
Early-Bird GCNs: Graph-Network Co-optimization towards More Efficient GCN
Training and Inference via Drawing Early-Bird Lottery Tickets

Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, Yingyan Lin
Department of Electrical and Computer Engineering, Rice University

{haoran.you, zl55, zjzhou, yf22, yingyan.lin}@rice.edu

Abstract

Graph Convolutional Networks (GCNs) have emerged as the
state-of-the-art deep learning model for representation learn-
ing on graphs. However, it remains notoriously challenging to
train and inference GCNs over large graph datasets, limiting
their application to large real-world graphs and hindering the
exploration of deeper and more sophisticated GCN graphs.
This is because as the graph size grows, the sheer number of
node features and the large adjacency matrix can easily ex-
plode the required memory and data movements. To tackle
the aforementioned challenges, we explore the possibility of
drawing lottery tickets when sparsifying GCN graphs, i.e.,
subgraphs that largely shrink the adjacency matrix yet are ca-
pable of achieving accuracy comparable to or even better than
their full graphs. Specifically, we for the first time discover
the existence of graph early-bird (GEB) tickets that emerge at
the very early stage when sparsifying GCN graphs, and pro-
pose a simple yet effective detector to automatically identify
the emergence of such GEB tickets. Furthermore, we advo-
cate graph-model co-optimization and develop a generic effi-
cient GCN early-bird training framework dubbed GEBT that
can significantly boost the efficiency of GCN training by (1)
drawing joint early-bird tickets between the GCN graphs and
models and (2) enabling simultaneously sparsification of both
the GCN graphs and models. Experiments on various GCN
models and datasets consistently validate our GEB finding
and the effectiveness of our GEBT, e.g., our GEBT achieves
up to 80.2% ∼ 85.6% and 84.6% ∼ 87.5% savings of GCN
training and inference costs while offering a comparable or
even better accuracy as compared to state-of-the-art methods.
Our source code and supplementary material are available at
https://github.com/RICE-EIC/Early-Bird-GCN.

Introduction
Graph convolutional networks (GCNs) (Kipf and Welling
2016) have emerged as state-of-the-art (SOTA) algorithms
for graph-based learning tasks, such as graph classification
(Xu et al. 2018) and node classification (Kipf and Welling
2016). It is well recognized that the superior performance
largely benefits from GCNs’ ability for handling irregularity
and unrestricted neighborhood connections. Specifically, for
each node in a graph, GCNs first aggregate neighbor nodes’
features, and then transform the aggregated feature through

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(hierarchical) feed-forward propagation to update the fea-
ture of the given node.

Despite their promise, GCN training and inference can
be notoriously challenging, hindering their great potential
from being unfolded in large real-world graphs. This is be-
cause as the graph dataset grows, the large number of node
features and the abundant adjacency matrix can easily ex-
plode the required memory and data movements (Geng et al.
2021; Zhang et al. 2021). For example, a mere 2-layer GCN
model with 32 hidden units requires 19 GFLOPs (FLOPs:
floating point operations) to process the Reddit graph (Tai-
lor, Fernandez-Marques, and Lane 2020), twice as much as
that of a powerful deep neural network (DNN) ResNet50,
which has a total of 8 GFLOPs when processing ImageNet
(Canziani, Paszke, and Culurciello 2016). The giant com-
putational cost of GCNs comes from three aspects. First,
graphs (or graph data), especially real-world ones, are often
extraordinarily large and irregular as exacerbated by their
intertwined complex neighbor connections, e.g., a total of
232,965 nodes in the Reddit graph with each node having
about 50 neighbors (Kersting et al. 2016). Second, the di-
mension of GCNs’ node feature vectors can be very high,
e.g., each node in the Citeseer graph has 3703 features.
Third, the extremely high sparsity and unbalanced distribu-
tion of non-zero data in GCNs’ adjacency matrices imposes
a paramount challenge for effectively accelerating GCNs
(Geng et al. 2020; Yan et al. 2020), e.g., as high as 99.9%
vs. 10% to 50% generally observed in DNNs.

To tackle the aforementioned challenges and unleash the
full potential of GCNs, various techniques have been devel-
oped. For instance, Tailor et al. (Tailor, Fernandez-Marques,
and Lane 2020) leverages quantization-aware training to
demonstrate 8-bit GCNs; SGCN (Li et al. 2020b) is the first
to consider GCN sparsification by formulating and solving
it as an optimization problem.

The impressive performance achieved by existing GCN
compression works indicates that there are redundancies
within GCNs to be leveraged for aggressively trimming
down their complexity while maintaining their performance.
In this work, we attempt to take a new perspective by draw-
ing inspiration from the tremendous success of DNN com-
pression, particularly the lottery ticket (LT) finding (Frankle
and Carbin 2019; Liu et al. 2018; You et al. 2020). While
conceptually simple, the unique structures of GCNs make it

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8910

not straightforward to leverage the LT finding to compress
GCNs. This is because (1) the graph instead of the MLPs in
GCNs dominates the complexity, for which the existence of
LT remains unknown; and (2) it is unclear how to jointly op-
timize the two phases of GCN operations (i.e., feature aggre-
gation and combination) while doing so promises the maxi-
mum complexity reduction.

