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Abstract

This work introduces Fractional Adaptive Linear Units
(FALUs), a flexible generalization of adaptive activation
functions. Leveraging principles from fractional calculus,
FALUs define a diverse family of activation functions (AFs)
that encompass many traditional and state-of-the-art activa-
tion functions. This family includes the Sigmoid, Gaussian,
ReLU, GELU, and Swish functions, as well as a large variety
of smooth interpolations between these functions. Our tech-
nique requires only a small number of additional trainable
parameters, and needs no further specialized optimization
or initialization procedures. For this reason, FALUs present
a seamless and rich automated solution to the problem of
activation function optimization. Through experiments on a
variety of conventional tasks and network architectures, we
demonstrate the effectiveness of FALUs when compared to
traditional and state-of-the-art AFs. To facilitate practical use
of this work, we plan to make our code publicly available.

Introduction
The genesis of modern Artificial Neural Networks (ANNs)
can be traced to the McCulloch-Pitts neural model (Mccul-
loch and Pitts 1943), which provides an elegant mathemati-
cal description of the high-level functionality of a single bi-
ological neuron. In this framework, a neuron receives one or
more inputs, and these inputs are then aggregated and passed
through a non-linear activation function (typically a step-
function). The activation function serves to approximate the
“firing” mechanism of a neuron.

Remarkably, since the introduction of the McCulloch-
Pitts model, very little of this basc structure has substan-
tially changed when we compare this early vision with mod-
ern Deep Learning practices. Many of the same core opera-
tions utilized in the M-P model are also found in many other
popular ANN-related models, including the early Perceptron
(Rosenblatt 1958), as well as the majority of modern Deep
Neural Networks (DNNs), including feed-forward networks
(Hinton, Osindero, and Teh 2006; LeCun, Bengio, and Hin-
ton 2015), Convolutional Neural Networks (CNNs) (Lecun
et al. 1998; Krizhevsky, Sutskever, and Hinton 2012a; He
et al. 2016a), Recurrent Neural Networks (RNNs) (Hochre-
iter and Schmidhuber 1997), and even more neoteric meth-
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ods such as Transformers (Vaswani et al. 2017; Dosovitskiy
et al. 2020), and Graph Neural Networks (GNNs) (Kipf and
Welling 2017; Veličković et al. 2017).

From a conceptual perspective, DNNs are known to act
as universal function approximators. In 1989, the first (Cy-
benko 1989) of several subsequent Universal Approxima-
tion Theorems (UAT) pertaining to ANNs was proven in the
case of the sigmoid activation function: σ(x) = 1

1+e−x . In
1991, the UAT for ANNs was extended in a relaxed form to
any bounded and non-constant activation function (Kurt and
Hornik 1991); a further generalization of UAT was later ap-
plied to non-polynomial activation functions (Leshno et al.
1993).

With UAT established, the bulk of ANN research in sub-
sequent years focused on the development of engineering
and architectural improvements of ANNs to enhance the ef-
ficiency of feature processing and feature learning. These in-
novations included the introduction of residual connections,
feature normalization, novel regularization methods, and
multi-scale feature aggregation, among others (Krizhevsky,
Sutskever, and Hinton 2012b; He et al. 2016b; Szegedy et al.
2015; Ioffe and Szegedy 2015; Chen et al. 2016). In large
part, these historical design enhancements have ignored ex-
plicit modifications made to activation functions. This inat-
tention is possibly due to the generalization of large families
of AFs as conduits to universal approximation expressed by
the UAT, which gives the subtle (but misguided) impression
of their relative insignificance. Until 2010, practitioners al-
most universally employed the conventional sigmoid acti-
vation function in ANN design. However, the inherent lim-
itations of the sigmoid activation function, exhibited most
starkly by the vanishing gradient phenomenon (Pascanu,
Mikolov, and Bengio 2013), became clear by the early 2010s
as researchers pushed to increase the capacity of ANNs by
introducing deeper architectures.

