
Hindsight Network Credit Assignment:
Efficient Credit Assignment in Networks of Discrete Stochastic Units

Kenny Young
Department of Computing Science, University of Alberta, Edmonton, Canada

Alberta Machine Intelligence Institute (Amii), Edmonton, Canada
kjyoung@ualberta.ca

Abstract

Training neural networks with discrete stochastic variables
presents a unique challenge. Backpropagation is not directly
applicable, nor are the reparameterization tricks used in net-
works with continuous stochastic variables. To address this
challenge, we present Hindsight Network Credit Assignment
(HNCA), a novel gradient estimation algorithm for networks
of discrete stochastic units. HNCA works by assigning credit
to each unit based on the degree to which its output influences
its immediate children in the network. We prove that HNCA
produces unbiased gradient estimates with reduced variance
compared to the REINFORCE estimator, while the compu-
tational cost is similar to that of backpropagation. We first
apply HNCA in a contextual bandit setting to optimize a re-
ward function that is unknown to the agent. In this setting,
we empirically demonstrate that HNCA significantly outper-
forms REINFORCE, indicating that the variance reduction
implied by our theoretical analysis is significant and impact-
ful. We then show how HNCA can be extended to optimize a
more general function of the outputs of a network of stochas-
tic units, where the function is known to the agent. We apply
this extended version of HNCA to train a discrete variational
auto-encoder and empirically show it compares favourably to
other strong methods. We believe that the ideas underlying
HNCA can help stimulate new ways of thinking about effi-
cient credit assignment in stochastic compute graphs.

Introduction
Using discrete stochastic units within neural networks is
appealing for a number of reasons, including representing
multimodal distributions, modeling discrete choices, pro-
viding regularization and facilitating exploration. However,
training such units efficiently and accurately presents chal-
lenges, as backpropagation is not directly applicable, nor are
the reparameterization tricks (Kingma and Welling 2014;
Rezende, Mohamed, and Wierstra 2014) that are typically
used with continuous stochastic units. Despite these chal-
lenges, discrete stochastic units have played an important
role in recent empirical successes in both text-to-image gen-
eration (Ramesh et al. 2021) and model based reinforce-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Code to reproduce the experiments is available at:
https://github.com/kenjyoung/HNCA code supplement.

ment learning (Hafner et al. 2021). Hence, techniques for
efficiently training networks of discrete stochastic units have
the potential to be of significant practical interest.

Prior work has proposed a number of techniques for pro-
ducing either biased, or unbiased estimates of gradients for
discrete stochastic units. Bengio, Léonard, and Courville
(2013) propose an unbiased REINFORCE (Williams 1992)
style estimator, as well as a biased but low variance estimator
which replaces a random variable with its expectation dur-
ing backpropagation. Tang and Salakhutdinov (2013) pro-
pose an EM procedure which maximizes a variational lower
bound on the loss. Mnih and Gregor (2014) propose several
techniques to reduce the variance of a REINFORCE style es-
timator, including subtracting a learned baseline and normal-
izing by a moving average standard deviation. Maddison,
Mnih, and Teh (2017) and Jang, Gu, and Poole (2017) each
propose a biased estimator based on a continuous relaxation
of discrete outputs. Tucker et al. (2017) use such a continu-
ous relaxation to derive a control variate for a REINFORCE
style estimator, resulting in a variance reduced unbiased gra-
dient estimator. Grathwohl et al. (2018) and Gu et al. (2018)
also explore the use of control variates with discrete ran-
dom variables. Yin and Zhou (2019) provide a variance re-
duced unbiased estimator, called ARM, based on a particu-
lar reparameterization and antithetic sampling. Dong, Mnih,
and Tucker (2020) further reduce the variance of ARM by
marginalizing over the reparameterization step.

We introduce an unbiased, and computationally efficient
estimator for the gradients of stochastic units which prov-
ably reduces gradient estimate variance compared to REIN-
FORCE. Our estimator works by assigning credit to each
unit based on how much it impacts the outputs of its imme-
diate children. Our approach is inspired by Hindsight Credit
Assignment (HCA; Harutyunyan et al. (2019)) for reinforce-
ment learning (RL), hence we call it Hindsight Network
Credit Assignment (HNCA).

Aside from HCA, perhaps the most closely related work
is the Local Expectation Gradients (LEG) approach of Tit-
sias and Lázaro-Gredilla (2015). In fact, the gradient esti-
mator used in HNCA can be seen as an instance of the LEG
estimator. However, the generic expression for the LEG es-
timator makes it unclear when and how it can be efficiently
computed. This has led to suggestions in the literature that
LEG tends to be too computationally expensive to be practi-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8919

cal (Tucker et al. 2017; Mnih and Rezende 2016).
The present work extends the work of Titsias and Lázaro-

Gredilla (2015) in several ways. First, while LEG may be
computational expensive in the general case, for the com-
mon case of a network of Bernoulli units, with firing prob-
ability parameterized by a linear transformation of their in-
puts followed by a nonlinear activation, HNCA provides an
efficient message passing procedure.1 In this case, the re-
sulting computational cost is similar to that of Backpropa-
gation. This efficiency allows us to straightforwardly apply
HNCA to multi-layer Bernoulli networks, while the analysis
and experiments of Titsias and Lázaro-Gredilla (2015) focus
on single-layer (fully factorized) stochastic networks. We
further demonstrate that a simple baseline subtraction, simi-
lar to that employed by Mnih and Gregor (2014), drastically
improves performance when applying HNCA to multi-layer
networks. While Titsias and Lázaro-Gredilla (2015) focus
on the case where the agent has access to the function being
optimized, we also present HNCA in a contextual bandit set-
ting where an agent operates online, outputting an action at
each time-step and observing a single sampled reward as a
result. Interestingly, in the contextual bandit setting, we can
still compute local expectations for each hidden unit with-
out the need to resample the reward. Finally, we prove that
HNCA provides a variance reduction over REINFORCE.

