n2), · · · , y(nN ) referred to as
the concomitants {y[k:N ]}.

In the multivariate case, data reordering can be conducted
using the nearest neighbor (NN) algorithm through consid-
ering the reordering process as a traveling salesman problem
(TSP). The algorithm randomly starts at one data point, then
visits the unvisited data point that is nearest to the last vis-
ited data point, and repeats this process until all data points
have been visited. The obtained route {n1, · · · , nN} can be
used to generate concomitants {y[k:N ]}. The crucial point is

that by the data reordering, both {y[k:N−1]} and {y[k+1:N ]}
should obey the same distribution as {y(t)} (with only one
sample point omitted). Another point is that despite a sub-
optimal TSP route, NN algorithm can always yield a permu-
tation that is of sufficient quality for conducting the nCor
test. That is, the nCor is robust to the exact permutations.

Then, the nCor is defined as below.

nCor(x, y) =

N−1∑
k=1

(y[k:N ] − y)(y[k+1:N ] − y)(
N−1∑
k=1

(y[k:N ] − y)2
N−1∑
k=1

(y[k+1:N ] − y)2
)0.5

(2)
where the overbar denotes mean operation.

A key property of the nCor test is that, it is a direct ap-
proximation of theR2 of the underlying relationship f(·) be-
tween (x, y), and nCor(x, y) → R2 → var(f(x))/var(y)
when N →∞. By this property, three nCor based associa-
tion measures have been proposed in (Zhang 2020) to char-
acterize the intra and inter structures of the associations from
the aspects of nonlinearity, interaction effect, and variable
redundancy respectively. One of the measures is called the
coefficient of essentialness (COE) which represents an esti-
mate of the association strength between y and xA with the
effect of xB (controlling features, and xA ∩ xB = ∅) re-
moved. In other words, it measures the dependence between
(xA, y) given the values of xB . In this sense, the role and
purpose of the COE test is similar to that of the partial corre-
lation coefficient in the linear case, as well as the conditional
MI (CMI) in the context of information theory.

The Proposed Methods
As given in (2), the nCor is calculated analogously to the
Pearson correlation coefficient, so that it can only be per-
formed on qualitative variables whose possible values must
be comparable or relatively comparable whether the data
distribution is continuous or discrete. Obviously, it is not ap-
plicable to categorical variables since their possible values
are incomparable. To overcome this problem, a new associ-
ation measure is proposed in this study by reforming both
the distance measure in feature space and the formulation of
correlation coefficient.

Distance Computation with Categorical Features
When computing the nCor for a sample, the sample points
need to be rearranged first based on the criterion of mini-
mizing the total distance in x space between each pair of
neighbouring points. For bivariate data, computing the dis-
tance is not necessary, since a good permutation can be eas-
ily obtained by using order statistics in which case the data
points that have same x values would be rearranged together.
For multivariate data, the distance becomes essential and,
however, cannot be simply computed as the Euclidean norm
whenever dealing with categorical features.

Difference measure: The first issue in distance compu-
tation is how to calculate the difference between two data
points in respect of a multi-level categorical variable with-
out coding the variable into multiple binary ones.
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Consider the situation in which a subset of features c ⊆ x
are categorical, and the rest of the features denoted by cc

are quantitative. If xi ∈ cc, then the difference is simply
derived as xi(p) − xi(q). If xi is categorical, xi(p) − xi(q)
has no significance beyond an indication of whether or not
the two data points have the same values of xi. That is to
say, xi(p)− xi(p) 6= 0 merely implies that the two values are
different whatever nonzero number the subtraction yields.
By its very nature, therefore, the subtraction can be replaced
by an indicator function Ixi(p) 6=xi(q)

formulated as follows.