Today, the default activation function used for DNNs is
the Rectified Linear Unit (ReLU) (Nair and Hinton 2010),
defined as: f(x) = max(0, x). Although it was popular-
ized nearly a decade ago with the remarkable performance
of AlexNet (Krizhevsky, Sutskever, and Hinton 2012b), it is
still, for this reason, often implicitly synonymized as a fix-
ture of “Deep Learning”. The ReLU activation is commonly
preferred by practitioners due to its computational simplic-
ity, favorable non-saturation properties, and the perception
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of its robustness to undesirable behavior including vanish-
ing gradient (Lu et al. 2019).

Since the introduction of the ReLU, activation function
research has been severely underemphasized in literature.
Nevertheless, it is well-known that activation functions play
a vital role in the performance of DNNs (Wang et al. 2020;
Nwankpa et al. 2018). It is only recently that the domi-
nance of ReLU activations has come under scrutiny (Lu et al.
2019). While some novel activation functions have been pro-
posed to supplant ReLU, to date, few alternative activation
functions have enjoyed extensive adoption in the deep learn-
ing community due to their inconsistent performance and
excessive complexity.

In this work, we present a novel activation function
termed Fractional Adaptive Linear Units (FALUs). FALUs
leverage fractional calculus (Luchko 2020) to render adap-
tive, i.e. trainable, activation functions that encapsulate the
expressivity of several of the current state-of-the-art activa-
tion functions, including the GELU (Hendrycks and Gimpel
2020) and Swish (Ramachandran, Zoph, and Le 2018) func-
tions, in addition to a large family of interpolations and vari-
ants between these functions. Moreover, by introducing a
tunable “fractional derivative” parameter, the FALU activa-
tion is additionally capable of manifesting a diverse family
of traditional activation functions, including the sigmoid and
Gaussian functions. In this way, FALUs capture a richness
and flexibility exceeding that of other activation functions.

In the following sections we summarize related work on
activation functions, provide a principled technical back-
ground for Fractional Adaptive Linear Units, and demon-
strate their practical performance gains over state-of-the-art
and traditional activation functions across a variety of net-
work architectures and tasks.

Related Work
Since the widespread adoption of ReLU as the de facto ac-
tivation function used with DNNs, most activation function
research has focused on exploiting the overarching benefits
presented by ReLU, including its simple step-function form,
non-saturating derivative, and sparse firing rate. Innovations
to activation functions are consequently often hand-designed
to enhance a particular property of the ReLU function that
is considered to be essential; in some instances these deci-
sions are informed by search (Ramachandran, Zoph, and Le
2018).

(Nair and Hinton 2010) introduced the Softplus activa-
tion, the primitive of the sigmoid function, defined:

f(x) = log(1 + exp(x)) (1)

The softplus activation function serves as a smoothed ver-
sion of the ReLU, while sacrificing sparsity and computa-
tional simplicity.

Attempts to increase the expressivity of ReLUs led to the
introduction of several related parametric ReLU-based acti-
vation functions. In 2013, the Leaky ReLU (Maas, Hannun,
and Ng 2013):

f(x) =

{
x x ≥ 0
αx x < 0

(2)

codified a piecewise linear activation function that allows
for information flow via small negative values for non-
firing neuron states. The Parametric Rectified Linear Unit
(PReLU) (He et al. 2015) and Exponential Linear Unit
(ELU) (Clevert, Unterthiner, and Hochreiter 2016) extended
the general concept of the Leaky ReLU to a family of
“leaky” activations by introducing a trainable parameter that
adjusts the slope/shape of the negative portion of the activa-
tion function. Similarly, the Scaled Exponential Linear Units
(SELU) (Klambauer et al. 2017):

f(x) = λ

{
x x ≥ 0
α(exp(x)− 1) x < 0

(3)

with fixed α ≈ 1.6733 and λ ≈ 1.0507, proposed a
smoothed negative activation function component. Klam-
bauer et al. show that SELU activations induce self-
normalizing properties in network layers.

Despite the benefits introduced by parametric ReLU func-
tion variants, these solutions nevertheless conventionally im-
pose concrete limitations on the activation function form ei-
ther by forcing component linearity or limiting the ability to
fine-tune the function.