In taking inspiration from RL to train networks of stochas-
tic units, our work is related to work on CoAgent Net-
works (Thomas and Barto 2011; Kostas, Nota, and Thomas
2020) that formalizes framing stochastic networks as collec-
tives of interacting RL agents.

In addition to the immediate application to stochastic neu-
ral networks, we believe the insights presented in this work
can help pave the way for new ways of thinking about ef-
ficient credit assignment in stochastic compute graphs, in-
cluding perhaps the RL setting.

HNCA in a Contextual Bandit Setting
We first formulate HNCA in a contextual bandit setting. In
this setting, an agent interacts with an environment in a se-
ries of time-steps.2 At each time-step, the environment pro-
vides an i.i.d. random context X ∈ X (for example the pix-
els of an image). The agent then selects an action from a dis-
crete set A ∈ A (for example a guess of what class the image
belongs to). Finally, the environment responds to with a re-
ward R = R(X,A), where R : X ,A 7→ R is an unknown
reward function (for example a reward of 1 for guessing the
correct class and 0 otherwise). The agent’s goal is to select
actions which result in as much reward as possible.

In our case, the agent consists of a network of
stochastic computational units. Let Φ be a random vari-
able corresponding to the output of a particular unit.
For each unit, Φ is drawn from a parameterized policy
πΦ(ϕ|b) =̇P(Φ = ϕ| pa(Φ) = b) conditioned on pa(Φ) =

1A similarly procedure applies to units with softmax activation,
though we do not explore this empirically in this work.

2We suppress the time-step in notation, for example writing the
context as X instead of Xt.

b, its parents in the network.3 Each unit’s policy is differen-
tiably parameterized by a unique set of parameters θΦ ∈ Rd.
A unit’s parents pa(Φ) may include the output of other units,
as well as the context X . We focus on the case where Φ takes
values from a discrete set. We will use ch(Φ) to refer to the
children of Φ, that is, the set of outputs of all units for which
Φ is an input.4 We assume the network has a single output
unit, which selects the action A sent to the environment.

The goal is to tune the network parameters to increase
E[R]. Towards this, we will construct an unbiased estimator
of the gradient ∂ E[R]

∂θΦ
for the parameters of each unit, and

update the parameters according to the estimator.
Directly computing the gradient of the output probabil-

ity with respect to the parameters for a given input, as
we might do with backpropagation for a deterministic net-
work, is generally intractable for discrete stochastic net-
works. Instead, we can define a local REINFORCE estima-
tor, ĜRE

Φ =̇ ∂ log(πΦ(Φ| pa(Φ)))
∂θΦ

R. It is well known that ĜRE
Φ

is an unbiased estimator of ∂ E[R]
∂θΦ

(see Appendix A for a
proof). However, ĜRE

Φ tends to have high variance.

HNCA Gradient Estimator
HNCA exploits the causal structure of the network to as-
sign credit to each unit’s output based on how it impacts the
output of its immediate children. Assume Φ is a nonoutput
unit and define mb(Φ) =̇{ch(Φ), pa(Φ), pa(ch(Φ)) \Φ} as
a notational shorthand. Note that mb(Φ) is a Markov blan-
ket (Pearl 1988) for Φ, meaning that conditioned on mb(Φ),
Φ is independent of all other variables in the network as well
as the reward R. Beginning from the expression for ĜRE

Φ , we
can rewrite ∂ E[R]

∂θΦ
as follows:

∂ E[R]

∂θΦ

(a)
= E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

]
(b)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
R

∣∣∣∣mb(Φ), R

]]
(c)
= E

[
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ

∣∣∣∣mb(Φ)

]
R

]
(d)
= E

∑
ϕ

P(Φ = ϕ|mb(Φ))

πΦ(ϕ| pa(Φ))
∂πΦ(ϕ| pa(Φ))

∂θΦ
R

 ,

(1)

where (a) follows from the unbiasedness of ĜRE, (b) applies
the law of total expectation, (c) pulls R out of the expecta-
tion and then uses the fact that mb(Φ) forms a Markov blan-
ket for Φ, thus we can drop the conditioning on R without
loosing anything, and (d) expands the inner expectation over
Φ and rewrites the log gradient. This idea of taking a local
expectation conditioned on a Markov blanket is similar to
the LEG estimator proposed by Titsias and Lázaro-Gredilla

3Expectations and probabilities are taken with respect to all ran-
dom variables in the network, and the context.

4We may also apply ch(·) or pa(·) to sets, in which case it has
the obvious meaning of the union of the elementwise applications.

8920

(2015). However, it is not immediately obvious how to com-
pute this estimator efficiently. Titsias and Lázaro-Gredilla
(2015) provide a more explicit expression and empirical re-
sults for a fully factorized variational distribution. Here, we
will go beyond this case to provide a computationally ef-
ficient way to compute the inner expression for more gen-
eral networks of stochastic units. To begin, we apply Theo-
rem 1 from Chapter 4 of the probabilistic reasoning textbook
of Pearl (1988), which implies that

P(Φ = ϕ|mb(Φ)) = ρΦ(ϕ)πΦ(ϕ| pa(Φ)). (2)

where ρΦ(ϕ) =

∏
C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ)∑
ϕ′

πΦ(ϕ′| pa(Φ))
∏

C∈ch(Φ)

πC(C| pa(C)\Φ,Φ=ϕ′) .