This paper aims to close the above gap to minimize the
complexity of GCNs without hurting their competitive per-
formance, and to make the following contributions:

• We discover the existence of graph early-bird (GEB)
tickets that emerge at the very early stage when sparsi-
fying GCN graphs, and propose a simple yet effective
detector to automatically identify the emergence of GEB
tickets. To our best knowledge, we are the first to show
that the early-bird tickets finding holds for GCN graphs.

• we advocate graph-network co-optimization and develop
a generic efficient GCN training framework dubbed
GEBT that significantly boosts GCN training efficiency
by (1) drawing joint early-bird (EB) tickets between the
GCN graphs and models and (2) simultaneously sparsify-
ing both the GCN graphs and models, additionally boost-
ing the GCN inference efficiency.

• Experiments on various GCN models and datasets con-
sistently validate our GEB finding and the effectiveness
of the proposed GEBT. For example, our GEBT achieves
up to 80.2% ∼ 85.6% and 84.6% ∼ 87.5% GCN training
and inference costs savings while leading to a compara-
ble or even better accuracy as compared to state-of-the-
art (SOTA) methods.

Related Works
Graph Convolutional Networks (GCNs). GCNs have
amazed us for processing non-Euclidean and irregular data
structures (Zhang et al. 2018). Recently developed GCNs
can be categorized into two groups: spectral and spatial
methods. Specifically, spectral methods (Kipf and Welling
2017; Peng et al. 2020) model the representation in the graph
Fourier transform domain based on eigen-decomposition,
which are time-consuming and difficult to parallel or scale to
large graphs (Gao et al. 2019; Wu et al. 2020). On the other
hand, spatial approaches (Hamilton, Ying, and Leskovec
2017; Simonovsky and Komodakis 2017), which directly
perform the convolution in the graph domain by aggregating
the neighbor nodes’ information, have rapidly developed re-
cently. To further improve the performance of spatial GCNs,
Veličković et al. (Veličković et al. 2018) introduce the at-
tention mechanism to select information which is relatively
critical from all inputs; and (Xu et al. 2019) theoretically
formalizes an upper bound for the expressiveness of GCNs.
Our GEB finding and GEBT enhance the understanding of
GCNs and promote efficient GCN training, and can be gen-
erally applicable to SOTA GCN models.

GCN Compression. The prohibitive complexity and
powerful performance of GCNs have motivated growing in-
terest in GCN compression. For instance, Tailor et al. (Tai-
lor, Fernandez-Marques, and Lane 2020) for the first time

show the feasibility of adopting 8-bit integer arithmetic rep-
resentation for GCN inference without sacrificing the clas-
sification accuracy; two concurrent pruning works (Li et al.
2020b; Zheng et al. 2020) aim to sparsify the graph adja-
cency matrices. Our GEBT explores from a new perspec-
tive and is complementary with exiting GCN compression
works, i.e., can be applied on top of them to further reduce
GCNs’ training/inference costs.

Early-Bird Tickets Hypothesis. Frankle et al. (Fran-
kle and Carbin 2019) show that winning tickets (i.e., small
subnetworks) exist in randomly initialized dense networks,
which can be retrained to restore a comparable or even better
performance than their dense network counterparts. Later,
You et al. (You et al. 2020) demonstrate the existence of EB
tickets, i.e., the winning tickets can be consistently drawn at
the very early training stages , and leverages this to largely
reduce the training costs of DNNs. More recently, the EB
finding has been extended to natural language processing
(NLP) models (e.g., BERT) (Chen et al. 2021b) and gener-
ative adversarial networks (GANs) (Mukund Kalibhat, Bal-
aji, and Feizi 2020). Our GEB finding and GEBT draw in-
spirations from the prior arts, and for the first time demon-
strate that the EB phenomenon holds for GCNs which have
unique and different algorithm structures as compared to
DNNs, NLP, and GANs. Furthermore, compared with the
iterative pruning method, e.g., UGS (Chen et al. 2021a), we
for the first time show that early-bird (EB) tickets exist in
both GCN graphs and networks, and further develop effi-
cient and effective detectors to automatically identify them,
boosting both training and inference efficiency, while UGS
draws lottery tickets after fully and iteratively (up to 20×)
training the dense models for only saving inference costs.