Ixi(p) 6=xi(q)
=

{
1, xi(p) 6= xi(q)

0, Otherwise
(3)

The raw difference between a pair of data points in each xi
can be derived as

∆xi(p,q) =

{
Ixi(p) 6=xi(q)

, xi ∈ c

xi(p) − xi(q), xi ∈ cc
(4)

Normalization: The second issue is how to normalize the
variable (distance) values to adjust the values measured on
different scales to a notionally common scale, and thereby
make all the variables carry the same weight in distance
computation and ensure data reordering equitable.

In this study, before computing ∆xi(p,q), each xi ∈ cc

needs to be normalized to standard score which has zero
mean and unit variance. With normalized xi, we have∑
p 6=q

(∆xi(p,q))
2 =N

∑
q

(xi(q) − 0)2 +N
∑
p

(xi(p) − 0)2

− 2
∑
p 6=q

xi(p)xi(q)

=2N(N − 1)var(xi) = 2(N2 −N)
(5)

All the normalization techniques for qualitative variables
are obviously not applicable to categorical variables. Actu-
ally, shifting and scaling the values of a categorical variable
would not change the outcomes of (3). In this study, for each
xi ∈ c, we normalize the difference matrix rather than the
variable sequence. Despite having binary values, the differ-
ences obtained from using the indicator function still can be
considered as quantitative. Based on this concept, the nor-
malized difference di(p,q) can be formulated as

di(p,q) =

2
(
N2 −N

)
∆xi(p,q)

N∑
n,m=1

∆xi(n,m)


0.5

(6)

It is clearly that by (6), the sum squared di(p,q) over the
whole matrix for each xi ∈ c is normalized to be equal to
that for each xi ∈ cc. For xi ∈ cc, let di(p,q) = ∆xi(p,q),
and the distance can be computed as follows.

λp,q =

(
M∑
i=1

d2i(p,q)

)0.5

(7)

The sample points, then, can be reordered by using Λ =
{λp,q}N×N and NN algorithm as described in Section 2.

The Categorical nCor (CnCor)
Correlation coefficient: The third issue is how to reform the
product-moment correlation formula to adapt to categorical
target variable without any additional processing of the data.

Consider a categorical target y ∈ {1, 2, · · · , L}. nCor
is no longer applicable. Its basic idea, however, is a univer-
sal concept regardless of the type of data so that it holds
true even for categorical y. The key component of (2) is the
covariance operation between y[n] and y[n+1], which is to
examine whether the values of y of each pair of neighbour-
ing data points in x space are close to each other or not.
If a functional relationship exists, with sufficiently large N ,
(y[n], y[n+1]) should be of similar values and thereby exhibit
a positive linear correlation. It is obviously that the notion
of similar values is inappropriate to categorical variables as
their values are just convenient labels. To address this prob-
lem, we adapt the above statement to satisfy the property of
categorical data. That is to say, if a predictable relationship
exists, (y[n], y[n+1]) may very likely have the same value
when they are sufficiently close in x space. Based on this
concept, we use an indicator function to measure the rela-
tionship between (y[n], y[n+1]) instead of the covariance op-
eration. Likewise, the two variance operations which can be
viewed as a special case of covariance are also substituted
by indicator functions for scaling the coefficient. Then, (2)
can be reformulated as

N−1∑
k=1

Iy[k:N]=y[k+1:N](
N−1∑
k=1

Iy[k:N]=y[k:N]

N−1∑
k=1

Iy[k+1:N]=y[k+1:N]

)0.5

=

N−1∑
k=1

Iy[k:N]=y[k+1:N]

N − 1

(8)

Rescaling: The fourth issue is to adjust the range of (8) to
satisfy the needs of association detection.

Clearly, the expectation of (8) is not zero (not even a con-
stant, and varies with the marginal distribution of y) when
(x, y) are independent, and in addition, its maximum value
should be less than 1 even if (x, y) are perfectly associated.
This not only is inconsistent with the common view of an as-
sociation measure, but also leads to a difficulty in intuitively
diagnosing the relationship since the threshold of the score
yielded by (8) may vary case by case. Hence, (8) needs to be
further shifted and rescaled, and the CnCor can be formu-
lated as follows.