To improve activation function flexibility, Agostinelli et
al. developed Adaptive Piecewise Linear (APL) activation
units (Agostinelli et al. 2014). APLs are defined as a sum of
hinge-shaped functions:

fi(x) = max(0, x) +
S∑

s=0

asi max(0,−x+ bsi ) (4)

where S is a hyperparameter corresponding with the number
of hinges, and asi , b

s
i for i ∈ 1, . . . , S are tunable parameters

that control the slopes of the linear segments and the location
of the hinges, respectively. APL functions sacrifice function
simplicity for improved expressivity. In total, APLs require
training 2 · SM new parameters (where M is the total num-
ber of hidden units); in addition, APL function components
are non-smooth.

Kernel-based Activation Functions (KAF) (Scardapane
et al. 2019) model the activation function in terms of a kernel
expansion over D terms:

f(x) =
D∑
i=1

aik(x, di) (5)

where {ai}Di=1 are the mixing coefficients, {di}Di=1 are dic-
tionary elements, and k(., .) is a kernel function. In compari-
son with APL activation units and parametric ReLUs, KAFs
are smooth over their entire domain and capable of approxi-
mating any continuous function. However, KAFs require the
introduction of additional design choices and parameter tun-
ing regimes due to the inclusion of kernel functions and mix-
ing coefficients.

Hendrycks and Gimpe proposed the Gaussian Error Lin-
ear Unit (GELU), activation function:

f(x) = x · Φ(x) (6)

where Φ(·) represents the standard Gaussian cdf. GELU
functions exemplify a smoothed ReLU shape with an
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asymptotically-bounded negative region. Instead of gating
inputs by their sign as in RELUs, the GELU weights in-
puts by the magnitude of their value. The key motivation for
the GELU is that it serves as a simple regularizer. Because
neuron inputs tend to follow a normal distribution following
Batch Normalization, the expression x · Φ(x) ensures that
(small) outlier input values are “dropped”, since the GELU
scales input values by how much greater they are than other
inputs. In practice, the authors employ the simple approxi-
mation x · σ(1.702x) for (6).

(Ramachandran, Zoph, and Le 2018) leverage automatic
search techniques to discover multiple novel activation func-
tions. Through experiments, they show that the best discov-
ered such function, termed the Swish activation:

f(x) = x · σ(βx) (7)

with β a constant or trainable parameter, outperforms ReLU
across a variety of models and problem types. Like ReLU,
the Swish function is unbounded above and bounded be-
low. Unlike ReLU, the Swish function is smooth and non-
monotonic (preserving the value of small negative inputs).
(Misra 2019) presents a closely-related successor to Swish
with improved regularization properties.

The proposed method falls under the general heading
of learning/adaptive activation functions that, in lieu of
fixed AFs, introduce trainable activation function parameters
(Dubey, Singh, and Chaudhuri 2021). These parameters al-
low the AF to gracefully calibrate the model with the dataset
complexity, while requiring additional parameter training.
Of the aforementioned AFs, the APL, PReLU, and Swish
functions represent adaptive activation functions. In contrast
to these previous solutions, our method automates AF tun-
ing across a diverse family of activation functions, including
previously undiscovered interpolated AFs.

Fractional Calculus
In recent years, fractional calculus has proved to be a suc-
cessful tool for modeling complex dynamics (Wheatcraft
and Meerschaert 2008), wave propagation (Holm and
Näsholm 2011), and quantum physics (Laskin 2002; Iomin
2018), among other applications (Baleanu and Agarwal
2021). In the following section, we give a brief summary
of the notion of a fractional derivative from fractional calcu-
lus. Using these concepts, we subsequently provide a formal
discussion of our FALU activation function.

Fractional Derivative
Conventionally, the derivative of a function is defined over
natural values (i.e. the first derivative, second derivative,
etc.) and is notated:

y′ =
dy

dx
, y′′ =

d2y

dx
, y′′′ =

d3y

dx
, (8)

where the above equations connote the first, second, and
third order derivative, respectively. While it is less-well
known, conceptually, it is possible to extend the notion of
derivatives to non-integer values using fractional calculus
(Ortigueira 2011).