Intuitively, ρΦ(ϕ) is the relative counterfactual probability of
the children of Φ taking the value they did had Φ been fixed
to ϕ. See Appendix B for a full proof. Substituting this result
into the expression within the expectation in Equation 1, we
get that the following is an unbiased estimator of ∂ E[R]

∂θΦ
:

ĜHNCA
Φ =̇

∑
ϕ

ρΦ(ϕ)
∂πΦ(ϕ| pa(Φ))

∂θΦ
R, (3)

which we call the HNCA estimator. Equation 3 applies only
to Φ for which ch(Φ) ̸= ∅, which excludes the output unit A.
In our bandit experiments, we use the REINFORCE estima-
tor ĜRE

Φ (ϕ) for the output unit. Later, we will show how to
improve upon this if we have access to the reward function.

HNCA assigns credit to a particular output choice ϕ based
on the relative counterfactual probability of its children’s
outputs had ϕ been chosen, independent of the actual value
of Φ. Intuitively, this reduces variance, because each poten-
tial output choice of a given unit will get credit proportional
to the difference it makes further downstream. On the other
hand, REINFORCE credits whatever output happens to be
selected, whether it makes a difference or not. This intuition
is formalized in the following theorem:

Theorem 1. V(ĜHNCA
Φ) ≤ V(ĜRE

Φ), where V(X⃗) stand for
the elementwise variance of random vector X⃗ , and the in-
equality holds elementwise.

Theorem 1 follows from the law of total variance by the
proof available in Appendix C.

Efficient Implementation of HNCA
We implement HNCA as a message-passing procedure. A
forward pass propagates information from parents to chil-
dren to compute the network output. A backward pass passes
information from children to parents to compute the HNCA
estimator. The computational complexity of this procedure
depends on how difficult it is to compute the numerators of
ρΦ(ϕ). We could naively recompute πC(C| pa(C) \Φ,Φ =
ϕ) from scratch for each possible ϕ. When C corresponds
to a Bernoulli unit, which computes its output probability
as a linear function of its inputs followed by sigmoid acti-
vation, this would require time O(| pa(C)|NΦ), where NΦ

is the number of possible values Φ can take (2 if Φ is also
Bernoulli). To do this for every parent of every unit in a

Algorithm 1: HNCA (Bernoulli unit)
1: Receive x⃗ from parents
2: l = θ⃗ · x⃗+ b
3: p = σ(l)
4: ϕ ∼ Bernoulli(p)
5: Pass ϕ to children
6: Receive q⃗1, q⃗0, R from children
7: q1 =

∏
i q⃗1[i]

8: q0 =
∏

i q⃗0[i]
9: q̄ = pq1 + (1− p)qo

10: l⃗1 = l + θ⃗ ⊙ (1− x⃗)

11: l⃗0 = l − θ⃗ ⊙ x⃗
12: p⃗1 = (1− ϕ)(1− σ(⃗l1)) + ϕσ(⃗l1)

13: p⃗0 = (1− ϕ)(1− σ(⃗l0)) + ϕσ(⃗l0)
14: Pass p⃗1, p⃗0, R to parents
15: θ⃗ = θ⃗ + ασ′(l)x⃗

(
q1−q0

q̄

)
R

16: b = b+ ασ′(l)
(

q1−q0
q̄

)
R

Algorithm 1: The forward pass in lines 1-5 takes input
from the parents, uses it to compute the fire probability
p and samples ϕ ∈ {0, 1}. The backward pass receives
two vectors of probabilities q⃗1 and q⃗0, each with one el-
ement for each child. Each element represents q⃗0/1[i] =
P (Ci|pa(Ci) \ Φ,Φ = 0/1) for a given child Ci ∈ ch(Φ).
Lines 7 and 8 take the product of child probabilities to com-
pute

∏
i πCi(Ci| pa(Ci)\Φ,Φ = 0/1). Line 9 computes the

associated normalizing factor. Line 10-13 use the logit l to
efficiently compute a vector of probabilities p⃗1 and p⃗0. Each
element corresponds to a counterfactual probability of ϕ if a
given parent’s value was fixed to 1 or 0. Here ⊙ represents
the elementwise product. Line 14 passes information to the
unit’s children. Lines 15 and 16 finally update the parameter
using ĜHNCA

Φ with learning-rate hyperparameter α.

Bernoulli network would thus require O(2
∑

Φ | pa(Φ)|2).
This is much greater than the cost of a forward pass, which
takes on the order of the total number of edges in the net-
work, or O(

∑
Φ | pa(Φ)|). This contrasts with backpropa-

gation where the cost of the backward pass is on the same
order as the forward pass, an appealing property, which im-
plies that learning is not a bottleneck.