Our Findings and Proposed Techniques
Preliminaries of GCNs & GCN Sparsification
GCN Notation and Formulation. Let G = (V,E) repre-
sents a GCN graph, where vi ∈ V and (vi, vj) ∈ E denote
the nodes and edges, respectively; and N = |V | and M =
|E| denote the total number of nodes and edges, respectively.
The node degrees are denoted as d = {d1, d2, · · · , dN}
where di indicates the number of neighbors connected to the
node vi. We define D as the degree matrix whose diagonal
elements are formed using d. Given the adjacency matrix A
and the feature matrix X = {x1, x2, · · · , xN} of the graph
G, a two-layer GCN model (Kipf and Welling 2017) can
then be formulated as:

Z=f(A,X)=softmax
(
ÂReLU

(
ÂXW0

)
W1

)
, (1)

where Â = D− 1
2 (A + In)D

− 1
2 is calculated by a pre-

processing step, thus multiplying Â captures GCNs’ neigh-
bor aggregation; W0 and W1 are the weights of the GCN
model for the 1st and 2nd layers to generage the final out-
put (i.e., Z ∈ RN×F), where the mapping from the input to
the hidden or output layer is called GCN combination which
combines each node’s features and its neighbors; The soft-
max function softmax(xi) = exp(xi)/

∑
i exp(xi) is ap-

plied in a row-wise manner (Kipf and Welling 2017). For

8911

0 2 4 6 8 10 20 40 60 80 100
Epoch subgraphs drawn from

50

55

60

65

70

75

80

85

R
et

ra
in

in
g

ac
cu

ra
cy

 (
%

)

Cora

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 80 100
Epoch subgraphs drawn from

56

58

60

62

64

66

68

70

72

CiteSeer

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 80 100
Epoch subgraphs drawn from

68

70

72

74

76

78

80
Pubmed

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

Figure 1: Retraining accuracy vs. epoch numbers at which subgraphs are drawn, when evaluating the GCNs (Kipf and Welling
2017) on three graph datasets: Cora, Citeseer, and Pumbed, where dashed lines show the accuracy of GCNs on corresponding
unpruned full graphs, pg denotes the graph pruning ratios, and error bars show the minimum and maximum of ten runs.

semi-supervised multiclass classification, the loss function
of the cross-entropy errors over all labeled examples:

LGCN (W) = −
∑

n∈YN

∑
f

Ynf ln(Znf), (2)

where YN is the set of node indices that have labels, Ynf and
Znf are the ground truth label matrix and the GCN output
predictions, respectively. During GCN training, W0 and W1

are updated. via gradient descents.
Graph Sparsification. The goal of graph sparsification is

to reduce the total number of edges in GCNs’ graph (i.e.,
the size of the adjacency matrices). A SOTA graph sparsifi-
cation pipeline (Li et al. 2020b) is to first pretrain GCNs on
their full graphs, and then sparsify the graphs based on the
pretrained GCNs. The weights of GCNs are not updated dur-
ing graph sparsification, during which W is replaced with A
in Eq. (2) to derive the loss function LGCN (A). The overall
loss function during graph sparsification can be written as:

LGraph(A) = LGCN (A) + LReg(A), (3)

where LReg denotes the sparse regularization term, which
ideally will become zero if the sparsity of the graph ad-
jacency matrices reaches the specified pruning ratio (e.g.,
∥Aprune∥0/∥A∥0 ≤ 1 − p for a given ratio of p). As LReg

is not differentiable, SOTA graph sparsification work (Li
et al. 2020b) formulates Eq. (3) as an alternating optimiza-
tion problem for updating the graph adjacency matrices.

Finding 1: EB Tickets Exist in GCN Graphs
Experiment Settings. For this set of experiments, we fol-
low the SOTA graph sparsification work (Li et al. 2020b)
to first pretrain GCNs on unpruned graphs, train and prune
the graphs based on the pretrained GCNs, and then retrain
GCNs from scratch on the pruned graphs to evaluate the
achieved accuracy. In addition, we adopt a two-layer GCN as
described in Eq. (1), in which both the GCN and graph train-
ing take a total of 100 epochs and an Adam solver is used
with a learning rate of 0.01 and 0.001 for training the GCNs
and graphs, respectively. For retraining the pruned graphs,
we keep the same setting by default.

Existence of GEB Tickets. We follow the SOTA method
(Li et al. 2020b) to sparsify the graph, but instead prune the

graph that have not been fully trained (before the accuracy
reaches their final top values), to see if reliable GEB tick-
ets can be observed, i.e., the retraining accuracy reaches the
one drawn from the corresponding fully-trained graph. Fig.
1 shows the accuracies achieved by re-training the pruned
graphs drawn from different early epochs, considering three
different graph datasets and six pruning ratios. Two intrigu-
ing observations can be made: (1) there consistently exist
GEB tickets drawn from certain early epochs (e.g., as early
as 10 epochs w.r.t. the total of 100 epochs), of which the re-
training accuracy is comparable or even better than those
drawn in a later stage, including the “ground-truth” tick-
ets drawn from the fully-trained graphs (i.e., at the 100-
th epoch); and (2) some GEB tickets (e.g., Pg = 30% on
Pumbed) can even outperform their unpruned graphs (de-
noted using dashed lines), potentially thanks to the sparse
regularization as mentioned in (You et al. 2020). The first
observation implies the possibility of “overcooking” when
identifying important graph edges at later training stages.