Definition 1. The categorical neighbor correlation coeffi-
cient (CnCor)

Let y denote a L-level categorical target variable, and
{y[1:N ], y[2:N ], · · · , y[N :N ]} denote the concomitants re-
ordered by using the optimal permutation defined in (1). The
CnCor can be computed as

CnCor(x, y)=

N−1∑
k=1

Iy[k:N]=y[k+1:N]
−(N−1)µ

N − L− (N − 1)µ
(9)
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where

µ =
L∑

v=1

(
Ny=v

N

)2

(10)

and Ny=v denotes the number of elements in {y[k:N ]} that
have values of v.

Theorem 1. The CnCor score, computed as given in Defi-
nition 1, should have the following properties.

(i) CnCor(x, y) ≤ 1.
(ii) If (x, y) are independent, then E[CnCor(x, y)] = 0,

and limN→∞ CnCor(x, y) = 0.
If a predictable relationship exists between (x, y), then

E[CnCor(x, y)] > 0, and limN→∞ CnCor(x, y) > 0.
(iii) A hypothesis test rejects the null hypothesis of inde-

pendent if

CnCor(x, y) >
Φ−1(α) ((N − 1)µ(1− µ))

0.5

N − L− (N − 1)µ
(11)

where Φ−1(·) denotes the inverse standard normal cumula-
tive distribution function, and α is the significance level of
the CnCor test.

Proof. (i) Suppose a target variable y ∈ {1, 2, · · · , L} that
is reordered perfectly such that, the concomitants are ar-
ranged as {1, · · · , 1, 2, · · · , 2, · · · , L, · · · , L}. Even in such
an ideal situation, there should be L − 1 out of N − 1
indicator functions that yield a value of 0, which means
max

(∑
k Iy[k:N]=y[k+1:N]

|{nk}
)

= N − L, and therefore,

max
(
CnCor(x, y)|x ∈ RM , y ∈ {1, · · · , L}

)
= 1 (12)

(ii) When (x, y) are independent, {y[k:N ]} is obviously a
randomly reordered sequence. and therefore each y[k:N ] is
i.i.d that obeys the same distribution as y. That is to say, for
all v, w ∈ {1, 2, · · · , L}, Pr(y[k+1:N ] = v, y[k:N ] = w) =
Pr(y[k+1:N ] = v)Pr(y[k:N ] = w). Then, the expectation of
each indicator function can be derived as

E[Iy[k:N]=y[k+1:N]
] =1

L∑
v=1

Pr(y[k+1:N ] = v, y[k:N ] = v)

+ 0

L∑
v=1

Pr(y[k+1:N ] 6= v, y[k:N ] = v)

=
L∑

v=1

Pr(y = v)2 =
L∑

v=1

(
Ny=v

N

)2

=µ

(13)

Iy[k:N]=y[k+1:N]
is also i.i.d., by (13), it can be easily obtained

that, the expectation of the numerator of (9) is zero so that,
E[CnCor(x, y)] = 0.

When a predictable relationship exists between (x, y),
with a large N such that λnk,nk+1

is sufficiently small, a
pair of neighbouring data points which have the same or very
similar x values may be of the same values of y with a higher

probability. That is to say,

Pr(y[k+1:N ] = v|y[k:N ] = v) > Pr(y[k+1:N ] = v)

⇒ Pr(y[k+1:N ] = v, y[k:N ] = v) >

Pr(y[k+1:N ] = v)Pr(y[k:N ] = v)

⇒ E[Iy[k:N]=y[k+1:N]
] >

L∑
v=1

Pr(y = v)2

⇒ E[CnCor(x, y)] > 0

(14)

When N → ∞, by the Kolmogorov’s strong law of large
numbers, if (x, y) are independent then CnCor(x, y) → 0,
otherwise CnCor(x, y) > 0, almost surely.