Luckily, we can improve on this for cases where
πC(C| pa(C) \ Φ,Φ = ϕ) can be computed from
πC(C| pa(C)) in less time than computing πC(C| pa(C))
from scratch. This is indeed the case for linear Bernoulli
units, for which the policy can be written πΦ(ϕ|x⃗) = σ(θ⃗ ·
x⃗ + b) where x⃗ is the binary vector consisting of all parent
outputs, b is a scalar bias, θ⃗ is the parameter vector for the
unit, and σ is the sigmoid function. Say we wish to compute
the counterfactual probability of Φ = 1 given x⃗[i] = 1, if
we already have πΦ(1|x⃗). Regardless of the actual value of

8921

x⃗i we can use the following identity:

πΦ(1|x⃗\x⃗[i], x⃗[i] = 1) = σ(σ−1(πΦ(1|x⃗))+ θ⃗[i](1−x⃗[i])).

This requires only constant time, whereas computing
πΦ(ϕ|x⃗) requires time proportional to the length of x⃗. This
simple idea is crucial for implementing HNCA efficiently.
In this case, we can compute the numerator terms for every
unit in a Bernoulli network in O(

∑
Φ | pa(Φ)|) time. This is

now on the same order as computing a forward pass through
the network. Computing ĜHNCA

Φ for a given Φ from these
numerator terms requires multiplying a scalar by a gradi-
ent vector with the same size as θΦ. For a Bernoulli unit,
θΦ has O(| pa(Φ)|) elements, so this operation adds another
O(
∑

Φ | pa(Φ)|), maintaining the same order of complexity.
Algorithm 1 shows an efficient implementation of HNCA

for Bernoulli units. Note that, for ease of illustration, the
pseudocode is implemented for a single unit and a single
training example at a time. In practice, we use a vectorized
version which works with vectors of units that constitute a
layer, and with minibatches of training data.

In Section , we will apply HNCA to a model consisting
of a number of hidden layers of Bernoulli units followed by
a softmax output layer. Appendix D provides an implemen-
tation and discussion of HNCA for a softmax output unit.
Note that the output unit itself uses the REINFORCE esti-
mator in its update, as it has no children, which precludes
the use of HNCA. Nonetheless, the output unit still needs
to provide information to its parents, which do use HNCA.
Using a softmax unit at the output, we can still maintain the
property that the time required for the backward pass is on
the same order as the time required for the forward pass.
If, on the other hand, the entire network consisted of soft-
max nodes with N choices each, the HNCA backward pass
would require a factor of N more computation than the for-
ward pass, we discuss this in Appendix D as well.

Contextual Bandit Experiments
We evaluate HNCA against REINFORCE in terms of gra-
dient variance and performance on a contextual bandit ver-
sion of MNIST (LeCun, Cortes, and Burges 2010), with the
standard train test split. Following Dong, Mnih, and Tucker
(2020), input pixels are dynamically binarized, meaning that
at each epoch they are randomly fixed to 0 or 1 with proba-
bility proportional to their intensity. For each training exam-
ple, the model outputs a prediction and receives a reward of
1 if correct and 0 otherwise. We use a fully connected, feed-
forward network with 1, 2 or 3 hidden layers, each with 200
Bernoulli units, followed by a softmax output layer. We train
using ADAM optimizer (Kingma and Ba 2014) with a learn-
ing rate fixed to 10−4 and batch-size of 50 for 100 epochs.
Learning rate and layer size hyperparameters follow Dong,
Mnih, and Tucker (2020) for simplicity. We map the output
of the Bernoulli units to one or negative one, instead of one
or zero, as we found this greatly improved performance in
preliminary experiments. We report results for HNCA and
REINFORCE, both with and without an exponential mov-
ing average baseline subtracted from the reward. We use a
discount rate of 0.99 for the moving average.

Training Epochs

Accuracy Log gradient variance

Training Epochs

1 Hidden
Layer

2 Hidden
Layers

Training Epochs

3 Hidden
Layers

HNCA

REINFORCE

0.9469+/-0.0008
0.9364+/-0.0005

0.8594+/-0.0009
0.8322+/-0.0009

-13.07+/-0.02

-6.02+/-0.01

0.8985+/-0.0002
0.8769+/-0.0007

0.8322+/-0.0002
0.791+/-0.001

-8.09+/-0.01

-5.182+/-0.009

0.882+/-0.001
0.84+/-0.02

0.779+/-0.006
0.72+/-0.01

-4.98+/-0.02

-7.59+/-0.01

Training Epochs

Training Epochs

Training Epochs

-7.85+/-0.01

-12.17+/-0.01

-6.894+/-0.006

-10.133+/-0.007

-6.39+/-0.01

-9.537+/-0.009

HNCA
with Baseline

REINFORCE
with Baseline

Figure 1: Training stochastic networks on a contextual ban-
dit version of MNIST. Each line represents the average of 5
random seeds with error bars showing 95% confidence in-
terval. Final values (train accuracy for the left plots) at the
end of training are written beside each line. The left column
shows the online training accuracy (or equivalently the av-
erage reward) as a dotted line, and the test accuracy as a
solid line (though they essentially overlap). The right col-
umn shows the natural logarithm of the mean gradient vari-
ance. Mean gradient variance is computed as the mean of the
per-parameter empirical variance over examples in a training
batch of 50. We find that, for each network depth, HNCA
drastically reduces gradient variance, resulting in signifi-
cantly improved performance on this task.

Figure 1 shows the results, in terms of performance
and gradient variance, for gradient estimates generated by
HNCA and REINFORCE. We find that HNCA provides
drastic improvement in terms of both gradient variance and
performance over REINFORCE. Note that performance de-
grades with number of layers for both estimators, reflecting
the increasing challenge of credit assignment. Subtracting
a moving average baseline generally improves performance
of both algorithms, except for HNCA in the single hidden
layer case. The comparison between the two algorithms is
qualitatively similar whether or not a baseline is used.