To better understand how a fractional derivative works,
we begin with a simple example. Recall that the natural n-
derivatives of the power function f(x) = xk are defined as:

df(x)

dx
= kxk−1, (9)

d2f(x)

dx2
= k(k − 1)xk−2, (10)

dαf(x)

dxα
= k(k − 1) · · · (k − α+ 1)xk−α (11)

Using the factorial operation (!), equation (11) can be rewrit-
ten as:

dαf(x)

dxα
=

k!

(k − α)!
xk−α, (12)

For the case above, the factorial operator can only be de-
fined for non-negative integer numbers. In order to generate
a fractional derivative, the factorial operator can be replaced
by the Gamma function (Γ) as proposed in (M. Abramowitz
1972):

Γ(z) =

∫ ∞

0

t(z−1)e−tdt, (13)

For the particular case of n ∈ N:

Γ(n) = (n− 1)!, (14)

A known efficient method to compute Gamma is (Davis
2016):

Γ (z) =
e−γz

z

∞∏
k=1

((
1 +

z

k

)−1

e
z
k

)
, (15)

where γ is the Euler-Mascheroni constant (γ = 0.57721..)
(M. Abramowitz 1972). Thus, replacing the factorial in
equation 12 by the Gamma function, the fractional deriva-
tive is then given by (Herrmann 2011):

Daf(x) =
daf(x)

dxa
=

Γ(k + 1)

Γ(k + 1− a)
xk−a. (16)

The definition above represents the fractional derivative of
function f(x) = xk valid for k, x ≥ 0. We further extend
these concepts below in building our FALU activation func-
tion.

Fractional Adaptive Linear Units
As a desideratum, we wish to construct an adaptive,
computationally-efficient activation function that preserves
the strengths of current state-of-the-art AFs while providing
enhanced expressiveness and performance.

To this end, we begin by defining Fractional Adaptive Lin-
ear Units as a dynamic generalization of the Swish activa-
tion by introducing two tunable parameters: α, a real-valued
fractional derivative, and β, a scaling parameter:

f(x) = Dαxσ(βx) (17)

In particular, when α = 0 and β = 1, the FALU yields the
standard Swish function, and when α = 0 and β = 1.702,
(17) reduces to the approximated GELU activation. The
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FALU thus represents a flexible activation function frame-
work encompassing both the Swish and GELU activations
(plus many more related morphologies).

Using fractional calculus, we define fractional derivatives
by invoking the Gamma function, γ(x), with x > 0. Let
g(x, β) = xσ(βx), the parametrized Swish introduced in
(7). Formally, using fractional calculus, we define the frac-
tional derivative of g(x, β):

Dαg(x, β) = lim
δ→0

1

δα

∞∑
n=0

(−1)n
Γ(α+ 1)g(x− nδ, β)

Γ(n+ 1)Γ(1− n+ α)

(18)
To generate explicit update rules (i.e., for use in back-
propagation schemes) for networks using FALUs, we next
calculate ∂

∂αD
αg(x, β) and ∂

∂βD
αg(x, β).

To compute ∂
∂αD

αg(x, β), we isolate all factors involving
the α parameter; notationally, let A(α) = Γ(α+1)

gαΓ(1−n+α) . One
can show that:
∂

∂α
A(α) = A(α)[ψ(α+1)−ψ(1−n+α)− ln(δ)], (19)

where: ψ(α+ 1)− ψ(1− n+ α) =
∑∞

k=1
n

(k+α)(k+α−n) .
Putting this together, we get:

∂

∂α
Dαg(x, β) = lim

δ→0

1

δα

∞∑
n=0

(−1)n
g(x− nδ, β)

Γ(n+ 1)

∂

∂α
A(α)

(20)
and

∂

∂β
Dαg(x, β) = lim

δ→0

1

δα

∞∑
n=0

(−1)n
A(α)

Γ(n+ 1)

∂

∂β
g(∆x, β)

(21)
where ∂

∂β g(∆x, β) = (∆x)2σ(β∆x)(1 − σ(β∆x)) and
∆x = x− nδ.