(iii) As discussed above, the CnCor score is expected to
be greater than zero when y is predictably dependent on x.
A one-tailed test, therefore, can be employed to examine the
statistical significance of the score.

Since Iy[k:N]=y[k+1:N]
obeys the Bernoulli distribution

with success probability µ, then,
∑

k Iy[k:N]=y[k+1:N]
obeys

the binomial distribution as

N−1∑
k=1

Iy[k:N]=y[k+1:N]
∼ B(N − 1, µ) (15)

By the De Moivre–Laplace theorem,

N−1∑
k=1

Iy[k:N]=y[k+1:N]
∼ N ((N−1)µ, (N−1)µ(1−µ)) (16)

By the definition of CnCor, we have

CnCor(x, y)(N − L− (N − 1)µ)

((N − 1)µ(1− µ))
0.5 ∼ N (0, 1) (17)

Then, the confidence limit with a specific significance level
α can be easily established as given in (11).

Remark 1. For the special case in which the target variable
is binary (2-level categorical), the scores obtained from us-
ing the nCor and the CnCor tests are very close whether
the variables are dependent or not. It is because when y ∈
{0, 1}, testing the positive correlationship between y[k:N ]

and y[k+1:N ] is approximate to detecting how many y[k:N ]

are equal to y[k+1:N ]. Whenever y is multi-level categorical,
the two tests show very different performance. The labelling
of the possible values of y may probably cause extensive
damage to the detection power of the nCor test and even
failure. In contrast, the CnCor test is completely insensitive
to the assignment of labels.

Remark 2. When dealing with discrete or categorical fea-
tures, it is often the case that some sample points are of the
exact same values of x. Just in case, it is better to randomly
rearrange the sample before data reordering to avoid the
impact of the original order of sample points on the data
reordering, and thereafter the nCor or CnCor estimation,
whether for bivariate or multivariate data.
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Fast Distance Computation for COE Test
Suppose we have two subsets of features, xA and xB . COE
measures the proportion of the variance of y that can be pre-
dicted from xA ∪xB but cannot be predicted from xB . This
concept can also be applied to categorical data, and we adapt
the definition of the COE by using CnCor as

COE(xA, y|xB)

= CnCor(xA ∪ xB , y)−max
(
0, CnCor(xB , y)

) (18)

where xA,xB 6= ∅, xA ∩ xB = ∅, and xA ∪ xB⊆x.
It is noted that whenever calculating a COE score, two dis-

tance matrices need to be obtained in advance respectively
for executing the two CnCor tests. Suppose that one wants
to examine the essentialness of each feature in a dataset by
testing COE(x1, y|x/x1), · · · , COE(xM , y|x/xM ), then,
totallyM+1 distance matrices need be calculated, that is ob-
viously computationally expensive. To overcome this prob-
lem, here, we proposed a fast distance updating strategy to
reduce the computational cost of this kind of consecutive
COE test. Consider two feature sets xA and xB , ΛB can be
obtained by modifying ΛA∪B as formulated in (19), and the
converse is also valid. Reconsider the above scenario, by the
proposed strategy, the computational cost required for ob-
taining each Λx/xi is reduced |x/xi|/|xi| = M − 1 times.

λBp,q =

((
λA∪Bp,q

)2 − ∑
xi∈xA

d2i(p,q)

)0.5

(19)

Remark 3. (18) can be interpreted as an assessment of how
much improvement can be expected by using xA when xB

is already present in the model. In this sense, it is natu-
rally a convenient tool that can be directly applied to FS.
COE(xi, y|x/xi) > 0 indicates that xi is an essential fea-
ture that must be involved in model construction. Otherwise,
xi is either irrelevant or redundant, and thus can be removed
from x to reduce the model without loss of prediction accu-
racy. The more essential xi, the larger score the COE.