In Appendix E, we demonstrate that HNCA can also be
used to efficiently train a stochastic layer as the final hidden
layer of an otherwise deterministic network, this could be
useful, for example, for learning a binary representation.

Optimizing a Known Function
We introduced HNCA in a setting where the reward func-
tion was unknown, and dependent only on the input context
and the output of the network as a whole. Here, we extend
HNCA to optimize the expectation of a known function f ,
which may have direct dependence on every unit. We refer

8922

to this extension as f -HNCA. This setting is similar to the
setting explored by Titsias and Lázaro-Gredilla (2015), and
f -HNCA differs from LEG mainly in its computationally
efficient message passing implementation, which in turn fa-
cilitates its application to multi-layer stochastic networks.

We assume the function f =
∑

i f
i is factored into a

number of function components f i, which we index by i for
convenience. This factored structure has two benefits, the
first is computational. In particular, it will allow us to com-
pute counterfactual values for each component with respect
to changes to its input separately. The second is for variance
reduction by realizing that we only need to assign credit to
function components that lie downstream of the unit being
credited. A similar variance reduction approach is also used
by the NVIL algorithm of Mnih and Gregor (2014).

Each function component f i is a deterministic function
of a subset of the outputs of units in the network, as well as
possibly depending directly on some parameters. Thus, f i =
f i(p̃a(f i); θi), where θi is a set of real valued parameters
which may overlap with the parameters θΦ for some subset
of units in the network, and p̃a(f i) is the set of nodes in
the network which act as input to f i. Formally, f i without
arguments will refer to the random variable corresponding to
the output of the associated function. We use the notation p̃a,
distinct from pa, to make it clear that function components
are not considered nodes in the network.

The goal in this setting is to estimate the gradient of E[f]
in order to maximize it by gradient ascent. By linearity of ex-
pectation, we can define unbiased estimators for ∂ E[fi]

∂θΦ
and

sum over i to get an unbiased estimator of the full gradient.

HNCA with a Known Function
We now discuss how to extend the HNCA estimator to con-
struct an estimator of ∂ E[f]

∂θΦ
for a particular unit Φ and func-

tion component in this setting. We begin by considering the
gradient for a single function component ∂ E[fi]

∂θΦ
. First, note

that we can break the gradient into indirect and direct depen-
dence on θΦ:

∂ E[f i]

∂θΦ
= E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i

]
+ E

[
∂f i

∂θΦ

]
. (4)

The direct gradient ∂fi

∂θΦ
is zero unless θΦ ∈ θi, in which

case it can be computed directly given we assume access to
f i. From this point on, we will focus on the left expectation.

The main added complexity in estimating
E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]
, compared to the contextual

bandit case, arises if f i has a direct functional dependence
on Φ. In this case we can no longer assume that f i is sepa-
rated from Φ by mb(Φ). Luckily, this is straightforward to
patch. Let f i

Φ(ϕ) be the random variable defined by taking
the function f i(p̃a(f i); θi) and substituting the specific
value ϕ instead of the random variable Φ into the arguments
while keeping all other p̃a(f i) equal to the associated ran-
dom variables. By design, f i

Φ(ϕ) is independent of Φ given
mb(Φ), which allows us to define the following unbiased
estimator for E

[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]

(see Appendix F for

the full derivation):

Ĝf -HNCA,i
Φ (ϕ) =̇

∑
ϕ

ρΦ(ϕ)
∂πΦ(Φ| pa(Φ))

∂θΦ
f i
Φ(ϕ), (5)

where ρΦ(ϕ) is as in Equation 2. As ρΦ(ϕ) is defined
with respect to ch(Φ), this estimator is only applicable
if Φ has children (i.e. ch(Φ) ̸= ∅). In fact, even if Φ
has children, we can ignore them if they have no down-
stream connection5 to f i, as such children cannot influ-
ence f i. Thus if ch(Φ) ∩ ãn(f i) = ∅ we instead define
Ĝf -HNCA,i

Φ (ϕ) =̇
∑

ϕ
∂πΦ(Φ| pa(Φ))

∂θΦ
f i
Φ(ϕ). In Appendix H,

we extend Theorem 1 to apply to f -HNCA, showing that
using Ĝf -HNCA,i

Φ results in a variance reduced estimator for

E
[
∂ log(πΦ(Φ| pa(Φ)))

∂θΦ
f i
]

compared to REINFORCE. The
full f -HNCA estimator is defined by summing up these
components and accounting for any direct functional depen-
dence of f on network parameters:

Ĝf -HNCA
Φ =̇

∑
ϕ

∂πΦ(ϕ| pa(Φ))
∂θΦ

(
ρΦ(ϕ)

∑
i:ch(Φ)∩ãn(fi)̸=∅

f i
Φ(ϕ) +

∑
i:ch(Φ)∩ãn(fi)=∅

f i
Φ(ϕ)

)
+
∑
i

∂f i

∂θΦ
.

(6)
If Φ ̸∈ ãn(f i) then ∂ E[fi]

∂θΦ
= E

[
∂fi

∂θΦ

]
as Φ cannot in-

fluence something with no downstream connection. Hence,
in the two leftmost sums over i in Equation 6, we implicitly
only sum over i such that Φ ∈ ãn(f i).