Detection of GEB Tickets. The existence of GEB tick-
ets and the prohibitive cost of GCN training motivate us to
explore the possibility of automatically detecting the emer-
gence of GEB tickets. To do so, we develop a simple yet ef-
fective detector via measuring the “graph distance” between
consecutive epochs during graph sparsification. Specifically,
we define a binary mask of the drawn GEB tickets, where 1
denotes the reserved edges and 0 denotes the pruned edges,
and use the hamming distance between the corresponding
masks to measure the “distance” between two graphs.

Fig. 2 (a) visualizes the pairwise “graph distance” ma-
trices among 100 training epochs, where the (i, j)-th ele-
ment within the matrices represents the distance between the
pruned graphs drawn at the i-th and j-th epochs. We see that
the distance deceases rapidly (i.e., color change from green
to yellow) at the first few epochs, indicating that the reserved
edges in pruned graphs quickly converge at the very early
training stages. We therefore measure and record the dis-
tance between consecutive three epochs (i.e., look back for
three epochs during training), and stop training the graph
when all the recorded distances are smaller than a speci-
fied threshold η. Fig. 2 (b) plots the maximum recorded dis-
tances as graph training epochs increase, where the red line

8912

0 25 50 75

0

20

40

60

80

10

Cora (pg=40%)

1

0.8

0.6

0.4

0.2

0

0 25 50 75

0

20

40

60

80

15

CiteSeer (pg=40%)

1

0.8

0.6

0.4

0.2

0
Ep

oc
hs

 (
dr

aw
 s

ub
gr

ap
hs

)

Epochs (draw subgraphs)
(a) Pairwise graph distance matrix

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
Cora

pg = 20%
pg = 40%
pg = 60%
pg = 80%

0 20 40 60 80 100
Epochs

0.0

0.2

0.4

0.6

0.8

1.0
CiteSeer

pg = 20%
pg = 40%
pg = 60%

threshold = 0.1

GEB tickets emerge at:
10 - 19 epochs

GEB tickets emerge at:
15 - 26 epochs

(b) Distance trajectory

N
or

m
. g

ra
ph

 d
is

t.

Figure 2: The visualization of (a) pairwise graph distance
matrices, and (b) recorded graph distance’s evolution along
the training trajectories under different graph pruning ratios.

denotes the threshold we adopt in all experiments with dif-
ferent pruning ratios. The identified GEB tickets are consis-
tently drawn from the early (10- ∼ 26-th) epochs. These ex-
periments validate the effectiveness of our developed GEB
detector, which has negligible overheads compared with the
total graph training cost (i.e., < 0.1%).

Finding 2: Joint-EB Tickets Exist
Co-sparsification of the GCN Graph and Network. To
explore the possibility of drawing joint-EB tickects be-
tween GCN graphs and networks, we first develop a co-
sparsification framework, as described in Fig. 5 (c) and
Algorithm 2. Specifically, we iteratively update the GCN
weights and graph adjacency matrices based on their cor-
responding loss functions formulated in Eq. (2) and Eq.
(3), respectively; after training for a certain epochs (e.g.,
100 epochs), we then simultaneously prune the trained
GCN graphs and networks using a magnitude-based prun-
ing method (Han, Mao, and Dally 2015; Frankle and Carbin
2019), and finally retrain the resulting pruned GCNs on the
pruned graphs. Fig. 3 shows the accuracy-FLOPS trade-
offs of our co-sparsification framework when evaluating
GCNs (Kipf and Welling 2017) on Cora and CiteSeer graph
datasets. We can see that co-sparsification can achieve up to
90% sparsity in GCN weights while maintaining a compara-
ble accuracy over the unpruned GCN graphs/networks.

Existence of Joint-EB Tickets. The existence of GEB
tickets in GCN graphs and EB tickets in DNNs motivate our
curiosity on the existence of joint-EB tickets between GCN
graphs and networks. Fig. 4 (a) visualizes the retraining ac-
curacies of the GCN subnetworks on subgraphs with both
being drawn from different early epochs, which consistently

10 20 30 40 50 60 70
Inference FLOPs (M)

50

60

70

80

Cora

SGCN
Co-optim. (pw : 50%)

Co-optim. (pw : 70%)
Co-optim. (pw : 90%)

50 100 150 200
Inference FLOPs (M)

55

60

65

70

CiteSeer

SGCN
Co-optim. (pw : 50%)

Co-optim. (pw : 70%)
Co-optim. (pw : 90%)

R
et

ra
in

in
g

ac
cu

ra
cy

 (
%

)

Figure 3: Retraining accuracy vs. inference FLOPs of our
co-sparsification framework and a SOTA graph sparsifica-
tion framework, SGCN (Li et al. 2020b).

indicates the existence of joint-EB tickets under an exten-
sive set of experiments with different graph datasets, graph
pruning ratios, and weight pruning ratios {G, pg, pw}. Fur-
thermore, we can see that the joint-EB tickets emerge at the
very early training stages (as early as 10 epochs w.r.t. a to-
tal of 100 epochs), i.e., their retraining accuracy is compa-
rable or even better than that of training the corresponding
unpruned GCN graphs and networks or training the pruned
graphs and unpruned GCN networks (Li et al. 2020b).