Experimental Studies
Performance Evaluation of The CnCor
Here, we experimentally evaluate the effectiveness of the
CnCor, and make comparisons with state-of-the-art meth-
ods. See Appendix A in supplementary material for details.

The experimental settings are summarized as follows. (i)
For each trial, firstly, we generated a set of continuous fea-
ture sequences u1, · · · , uM ∼ U(0, 1) with length of 1000,
and produced a continuous target z by z = f(u). Then, we
respectively transformed z and each ui to 5-level and 10-
level categorical counterparts y and xi, by grouping their
values into 5 or 10 contiguous bins, each having the same
width. (ii) To imitate the easiest, uncertain, and the hard-
est cases, three types of label configurations were employed.
The first one is to successively assign labels from 1 to L to
the groups arranged by their values in an ascending order. In
this case, y and xi are ordinal data which is a special type
of categorical data, and in a sense can be viewed as quanti-
tative rather than qualitative. The second one is to randomly

assign a distinct label from {1, · · · , L} to each group. Thus,
the impact of categorization on association detection may
vary from trial to trial. The third one is to give each group
a fixed label according to an unfavorable configuration that
aims to make the detection more difficult. In each trial, only
one way out of the three was conducted. (iii) For E4 and E5,
a reference dataset was created in every trial to assist in eval-
uating the detection results. It was generated by randomly
rearranging {y(t)} such that, y was made entirely indepen-
dent to x while remaining its distribution unchanged. The
scores of the reference datasets detected by each methods
were used to compute the 95th percentile that was thereafter
considered as a threshold and compared with the scores of
the datasets under examination. (iv) The underlying function
of E4 was a superposition of nonlinear main effects, and E5
was a complicated mixture of both main effects and inter-
actions. To increase the difficulty, in E4, we also considered
the situations of noise corruption realized by erroneously la-
beling 20% of {y(t)}.

We numerically demonstrate the properties of the CnCor
especially its robustness against arbitrary label configura-
tion, by contrasting with the nCor. Figure 1(a) shows that
when (x, y) are independent, the shapes of the cumulative
histograms for the nCor and CnCor scores nearly coincide
with the theoretical cumulative distribution curve given in
Theorem 1 and (Zhang 2020), which confirms the validity of
the two statistical tests. Figures 1(b) to 1(d) show that when
using random label configurations the nCor scores spread
over a wide range in every case, and moreover, in the hard-
est cases using unfavorable configurations the nCor failed
to detect the associations as all the scores were insignifi-
cant. That is to say, the effectiveness of the nCor highly
depends on the label configuration when dealing with cate-
gorical data. In every case, by contrast, the CnCor scores
were distributed almost the same way whichever type of la-
bel configuration was adopted, and whether f(·) was bivari-
ate or multivariate, main effect or higher-order interaction.
Clearly, the CnCor is robust to the label configurations.

We also compared the CnCor with HSIC (Gretton et al.
2005), dCor (Székely and Rizzo 2009), RDC (Lopez-Paz,
Hennig, and Scholkopf 2013), QMI (Sohan and Prı́ncipe
2009), MKSG (Gao et al. 2017), and JMI (Zeng, Xia, and
Tong 2018). In Figures 1(d) and 1(f), we observed that the
threshold values for 5 out of 8 methods noticeably varied
with both the distribution of y and the dimensionality of
x, which is obviously not desirable. The expectation and
dispersion of the score of independent (x, y) are always
preferred to be constant, otherwise it may lead to the mis-
judgment of independency in some cases. The CnCor per-
formed consistently on the three types of data. In contrast,
all the other methods showed sensitivity to the data type to
different extent. Compared to on ordinal data, most methods
exhibited much less detection power on categorical data, es-
pecially on the data that was categorized by unfavorable la-
bel configurations. For E5 with specified label configuration
and large M , most scores obtained by using these methods
fell below the thresholds, which means they all failed in de-
tecting the relationship. On the whole, the CnCor outper-
formed all the baseline methods.