In addition to the efficiency of computing counterfac-
tual probabilities, for f -HNCA, we have to consider the ef-
ficiency of computing counterfactual function components
f i
Φ(ϕ) given f i. For function components with no direct con-

nection to a unit Φ, this is trivial as f i
Φ(ϕ) = f i. If f i is

directly connected, then implementing f -HNCA with effi-
ciency similar to HNCA will require that we are able to com-
pute f i

Φ(ϕ) from f i in constant time. This is the case if f i

is a linear function followed by some activation. For exam-
ple, functions of the form f i = log(σ(θ⃗ · x⃗+ b)) which will
appear in the ELBO function used in our variational auto-
encoder (VAE; Kingma and Welling (2014); Rezende, Mo-
hamed, and Wierstra (2014)) experiments. More algorithmic
details can be found in Appendix G.

Variational Auto-encoder Experiment
Here, we demonstrate how the f -HNCA approach described
in Section can be applied to the challenging task of training
a discrete hierarchical VAE. Consider a VAE consisting of a
generative model (decoder) p and an approximate posterior
(encoder) q, each of which consist of L discrete stochastic
layers. Samples X⃗ are generated by p as

X⃗ ∼ p0(X⃗|Φ⃗1), Φ⃗1 ∼ p1(Φ⃗1|Φ⃗2), ..., Φ⃗L ∼ pL(Φ⃗L),

5More generally, if only a subset of ch(Φ) lies in ãn(f i) we can
replace ch(Φ) in ρΦ(ϕ) with chi(Φ) = (ch(Φ)∩ ãn(f i)), but, we
will not use this in our experiments in this work.

8923

Figure 2: An illustration of the ELBO for a 3 layer dis-
crete hierarchical VAE broken down into function compo-
nents for f -HNCA. X⃗ is the input to be encoded, each
additional circle is the latent state from a layer of the en-
coder network. Each rectangle is a set of function com-
ponents which contribute to the ELBO. The parameters
of the encoder are trained to maximize the ELBO by f -
HNCA. Consider the f -HNCA estimator for Φ⃗1. The func-
tion components H(q1), marked in purple are upstream
of Φ⃗1, however, H(q1) depends directly on θq1 and thus
∂H(q1)
∂θq1

is nonzero, so the entire contribution of H(q1) to

the gradient estimate Ĝf -HNCA
Φ will come from this gradi-

ent. The function components marked in green have only
direct connection with Φ⃗1, so they will receive credit via
Ĝf -HNCA,i

Φ (ϕ) =̇
∑

ϕ
∂πΦ(Φ| pa(Φ))

∂θΦ
f i
Φ(ϕ). The function com-

ponents marked in orange have both direct connections and
downstream connections mediated by Φ⃗2, so they will re-
ceive credit via Equation 5. Finally, the variables marked in
pink have only mediated connections to Φ⃗1 through Φ⃗2, so
f i
Φ(ϕ) = f i, the estimator for these variables essentially re-

duces to the original HNCA estimator defined in Equation 3.

while q approximates the posterior P(Φ⃗L|X) as a distribu-
tion which can be sampled as

ΦL ∼ qL(Φ⃗L|Φ⃗L−1), Φ⃗L−1 ∼ qL−1(Φ⃗L−1|Φ⃗L−2), ...

, Φ⃗1 ∼ q1(Φ⃗1|X⃗),

where, each pi and qi represents a vector of Bernoulli dis-
tributions, each parameterized as a linear function of their
input (except the prior pL(Φ⃗L) which takes no input, and is

simply a vector of Bernoulli variables with learned means).
Call the associated parameters θpi and θqi We can train such
a VAE by maximizing a lower bound on the log-likelihood
of the training data, usually referred to as the evidence lower
bound (ELBO) which we can write as E[fE] where

fE =̇ log(p0(X⃗|Φ⃗1)) +
L−1∑
l=1

log(pl(Φ⃗l|Φ⃗l−1))+

log(pL(Φ⃗L)) +H(q1(·|X⃗)) +
L−1∑
l=1

H(ql+1(·|Φ⃗l)), (7)

where H is the entropy of the distribution, and the expecta-
tion is taken with respect to the encoder q and random sam-
ples X⃗ . Each Φ⃗i is sampled from the associated encoder qi.
Note that each term in Equation 7 is a sum over elements in
the associated output vector, we can view each element as
a particular function component f i. The resulting compute
graph is illustrated in Figure 2.

We compare f -HNCA with REINFORCE and several
stronger methods for optimizing an ELBO of a VAE trained
to generate MNIST digits. We focus on strong, unbiased,
variance reduction techniques from the literature that do
not require modifying the architecture or introduce signifi-
cant additional hyperparameters. Since HNCA falls into this
category, this allows for straightforward comparison with-
out the additional nuance of architectural and hyperparam-
eter choices. Specifically, we compare HNCA with REIN-
FORCE leave one out (REINFORCE LOO; Kool, van Hoof,
and Welling (2019)) and DisARM (Dong, Mnih, and Tucker
2020). Note that in the multi-layer case, both DisARM and
REINFORCE LOO require sampling an additional partial
forward pass beginning from each layer, which gives them a
quadratic scaling in compute cost with the number of layers.
By contrast, HNCA requires only a single forward pass and
a backward pass of similar complexity.