Detection of Joint-EB Tickets. We also develop a sim-
ple method to automatically detect the emergence of joint-
EB tickets, of which the main idea is similar to the GEB
tickets detector but with an additional binary mask for draw-
ing the GCN subnetwork. Similarly, in the binary masks, the
pruned weights are set to 0 while the kept ones are set to
1, and the distance between subnetworks is characterize us-
ing the hamming distance between the corresponding binary
masks following (You et al. 2020) but we additionally de-
fine a binary mask of the drawn GCN subnetwork, where
the pruned weights are 0 while the kept ones are 1. There-
fore the distance between subnetworks is represented by the
hamming distance between the corresponding binary masks
following (You et al. 2020). For detecting the joint-EB tick-
ets, we measure both the “subgraph distance” dg and “sub-
network distance” dw among consecutive epochs, resulting
in three choices for the stop criteria (for a given the threshold
η): (1) dg < η; (2) dw < η; (3) dg + dw < η.

Fig. 4 (b) leverages the third criterion to visualize the dis-
tance’s trajectories of GCN networks on Cora and CiteSeer
datasets, at different graph and network pruning ratio pairs
{pg, pw}. The ablation studies of all of the three criteria
can be found in the Appendix. We can see that all crite-
ria can effectively identify the emergence of joint-EB tick-
ets, e.g., as early as 9 epochs w.r.t. a total of 100 epochs.
Interestingly, the drawn joint-EB tickets can achieve a com-
parable or even better retraining accuracy than the subgraph
and subnetwork pairs drawn at a later stages, which again

8913

0 2 4 6 8 10 20 40 60 8010050

55

60

65

70

75

80

85
Cora (pw = 50%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 8010050

55

60

65

70

75

80

85
Cora (pw = 70%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 8010050

55

60

65

70

75

80

85
Cora (pw = 90%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 80100

55

60

65

70

CiteSeer (pw = 50%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 80100
Epochs (draw subgraphs and subnetworks)

55

60

65

70

CiteSeer (pw = 70%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

0 2 4 6 8 10 20 40 60 80100

55

60

65

70

CiteSeer (pw = 90%)

Unpruned
pg = 10%
pg = 30%

pg = 50%
pg = 70%
pg = 90%

Re
tr

ai
ni

ng
 a

cc
ur

ac
y

(%
)

(a) The existence of Joint-EB tickets

0 20 40 60 800.0

0.2

0.4

0.6

0.8

1.0 Cora
pg = 20%; pw = 70%
pg = 20%; pw = 90%
pg = 40%; pw = 70%
pg = 40%; pw = 90%
pg = 60%; pw = 70%
pg = 60%; pw = 90%
pg = 80%; pw = 70%
pg = 80%; pw = 90%

0 20 40 60 80
Epochs

0.0

0.2

0.4

0.6

0.8

1.0 CiteSeer
pg : 20%; pw : 70%
pg : 20%; pw : 90%
pg : 40%; pw : 70%
pg : 40%; pw : 90%
pg : 60%; pw : 70%
pg : 60%; pw : 90%
pg : 80%; pw : 70%
pg : 80%; pw : 90%

threshold = 0.1

threshold = 0.1

N
om

ar
liz

ed
D

is
ta

nc
e

(d
g

+
d w

)

(b) Distance trajectory

Figure 4: (a) Retraining accuracy vs. epoch numbers at which both the subgraphs and subnetworks (i.e., joint-EB tickets) are
drawn, where pg indicates the graph pruning ratio and pw denotes the network pruning ratio, and (b) the distance’s evolution
along the training trajectories under different graph and network pruning ratio pairs.

implies the possibility of “over-cooking” as in the case of
DNNs discussed in (You et al. 2020). All results in this set of
experiments consistently validate the existence of joint-EB
tickets and the effectiveness of our joint-EB ticket detector.