While the formulas in (20) and (21) provide explicit, ex-
act derivative formulas that can be used to update the tun-
able parameters in (17), they are nevertheless cumbersome
for practical implementations. For this reason, we next de-
rive computationally tractable approximations to equation
(18). For simplicity, we consider the following parameter
domains: α ∈ [0, 2];β ∈ [1, 10] (see Figure 3).

In our approximation we retain only the first two terms
appearing in (18). Considering the first term (n = 0), we
have:

(−1)n
Γ(α+ 1)g(x− nδ, β)

Γ(n+ 1)Γ(1− n+ α)
=

Γ(α+ 1)g(x, β)

Γ(1)Γ(1 + α)
= g(x, β)

(22)
And for n = 1, recalling that Γ(α+ 1) = αΓ(α), we get:

−Γ(α+ 1)g(x− δ, β)

Γ(2)Γ(α)
= −α

2
g(x− δ, β) (23)

The factor 1
δα in equation (18) is a scalar governed by

α ∈ [0, 1] and the approximation step-size δ, where we set
δ = 0.5. With these parameters, 1

δα ∈ [0.5, 1]; for further
simplicity, we round this factor to 1, yielding:

Dαg(x, β) ≈ g(x, β)− α

2
g(x− 0.5, β) (24)

Figure 1: Family of activation functions generated by
changes in the order of the derivative α in the range of (0, 1)
in the vicinity of β = 1.

This approximation can be used in the vicinity of α = 0. To
find the approximation in the vicinity of α = 1, β = 1, we
use the first derivative of the FALU. In this particular case,
where g(x, 1) = g(x) = xσ(x), D1g(x, 1) is given by:

D1g(x) = σ(x) + xσ(x)(1− σ(x)) (25)
= xσ(x) + σ(x)(1− xσ(x)) (26)
= g(x) + σ(x)(1− g(x)) (27)

Similarly, the fractional derivative can be approximated us-
ing:

Dαg(x) = g(x) + ασ(x)(1− g(x)) (28)
Evaluating α = 0 in (28) yields D0g(x) = g(x), and eval-
uating for α = 1 gives D1g(x) = g(x) + σ(x)(1 − g(x)),
corresponding to the original Swish AF and its derivative,
respectively. The family of activation functions generated
by modulating this parameter is shown in Figure 1. In gen-
eral, for parameter β in the equation (28), we drop the
α (β − 1) g (x, β) term to maintain simplicity, which gives
the further simplification:

Dαg(x, β) ≈ g(x, β) + ασ(βx)(1− g(x, β)) (29)

We use (29) to approximate FALUs for α ∈ [0, 1]; this fam-
ily of activations is shown in Figure 3. Finally, to find the
approximation of the fractional parameter α ∈ [1, 2], we
compute the derivative of (28) using:

D2g(x) = D1 (g(x) + σ(x)(1− g(x))) (30)

Defining h(x) as the first derivative of g(x),

h(x) = D1g(x) = g(x) + σ(x)(1− g(x)), (31)

Equation (30) can be rewritten as:

D1h(x) = h(x)− σ(x)h(x) + σ(x)(1− σ(x))(1− g(x))
(32)

Expanding σ(x)(1− σ(x))(1− g(x)) of (32):

D1h(x) = h(x)− σ(x)h(x) + σ(x)(1− h(x)) (33)

Regrouping (33):

D1h(x) = h(x) + σ(x)(1− 2h(x)) (34)
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Figure 2: Family of activation function generated by changes
in the order of the derivative α in the range of (0, 1) in the
vicinity of β = 1 for h(x), or equivalently, for the derivative
of g(x) in the range of (1, 2).