Initially, we found that f -HNCA outperformed the other
tested methods in the single layer discrete VAE case, but
fell short in the multi-layer case. However, we found that
a simple modification that subtracts a layer specific scalar
baseline, similar to that used by Mnih and Gregor (2014),
significantly improved the performance of f -HNCA in the
multi-layer case. Specifically, for each layer, we maintain
a scalar running average of the sum of those components
of f with mediated connections (those highlighted in pink
and orange in Figure 2) and subtract it from the leftmost
sum over i in Equation 6 to produce a centered learning sig-
nal.6 We use a discount rate of 0.99 for the moving average.7
We refer to this variant as f -HNCA with Baseline. We also
tested subtracting a moving average of all downstream func-
tion components in REINFORCE to understand how much
this change helps on its own. It’s not obvious how to apply a
running average baseline to the other tested methods, as they
already use alternative means to center the learning signal a
naive moving average baseline would have expectation zero.

6Using such a baseline for components without mediated con-
nections would analytically cancel.

7We used the first value we tried, we did not tune it.

8924

As in Section , we use dynamic binarization and train us-
ing ADAM optimizer with learning rate 10−4 and batch-size
50. Following Dong, Mnih, and Tucker (2020), our decoder
and encoder each consist of a fully connected, stochastic
feedforward neural network with 1, 2 or 3 layers, each hid-
den layer has 200 Bernoulli units. We train for 840 epochs,
approximately equivalent to the 106 updates used by Dong,
Mnih, and Tucker (2020). For consistency with prior work,
we use Bernoulli units with a zero-one output. For all meth-
ods, we train each unit based on downstream function com-
ponents, as opposed to using the full function f . See Ap-
pendix I for more implementation details.

Figure 3, shows the results in terms of ELBO and gradi-
ent variance, for gradient estimates generated by f -HNCA
and the other methods tested. As in the contextual bandit
case, we find that f -HNCA provides drastic improvement
over REINFORCE. f -HNCA also provides a significant im-
provement over all other methods for the single-layer dis-
crete VAE, but underperforms the other strong methods in
the multi-layer case. On the other hand, f -HNCA with Base-
line significantly improves on the other tested methods in
all cases. REINFORCE with baseline outperforms ordinary
f -HNCA in the multi-layer cases. Hence, this baseline sub-
traction is a fairly powerful variance reduction technique for
REINFORCE, with strong complementary benefits with f -
HNCA. In Appendix J, we additionally report multi-sample
test-set ELBOs for the final trained networks, which reflect
the same performance ordering as the training set ELBOs.
In Appendix K, we perform an ablation experiments on f -
HNCA with Baseline and find that the choice of whether to
exclude children when ch(Φ)∩ ãn(f i) = ∅ has a significant
performance impact, while the additional impact of exclud-
ing upstream function components is fairly minimal.

Discussion and Conclusion
We introduced HNCA, an algorithm for gradient estimation
in networks of discrete stochastic units. HNCA is inspired
by Hindsight Credit Assignment (Harutyunyan et al. 2019),
and can be seen as an instance of Local Expectation Gra-
dients, extending the work of Titsias and Lázaro-Gredilla
(2015) by providing a computationally efficient message
passing algorithm and extension to multi-layer networks of
stochastic units. Our computational efficient approach di-
rectly addresses concerns in the literature that LEG is inher-
ently computationally expensive (Tucker et al. 2017; Mnih
and Rezende 2016). We prove that HNCA is unbiased, and
that it reduces variance compared to REINFORCE. Empiri-
cally, we show that HNCA outperforms strong methods for
training a single-layer Bernoulli VAE, and when subtracting
a simple moving average baseline also outperforms the same
methods for the case of a multi-layer Hierarchical VAE.

It’s worth highlighting that efficient implementation of
HNCA is predicated on the ability to efficiently compute
counterfactual probabilities or function components when
a single input is changed. This is not always possible, for
example, if f is the result of a multi-layer deterministic
network. An example of this situation is the nonlinear dis-
crete VAE architecture explored by Dong, Mnih, and Tucker
(2020) and Yin and Zhou (2019) where the encoder and

3 Layers

-109.5+/-0.1
-111.9+/-0.1

-104.0+/-0.2
-104.6+/-0.1

Training Epochs

2 Layers

Training Epochs

-113.7+/-0.3
-116.1+/-0.2
-116.1+/-0.2

-134.3+/-0.4

6.23+/-0.02

-5.70+/-0.05

-112.2+/-0.3
-113.3+/-0.2

-106.57+/-0.02
-106.9+/-0.1

-129.3+/-0.1

6.48+/-0.02

3.60+/-0.03
2.09+/-0.01

0.18+/-0.01

6.38+/-0.01

3.29+/-0.07
2.02+/-0.02

0.23+/-0.04

HNCA

disARM

REINFORCE

REINFORCE
LOO

-129.0+/-0.1

-0.07+/-0.03
-0.22+/-0.02

-0.03+/-0.03

-0.08+/-0.03

Training Epochs

Training EpochsTraining Epochs

Training Epochs

Training ELBO Log gradient variance

1 Layer
HNCA
with Baseline

REINFORCE
with Baseline

-103.3+/-0.1

-2.30+/-0.02

-120.5+/-0.2

-100.5+/-0.2

-2.52+/-0.03

2.06+/-0.02

Figure 3: Training discrete VAEs to generate MNIST digits.
Each line represents the average of 5 random seeds with er-
ror bars showing 95% confidence interval. Final values at the
end of training are written near each line in matching color.
The left column shows the online training ELBO. The right
column shows the natural logarithm of the mean encoder
gradient variance. Mean gradient variance is computed as
the mean over parameters and batches of the per-parameter
empirical variance over examples in a training batch of 50.
f -HNCA outperforms all other tested methods in the single-
layer case, but underperforms in the multi-layer cases. f -
HNCA with Baseline outperforms the other methods in the
multi-layer case. f -HNCA with baseline is excluded from
the single layer results as there are no mediated connections.

decoder are nonlinear networks with a single stochastic
Bernoulli layer at the outputs. However, as we show in Ap-
pendix E, HNCA can be used to train a final Bernoulli hid-
den layer at the end of a nonlinear network.