Proposed GEBT: Efficient Training + Inference
GEBT via GEB Tickets. Fig. 5 (b) illustrates the overall
pipeline of the proposed GEBT via drawing GEB tickets.
Specifically, GEBT via drawing GEB tickets involves three
steps: pretrain GCNs on the full graphs, train and sparsify
the graph for identifying GEB tickets, and then retrain the
GCN networks on the GEB tickets. The GEB ticket de-
tection scheme is described in Algorithm 1. Specifically,
we use a magnitude-based pruning method (Han, Mao, and
Dally 2015) to derive the graph mask (i.e., m) for calculat-
ing the graph distance between subgraphs from consecutive
epochs and then store them into a first-in-first-out (FIFO)
queue with a length of l = 3; The GEBT training will stop
when the maximum graph distance is smaller than a speci-
fied threshold η which is set to 0.1 in all our experiments,
and return the GEB tickets (i.e., Ap) to be retrained.

GEBT via joint-EB Tickets. Fig. 5 (c) shows the over-
all pipeline of the proposed GEBT technique via drawing
joint-EB tickets. While SOTA efficient GCN training meth-
ods consist of three steps: (1) fully pretrain the GCN net-
works on the full graphs, (2) train and prune the graphs based
on pretrained GCNs, and (3) retrain the GCN networks on
pruned graph from scratch. Accordingly, here GEBT via
drawing joint-EB tickets only has two steps, it first fol-
lows the co-sparsification framework as described in pre-
vious sections to prune and derive the GCN subgraph and
subnetwork pairs, and then retrain the subnetwork on the
drawn subgraph to restore accuracies. The joint-EB tickets
detection scheme is described in Algorithm 2, where a FIFO
queue is adopted for recording both the distance of sub-

graphs dg and subnetworks dw between consecutive epochs.
GEBT training will stop when dg+dw is smaller than a pre-
defined threshold η = 0.1, and return the detected joint-EB
tickets (i.e., Ap and Wp) for further retraining. Note that the
initialization for retraining inherits from joint-EB tickets.

Experiment Results
Experiment Setting
Models and Datasets. We evaluate the proposed methods
over five representative GCN algorithms, i.e., GCN (Kipf
and Welling 2017), GAT (Veličković et al. 2018), GIN (Xu
et al. 2019), GraphSAGE (i.e., SAGE) (Hamilton, Ying, and
Leskovec 2017), and 7/14/28-layer deep ResGCNs (Li et al.
2020a), on three citation graph datasets, i.e., Cora, CiteSeer,
and Pubmed (Sen et al. 2008), two inductive datasets, i.e.,
PPI and Reddit (Hamilton, Ying, and Leskovec 2017), and
two large-scale graph datasets from Open Graph Benchmark
(OGB) (Hu et al. 2020), i.e., Ogbn-ArXiv for node classifi-
cation and Ogbl-Collab for link prediction. The statistics of
these seven datasets are summarized in Tab. 1.

Training Settings. We follow (Kipf and Welling 2017) to
train all the chosen two-layer GCN models on the three cita-
tion graph datasets and two inductive graph datasets, and fol-

Dataset Nodes Edges Features Metric
Cora 2,708 5,429 1,433 Accuracy
Citeseer 3,312 4,732 3,703 Accuracy
Pubmed 19,717 44,338 500 Accuracy
PPI 56,944 818,716 50 F1 Score
Ogbn-ArXiv 169,343 1,166,243 128 Accuracy
Ogbl-Collab 235,868 1,285,465 128 Hits@50
Reddit 232,965 114,615,892 602 F1 Score

Table 1: The statistics of the adopted graph datasets.

8914

Figure 5: An overview of the existing efficient GCN training pipeline and our GEBT training schemes via drawing GEB tickets
and joint-EB tickets (red circle denotes the training process).

Algorithm 1: GEB Tickets Identification
Input: Graph G = {V,E,A,X}, graph pruning

ratio pg , pretrained GCN weights W , and a
FIFO queqe Q with lenght l

Output: The pruned adjacency matrix Ap

while t (epoch) < tmax do
GCN forward based on Eq. (1)
Update A based on the LGraph in Eq. (3)
Derive graph mask mt based on A and ratio pg
Calculate the graph distance dg between mt and
mt−1 and add to Q

if Max(Q) < η then
tEB = t
Return Ap = mt ⊙A

end
end

low (Li et al. 2020a) to train ResGCNs on OGB graphs. The
detailed training settings are elaborated in the Appendix.

Baselines and Evaluation Metrics. We evaluate the ef-
fectiveness of the proposed GEBT’s improved training and
inference efficiency in terms of the node classification ac-
curacy (or F1 Score, Hits@50), inference FLOPs, and total
training FLOPs, as compared to other graph sparsifiers, i.e.,
random pruning and SGCN (Li et al. 2020b), and ten stan-
dard SOTA GCN algorithms using unpruned graphs.