Using equation (34), we can approximate the fractional
derivative of h(x) for α ∈ [0, 1] as:

Dαh(x) = h(x) + ασ(x)(1− 2h(x)) (35)

Evaluating α = 0 in (35) produces D0h(x) = h(x), and
evaluating α = 1, givesD1h(x) = h(x)+σ(x)(1−2h(x)),
which correspond to the first and second derivative of the
Swish function, respectively. The family of activation func-
tions rendered by changing α is shown in Figure 2. When
we include the β parameter, this yields an approximation of
the FALU for α ∈ [1, 2]:

Dαh(x, β) ≈ h(x, β) + ασ(βx)(1− 2h(x, β)) (36)

Together, when we combine equations (29) and (36), we ar-
rive at a complete specification of the FALU approximation
for α ∈ [0, 2] and β ∈ [1, 10]:

Dαg(x, β) ≈
{

g(x, β) + ασ(βx)(1− g(x, β)), α ∈ [0, 1]
h(x, β) + ασ(βx)(1− 2h(x, β)), α ∈ (1, 2]

(37)
where h(x, β) = g(x, β) + σ(x)(1 − g(x, β)). For im-
plementation purposes, equation (37) can be executed with
backpropagation efficiently using only a few lines of code
in standard automatic differentiation workflows (our code is
included).

Experimental Results
To evaluate our method, we tested the FALU activation func-
tion in comparison with a large set of baseline AFs, in-
cluding thr sigmoid, ReLU (Nair and Hinton 2010), ELU
(Clevert, Unterthiner, and Hochreiter 2016), SELU (Klam-
bauer et al. 2017)], KAF (Scardapane et al. 2019), PReLU
(He et al. 2015), and GELU (Hendrycks and Gimpel 2020))
AFs across several standard datasets (MNIST (LeCun and
Cortes 2010), Fashion-MNIST (Xiao, Rasul, and Vollgraf
2017), CIFAR-10 (Krizhevsky 2009), ImageNet (Deng et al.
2009)), and varying model architectures. For each experi-
ment we used the Adam optimizer (Kingma and Ba 2014) to
train our model, and randomly initialized the FALU parame-
teres in the range α ∈ [0, 1] and β ∈ [1, 1+ϵ], with ϵ = 0.05;

Neural Network #Param Top1%

6c,10c,10c,10fc + ReLU 29K 99.2
6c,10c,10c,10fc + FALU 29K + 26 99.3
6c,p,10c,10c,10fc + ReLU 5.6K 99.0
6c,p,10c,10c,10fc + FALU 5.6K + 26 99.2

Table 1: MNIST experiment comparing model accuracy for
simple, compact CNN models, where ‘c’ denotes convolu-
tion, ‘p’ denotes pooling, and ‘fc’ is a fully-connected layer.

for each dataset we use conventional train/test splits used in
literature. In addition, for stability purposes, the FALU func-
tion parameters were clamped during training within the do-
mains described previously, i.e., α ∈ [0, 2] and β ∈ [1, 10].
We report the maximum accuracy in five trials for each ex-
periment; where appropriate, we report model performance
as provided in research literature. As we detail below, the
FALU activation consistently matched or out-performed the
best-performing baseline AFs in each of our experiments.

MNIST
The MNIST dataset is a public dataset used to train ma-
chine learning models to classify individual handwritten
digits. MNIST consists of 60,000 (50k/10k train/test split)
28×28 resolution gray scale images in 10 classes, with 6,000
images per class. Today, most state-of-the-art handwriting
recognition models exceed human-level performance, and
even simple ANNs are sufficient to reach 99% accuracy on
MNIST. For this reason, using the MNIST dataset, we aim
to demonstrate the efficacy of the FALU activation in the
case of extremely compact models. For our experiments, we
use two different network architectures: (1) a 29K parame-
ter CNN consisting of: six traditional 5 × 5 convolutional
filters in the first layer, ten 5 × 5 convolutional filters in
the second layer, ten 5 × 5 convolutional filters in the third
layer, followed by a final FC layer; and (2) a (5X smaller)
related topology where the second convolution layer is re-
placed with a pooling layer, rendering a model with only
5.6K trainable parameters. As shown in Table 1, the use
of FALU increased prediction accuracy for MNIST across
these extremely compact models by 0.1% and 0.2%, respec-
tively, when compared with the baseline ReLU AF. Figure 4
provides a histogram of α values resulting from our trained
MNIST model. Notably, the model converged to a wide
range of AFs, including ReLU, sigmoid, and Gaussian mor-
phologies, plus various interpolations between these func-
tion types.