9052



−0.05 0 0.05
0

0.2

0.4

0.6

0.8

1

CnCor value

C
u

m
 p

ro
b

−0.1 0 0.1
0

0.2

0.4

0.6

0.8

1

nCor value

C
u

m
 p

ro
b

−0.07 0.02 0.11 0.2 0.29 0.38 0.47 0.56 0.65 0.74
0

20

40

60

Correlation value

N
u

m
b

e
r 

c
o

u
n

t

 

 

Conf Lim−nCor

Conf Lim−CnCor

nCor−Rand

nCor−Unfav

CnCor−Rand

CnCor−Unfav

(a) Independent (b) E1: z = cos(4πu)

−0.1 −0.04 0.02 0.08 0.14 0.2 0.26 0.32
0

5

10

15

20

25

Correlation value

N
u

m
b

e
r 

c
o

u
n

t

−0.08 −0.05 −0.02 0.01 0.04 0.07 0.1 0.13 0.16 0.19
0

5

10

15

20

Correlation value

N
u

m
b

e
r 

c
o

u
n

t

(c) E2: z =
∏

1≤i≤5 ui (d) E3: z =
∑

1≤i≤10 e
ui

1 5 10

0

20

40

H
S

IC

1 5 10

0

1

2

3

M
K

S
G

1 5 10

0

20

40

H
S

IC

Rand

Unfavorable

Ordinal

Threshold line

1 5 10

0

1

2

M
K

S
G

1 5 10

0

0.2

0.4

d
C

o
r

1 5 10

0

0.5

1

Q
M

I

1 5 10

0

0.2

0.4

0.6

d
C

o
r

1 5 10

0

0.2

0.4

0.6

0.8

Q
M

I

1 5 10

0

0.5

1

R
D

C

1 5 10

0

0.5

1

J
M

I

1 5 10

0

0.5

1

R
D

C

1 5 10

0

0.5

1

J
M

I

1 5 10

0

0.2

0.4

0.6

n
C

o
r

Number of features (M)

1 5 10

0

0.2

0.4

C
n
C

o
r

Number of features (M)

1 5 10

0

0.5

1

n
C

o
r

Number of features (M)
1 5 10

0

0.2

0.4

0.6

C
n
C

o
r

Number of features (M)

(e) E4: z =
∑

1≤i≤M (ui − 0.5)2 with noisy y (f) E5: z =
∑∑

1≤i,j≤M (ui − 0.5)(uj − 0.5)

Figure 1: (a): the cumulative histograms over 1000 trials and the theoretical cumulative distributions of the CnCor(x, y) and
nCor(x, y) scores for independent (x, y). (b) to (d): the histograms over 100 trials of the CnCor(x, y) and nCor(x, y) scores
for three complicated relationships with the data categorized by using random and unfavorable label configurations. (e) and (f):
the detection results for (x1, · · · , xM , y) with 50 trials in each case obtained from using the eight association measures.
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Figure 3: The experimental results of COE-EBS on 9 benchmark datasets. Left: ranking of the highest ACC obtained by using
k-NN and AdaBoost on the optimal feature subsets found by the FS methods; Right: an example of the ACC against feature
numbers obtained by using AdaBoost classifiers and different FS algorithms

Demonstration of COE and COE-BES
We apply the CnCor based COE test to conducting FS by
the mechanism of BES. The procedure of COE-BES in-
volves starting with all candidate features, testing the COE
score of each feature, deleting the feature which has the low-
est COE score, and repeating this process until there is only
one feature left. See Appendix B for details of the algorithm.