GEBT over SOTA Sparsifiers
We compare the proposed GEBT with existing SOTA GCN
sparsification pipelines (Li et al. 2020b) on the three citation
graphs to evaluate the effectiveness of GEBT. Fig. 6 shows
that GEBT consistently outperforms all competitors in terms
of measured accuracies and computational costs (i.e., train-
ing and inference FLOPs) trade-offs. Specifically, GEBT via
GEB tickets achieves 24.7%∼32.1% training FLOPs reduc-
tion while offering comparable accuracies (↓1.4%∼↑4.9%)
across a wide range of graph pruning ratios, as compared
to SGCN. Furthermore, GEBT via joint-EB tickets even ag-

Algorithm 2: Joint-EB Tickets Identification
Input: Graph G = {V,E,A,X}, graph and weight

pruning ratio pg and pw, and a FIFO queqe Q
with lenght l

Output: The pruned adjacency matrix Ap and the
pruned GCN weights Wp

Initialize the GCN weights W
while t (epoch) < tmax do

GCN forward based on Eq. (1)
Update W based on the LGCN in Eq. (2)
Update A based on the LGraph in Eq. (3)
Derive graph mask mt and network mask nt

based on A, W and pruning ratio pg , pw
Calculate the distance dg between mt and mt−1,
dw between nt and nt−1, and add dg + dw to Q

if Max(Q) < η then
tEB = t
Return Ap = mt ⊙A; Wp = nt ⊙W

end
end

Methods Accuracy (%) Inference FLOPs (M)
Cora C.S. P.B. Cora C.S. P.B.

GCN 80.9 69.4 79.0 77.95 231.6 203.1
SAGE 82.5 71.0 78.9 6239 19654 15868
GAT 82.1 72.1 79.0 623.6 1853 1624
GIN 81.6 70.9 79.1 77.95 231.6 203.1
GEBT (GCN) 81.1 70.5 78.5 24.9 51.2 55.8
GEBT (SAGE) 82.6 70.7 78.0 624 1965 4760
GEBT (GAT) 82.2 74.1 79.8 149 382 446
GEBT (GIN) 82.4 71.4 79.7 20.2 90.5 55.8
Overall Improv. ↓0.9 ∼ ↑2.0 ↑2.6× ∼ ↑10.0×

Table 2: GEBT vs. SOTA GCN methods on citation graphs,
where ↑ and ↓ denote the improvement over original models.

gressively reaches 80.2%∼85.6% and 84.6%∼87.5% reduc-
tion in training FLOPs and inference FLOPs, respectively,
over SGCN when pruning the GCN networks up to 90%
sparsity, meanwhile leading to a comparable accuracy range

8915

10 20 30 40 50 60 70
Inference FLOPs (M)

45

50

55

60

65

70

75

80

85
Cora

SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

50 100 150 200
Inference FLOPs (M)

55

57

60

62

65

67

70

72
CiteSeer

SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

25 50 75 100 125 150 175 200
Inference FLOPs (M)

70

72

74

76

78

80
Pubmed

SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

10 20 30 40 50 60 70
Training FLOPs (G)

45

50

55

60

65

70

75

80

85

Random
SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

25 50 75 100 125 150 175 200
Training FLOPs (G)

52

55

57

60

62

65

67

70

72

Random
SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

40 60 80 100 120 140 160 180
Training FLOPs (G)

68

70

72

74

76

78

80

Random
SGCN
GEBT (GEB)
GEBT (JointEB; pw = 60%)
GEBT (JointEB; pw = 90%)

R
et

ra
in

in
g

ac
cu

ra
cy

 (
%

)

Figure 6: Evaluating the retraining accuracy, training and inference FLOPs of the proposed GEBT over SOTA graph sparsifi-
cation methods (Random pruning (Frankle and Carbin 2019) and SGCN (Li et al. 2020b)), under different graph and network
sparsity pairs. Note that each method has a series of points for representing different graph sparsities ranging from 10% to 90%.

Methods
PPI (56K nodes and 818K edges)
F1

Scores (%)
Infer.

FLOPs (G)
Train.

FLOPs (T)
GAT 98.2 3.15 18.9
ResGCN 98.5 47.85 287.1
ClusterGCN 99.3 35.0 210.0
SAGE 61.2 155.8 934.8
VRGCN 97.8 76.75 460.5
GraphSAINT 98.1 35.0 210.0
L2-GCN 96.8 35.0 210.0
N-GCN 65.0 30.42 182.5
GEBT (GAT) 98.8 1.84 11.2
GEBT (ResGCN) 98.6 24.15 147.8
GEBT (ClusterGCN) 99.2 19.31 118.2
Overall Improv. ↓0.1∼↑38 ↑1.7∼↑84× ↑1.7∼↑ 83×

Table 3: GEBT vs. SOTA efficient GCN methods on PPI.

(↓1.3%∼↑1.4%). This set of experiments verify (1) the ef-
ficiency benefits of the GEBT framework and (2) the high-
quality of the drawn GEB tickets and joint-EB tickets.