In addition to optimizing a known function of the output
of a stochastic network, we show that HNCA can be applied
to train the hidden layers of a multi-layer discrete network
in an online learning setting with unknown reward function.
REINFORCE LOO and DisARM, which rely on the ability
to evaluate the reward function multiple times for a single
training example, cannot.

Future work could explore combining HNCA with other
methods for complimentary benefits. One could also ex-
plore extending HNCA to propagate credit multiple steps
which would presumably allow further variance reduction,
but presents challenges as the relationships between more
distant nodes in the network becomes increasingly complex.

HNCA provides insight into the challenges of credit as-
signment in discrete stochastic compute graphs, which has
the potential to have an impact on future approaches.

8925

Acknowledgments
The author thanks Rich Sutton, Matt Taylor and Tian Tian
for useful conversations, and anonymous reviewers for use-
ful feedback. I also thank the Natural Sciences and Engi-
neering Research Council of Canada and Alberta Innovates
for providing funding for this work.

References
Bengio, Y.; Léonard, N.; and Courville, A. 2013. Estimat-
ing or propagating gradients through stochastic neurons for
conditional computation. arXiv preprint arXiv:1308.3432.
Dong, Z.; Mnih, A.; and Tucker, G. 2020. DisARM: An
antithetic gradient estimator for binary latent variables. Ad-
vances in neural information processing systems, 33.
Grathwohl, W.; Choi, D.; Wu, Y.; Roeder, G.; and Duve-
naud, D. 2018. Backpropagation through the void: Optimiz-
ing control variates for black-box gradient estimation. Inter-
national Conference on Learning Representations.
Gu, S.; Levine, S.; Sutskever, I.; and Mnih, A. 2018.
Muprop: Unbiased backpropagation for stochastic neural
networks. International Conference on Learning Represen-
tations.
Hafner, D.; Lillicrap, T. P.; Norouzi, M.; and Ba, J. 2021.
Mastering Atari with Discrete World Models. In Interna-
tional Conference on Learning Representations.
Harutyunyan, A.; Dabney, W.; Mesnard, T.; Azar, M. G.;
Piot, B.; Heess, N.; van Hasselt, H. P.; Wayne, G.; Singh,
S.; Precup, D.; et al. 2019. Hindsight credit assignment.
Advances in neural information processing systems, 32:
12488–12497.
Jang, E.; Gu, S.; and Poole, B. 2017. Categorical reparam-
eterization with gumbel-softmax. International Conference
on Learning Represenations.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations.
Kingma, D. P.; and Welling, M. 2014. Auto-encoding varia-
tional bayes. International Conference on Learning Repre-
sentations.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Buy 4 RE-
INFORCE Samples, Get a Baseline for Free! In ICLR Deep
Reinforcement Learning Meets Structured Prediction Work-
shop.
Kostas, J.; Nota, C.; and Thomas, P. 2020. Asynchronous
Coagent Networks. Proceedings of the 37th International
Conference on Machine learning, 5426–5435.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist.
Maddison, C. J.; Mnih, A.; and Teh, Y. W. 2017. The con-
crete distribution: A continuous relaxation of discrete ran-
dom variables. International Conference on Learning Rep-
resenations.
Mnih, A.; and Gregor, K. 2014. Neural variational inference
and learning in belief networks. In International Conference
on Machine Learning, 1791–1799. PMLR.

Mnih, A.; and Rezende, D. J. 2016. Variational Inference
for Monte Carlo Objectives. Proceedings of the 33rd Inter-
national Conference on Machine Learning, 2188–2196.
Pearl, J. 1988. Probabilistic reasoning in intelligent systems:
networks of plausible inference. Morgan Kaufmann.
Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Rad-
ford, A.; Chen, M.; and Sutskever, I. 2021. Zero-shot text-
to-image generation. arXiv preprint arXiv:2102.12092.
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. Proceedings of the 31st Interna-
tional Conference on Machine learning, 1278–1286.
Tang, C.; and Salakhutdinov, R. R. 2013. Learning stochas-
tic feedforward neural networks. Advances in Neural Infor-
mation Processing Systems, 26: 530–538.
Thomas, P. S.; and Barto, A. G. 2011. Conjugate Markov
Decision Processes. Proceedings of the 28th International
Conference on Machine learning, 137–144.
Titsias, M. K.; and Lázaro-Gredilla, M. 2015. Local
expectation gradients for black box variational inference.
Advances in Neural Information Processing Systems, 28:
2638–2646.
Tucker, G.; Mnih, A.; Maddison, C. J.; Lawson, J.; and Sohl-
Dickstein, J. 2017. Rebar: Low-variance, unbiased gradient
estimates for discrete latent variable models. Advances in
Neural Information Processing Systems, 30: 2627–2636.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8(3-4): 229–256.
Yin, M.; and Zhou, M. 2019. ARM: Augment-
REINFORCE-merge gradient for stochastic binary net-
works. International Conference on Learning Representa-
tions.

8926