To illustrate the effectiveness of the CnCor based COE
and COE-BES, we implemented a set of experiments
which include 6 synthetic datasets originally introduced by
(Shishkin et al. 2016) for assessing the capability of dif-
ferent feature selection techniques to detect high-order fea-
ture dependencies. Each dataset consists of a set of binary
feature variables x = xint ∪ xrel−not−int ∪ xirr and a
binary target y. xint, xrel−not−int, and xirr respectively
contain n jointly interacting relevant features, 10 relevant
but non-interacting features, and 5 irrelevant features. In
the experiments, n was set to be 3, 5, 7, 9, 10, 11. For
each case, we randomly generated 100 datasets with sam-
ple size of 1000. (Shishkin et al. 2016) also introduced an
evaluation metric k0 = min {k | xint ⊆ Sk} where Sk de-
notes a feature subset that contains the selected top-k fea-
tures . The smaller k0, the more effective the FS method,
since it builds the smaller set of features needed to con-
struct the best possible classifier. We also compared COE-
BES with 11 well-established FS methods including CMI-
COT(Shishkin et al. 2016), mRMR(Peng, Long, and Ding
2005), CMIM(Fleuret 2004), MIM(Lewis 1992; Guyon
et al. 2006), JMI(Yang and Moody 1999; Bennasar, Hicks,
and Setchi 2015), DISR(Meyer, Schretter, and Bontempi
2008), CIFE(Lin and Tang 2006), ICAP(Jakulin 2005), Con-
dRed(Brown et al. 2012), CMI(Brown et al. 2012; Fleuret
2004), and ReliefF(Kononenko 1994; Kira, Rendell et al.
1992). See Appendix C for details and more discussions.

Figure 2 (average k0) shows that some of the algorithms
failed to detect these interacting features appropriately (there
is a special feature ξ in xint that is very easy to omit when
using these methods), and most of the others exhibited de-
creasing detection power as n increased (because with in-
creasing n, xi ∈ xint became less relevant with reference to
xj ∈ xrel−not−int, especially when n = 11). Only COE-
BES displayed superior performance and thoroughly cap-

tured the associations as k0 being close to n. Figure 2 (cor-
relation values) confirms that the average CnCor(ξ, y) is
almost zero in all the six datasets, which means that ξ is ir-
relevant when considered alone. Nevertheless, the COE test
suggests that ξ is essential and not replaceable even when
all the other features have been already invloved in model
construction. Moreover, with increasing n the relevance of
ωi decreases, and so does the difficulty of feature selection.
In summary, these results are fully consistent with the char-
acters of the data, and further demonstrated the CnCor.

Finally, we applied COE-BES and the baseline methods to
9 public benchmark datasets (Guyon et al. 2004; Fanty and
Cole 1991; Buscema 1998; Cai et al. 2010; Cai, He, and Han
2011; Breiman et al. 1984; Mallah, Cope, and Orwell 2013;
Guvenir et al. 1997). We generated M − 1 subsets of top-
ranked features by using each method on each dataset. Then,
we employed k-NN and AdaBoost models to assess the ac-
curacy (ACC) of classification that can be achieved by each
feature subset. Figure 3 (rank numbers) shows that COE-
EBS evidently outperformed the other methods on most
datasets. Taking Isolet dataset as an example, as shown in the
line plot, the ACC line of COE-EBS lies entirely above the
other lines, which implies less features but higher accuracy.
Actually, COE-EBS showed significant superiority over the
baselines on 4 of 9 datasets. For details see Appendix D in
supplementary material.

Conclusions
Here, we have proposed a new statistical measure named
the CnCor, and a CnCor based fast COE test. When deal-
ing with multi-level categorical feature and target variables,
the CnCor provides a more impartial distance computation
without transforming the qualitative features to quantitative
ones, and then effectively measure the association between
variables without worrying about whether the underlying la-
bel configuration of the targets is unfavorable or not. Despite
very concise and easy to implement, the CnCor shows a
much better effectiveness and robustness in comparison to
previous studies. In addition, we have used the COE test to
conduct FS tasks, and numerical studies showed that the new
algorithm had a competitive performance on both synthetic
and real datasets.
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