CIFAR-10
CIFAR-10 is a public dataset consisting of 60,000 (50k/10k
train/test split) 32×32 resolution RGB images in 10 classes,
with 6,000 images per class. For all of our CIFAR-10 exper-
iments, we augmented the baseline dataset using horizontal
flipping, padding, and 32×32 random cropping during train-
ing. We used a modified version of Resnet18 (described in
Table 2) for comparison, replacing all network AFs with the
FALU (this configuration is denoted ResNET18a).
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Figure 3: Family of FALU activation functions generated by evaluating the parameters α ∈ [0, 2] and β ∈ [1, 10].

Name Output Size ResNet-18a

Conv1 32× 32× 16 3× 3, 16 stride 1

Conv2 32× 32× 16

[
3× 3, 16
3× 3, 16

]
× 2

Conv3 16× 16× 32

[
3× 3, 32
3× 3, 32

]
× 2

Conv4 8× 8× 64

[
3× 3, 64
3× 3, 64

]
× 2

Average pooling 1× 1× 64 8× 8

Fully-Connected 10 64× 10

Softmax 10

Table 2: Overview of the compact ResNet18a model topol-
ogy used for our CIFAR-10 experiments. ResNet18a con-
sists of [16, 32, 64] filter depths with 0.27M total parame-
ters; the related ResNet50a and ResNet100a compact mod-
els are defined similarly.

Table 3 summarizes the effect of applying FALU with the
compact variant of ResNet18 (0.27M trainable parameters,
see Table 2) on CIFAR-10. When compared with the iden-
tical model topology using the (default) ReLU activation,
FALU yields a 1.39% error reduction. In addition, Table 3
lists results for CIFAR-10 on related compact baseline mod-
els. Despite using between 5X-10X fewer parameters, the
FALU-based ResNet18 performs comparably with the best
performing of these compact models.

In Table 4 we report results for several compact and large-
scale ResNet topologies on CIFAR-10 (compact model
variants are denoted with an ‘a’), across several baseline

Neural Network Depth #Param Error%

All-CNN 9 1.3M 7.25
(Springenberg et al. 2014)
MobileNetV1 28 3.2M 10.76
(Howard et al. 2017)
MobileNetV2 54 2.24M 7.22
(Sandler et al. 2018)
ShuffleNet 8G 10 0.91M 7.71
(Zhang et al. 2018)
ShuffleNet 1G 10 0.24M 8.56
(Zhang et al. 2018)
HENet 9 0.7M 10.16
(Qiuyu Zhu 2018)
ResNet18a + ReLU 20 0.27M 8.75
(Kaiming He and Sun 2015)
ResNet18a + FALU 20 0.27M 7.36

Table 3: CIFAR-10 Classification error vs number of pa-
rameters, for common compact model architectures vs.
ResNet18a + FALU.

AFs including ELU, SELU, KAF, ReLU, PReLU, and
GELU. ResNet18a (see Table 2) consists of [16, 32, 64] filter
depths with 0.27M total parameters; the ResNet50a topol-
ogy uses [3, 4, 6, 3] block sizes, and ResNet100a consists
of [3, 4, 23, 3] block sizes, respectively; ResNet18b utilizes
[64, 128, 256] filter depths for a total of 4.29M parameters.
In each experiment, the FALU activation function outper-
formed each of the baselines AFs, including the state-of-the-
art GELU function. Notably, the performance gains exhib-
ited by FALU over baseline AFs were more appreciable for
larger model sizes.
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Neural Network Depth #Parameters Acc.%

ResNet18a + ELU 18 0.27M 91.09
ResNet18a + SELU 18 0.27M 91.09
ResNet18a + KAF 18 0.27M + 6080 91.18
ResNet18a + ReLU 18 0.27M 91.25
ResNet18a + PReLU 18 0.27M + 19 92.29
ResNet18a + GELU 18 0.27M 92.56
ResNet18a + FALU 18 0.27M + 688 92.64
ResNet50a + ReLU 56 0.85M 93.03
ResNet100a + ReLU 110 1.7M 93.57
ResNet18 + ReLU 18.16 11M 93.02
ResNet50 + ReLU 50 25.6M 93.62
ResNet100 + ReLU 100 44.5M 93.75
ResNet18b + FALU 18 4.29M 94.40

Table 4: Experimental results comparing ResNet-based
models with FALU, and with reported ResNet models per-
formance for the CIFAR-10 dataset.

Fashion-MNIST
The Fashion-MNIST dataset contains 60,000 (50k/10k
train/test split) 28×28 resolution gray scale images in 10
classes of clothing, with 6,000 images per class (Han Xiao
and Vollgraf 2017). In Table 5, we report results for three
different CNN architectures, consisting of a highly compact
CNN model model (29K parameters), and large-scale mod-
els, including ResNet and VGG (Karen Simonyan 2015). We
applied the data augmentation procedure developed in (Har-
ris et al. 2021) for each experiment. Across all three archi-
tectures, FALU improved classification accuracy by roughly
1% over the identical model using ReLU. In particular, for
the ResNet18 + FALU topology, we generated accuracy
matching the SOTA results for Fashion-MNIST as reported
in (Harris et al. 2021).

ImageNet
ImageNet is a popular benchmarking classification database
consisting of 14,197,122 RGB images over 21,841 subcate-
gories. We report results in Table 6 demonstrating improve-

Figure 4: Histogram of resulting α values in the range of
(0, 2) from our compact MNIST model (layer 3 filters). Us-
ing FALU activation functions, the model converged to a di-
verse range of AF forms encompassing ReLU, sigmoid, and
Gaussian AFs – corresponding to the dominant modes of the
distribution.

Neural Network #Param Top1%

6c,10c,10c,10fc + ReLU 29K 90.99
6c,10c,10c,10fc + FALU 29K + 26 91.72
ResNet18 + ReLU 11.16M 95.37
ResNet18 + Swish 11.16M 96.00
ResNet18 + FALU 11.17M 96.28
VGG + ReLU 39.7M 91.14
VGG + FALU 39.7M 92.09

Table 5: Comparison of classification accuracy using FALU
across a simple, compact CNN, ResNet and VGG for the
Fashion-MNIST dataset.

Neural Network #Param Top1% Top5%

ResNet18 + ReLU 44M 70.7 89.9
ResNet50 + ReLU 87M 75.8 92.9
ResNet101 + ReLU 160M 77.1 93.7
ResNet50 + FALU 87M 76.7 93.28

Table 6: Comparison of classification accuracy for ResNet50
with FALU activation function compared with common
ResNet model performance using ReLU on ImageNet.

ments using the ResNet50 architecture with our proposed
FALU AF compared to the baseline ReLU. The model was
trained for 120 epochs with an initial learning rate of 0.01
decayed by an order of magnitude every 30 epochs, batch
size of 128, and random weight initialization.

Conclusions
In this work we presented a novel generalization of adap-
tive activation functions which we call Fractional Adap-
tive Linear Units. Utilizing concepts from fractional calcu-
lus and building upon previous successful activation func-
tion research, our method defines a family of diverse mor-
phologies encompassing many traditional and state-of-the-
art AFs, thus offering increased flexibility over existing
methods. Importantly, FALUs achieve this multiplicity of
forms through the introduction of a small number of addi-
tional tunable parameters, including the fractional deriva-
tive of the AF. For this reason, FALUs are simple to im-
plement using standard Deep Learning libraries. We showed
that FALUs consistently outperform baseline AFs across a
variety of datasets and model architectures, including both
highly compact models and large-scale DNNs.
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