GEBT over SOTA GCNs
To evaluate the benefits of GEBT, we first compare the per-
formance of GEBT over four SOTA GCN algorithms on
three citation graphs. As shown in Tab. 2, GEBT consistently
outperforms all the baselines in terms of efficiency-accuracy
trade-offs. Specifically, GEBT achieves 2.6× ∼ 10× infer-
ence FLOPs reduction, while offering a comparable accu-
racy (↓0.9% ∼ ↑2.0%), as compared to SOTA GCN algo-
rithms. We further evaluate GEBT with eight SOTA methods
on two large datasets, PPI and Reddit, and show the com-
parisons in Tables 3 and 4, respectively, where (↑) and (↓)
denote improvement over the original models, and “Overall
Improv.” denotes the best improvement over all SOTA base-
lines. GEBT again consistently achieves the best efficiency-
accuracy trade-offs, e.g., reducing inference FLOPs (up to

Methods
Reddit (232K nodes and 11M edges)

F1
Scores (%)

Infer.
FLOPs (G)

Train.
FLOPs (T)

GCN 95.6 52.3 470.9
SAGE 95.4 2396.7 21570.7
FastGCN 93.7 958.7 8628.3
VRGCN 96.3 956.6 8609.7
ClusterGCN 96.6 226.8 2041.1
GraphSAINT 96.6 226.8 2041.1
GTTF (SAGE) 95.9 2396.7 21570.7
L2-GCN 94.0 226.8 2041.1
GEBT (GCN) 95.8 29.3 266.9
GEBT (SAGE) 97.1 1198.4 10929.1
Overall Improv. ↑0.5∼↑3.4 ↑1.8∼↑81.8× ↑1.7∼↑80.8×

Table 4: GEBT vs. SOTA efficient GCN methods on Reddit.

84.1%) and training FLOPs (up to 83.5%) under compara-
ble or even higher F1-micro scores (↓0.1% ∼ ↑38%).

Conclusion
GCNs have achieved SOTA performance on graphs. How-
ever, the notorious challenge of GCN training and infer-
ence limits their application to large real-world graphs. To
this end, we advocate graph-network co-optimization and
explore the possibility of drawing early-bird tickets when
sparsifying GCN graphs. Specifically, we for the first time
discover the existence of GEB tickets that emerge at the
very early stage when sparsifying GCN graphs, and pro-
pose a detector to automatically identify their emergence.
Furthermore, we develop a generic efficient GCN training
framework dubbed GEBT that can significantly boost the
efficiency of GCN training and inference by enabling co-
sparsification and drawing joint-EB of GCNs. Experiments
on various GCN models and datasets consistently validate
our GEB finding and the effectiveness of our GEBT.

8916

Acknowledgements
We would like to acknowledge the funding support from the
NSF EPCN program (Award ID: 1934767) for this project.

References
Canziani, A.; Paszke, A.; and Culurciello, E. 2016. An anal-
ysis of deep neural network models for practical applica-
tions. arXiv preprint arXiv:1605.07678.
Chen, T.; Sui, Y.; Chen, X.; Zhang, A.; and Wang, Z. 2021a.
A unified lottery ticket hypothesis for graph neural net-
works. In International Conference on Machine Learning,
1695–1706. PMLR.
Chen, X.; Cheng, Y.; Wang, S.; Gan, Z.; Wang, Z.; and Liu,
J. 2021b. EarlyBERT: Efficient BERT Training via Early-
bird Lottery Tickets.
Frankle, J.; and Carbin, M. 2019. The Lottery Ticket Hy-
pothesis: Finding Sparse, Trainable Neural Networks. In In-
ternational Conference on Learning Representations.
Gao, Y.; Yang, H.; Zhang, P.; Zhou, C.; and Hu, Y. 2019.
Graphnas: Graph neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1904.09981.
Geng, T.; Li, A.; Shi, R.; Wu, C.; Wang, T.; Li, Y.; Haghi,
P.; Tumeo, A.; Che, S.; Reinhardt, S.; et al. 2020. AWB-
GCN: A graph convolutional network accelerator with run-
time workload rebalancing. In 53rd IEEE/ACM Int. Symp.
Microarchit.(MICRO), 1–15.
Geng, T.; Wu, C.; Zhang, Y.; Tan, C.; Xie, C.; You, H.; Her-
bordt, M.; Lin, Y.; and Li, A. 2021. I-GCN: A Graph Con-
volutional Network Accelerator with Runtime Locality En-
hancement through Islandization, 1051–1063. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450385572.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.
Han, S.; Mao, H.; and Dally, W. J. 2015. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149.
Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687.
Kersting, K.; Kriege, N. M.; Morris, C.; Mutzel, P.; and Neu-
mann, M. 2016. Benchmark Data Sets for Graph Kernels.
http://graphkernels.cs.tu-dortmund.de.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In Interna-
tional Conference on Learning Representations (ICLR).
Li, G.; Xiong, C.; Thabet, A.; and Ghanem, B. 2020a. Deep-
ergcn: All you need to train deeper gcns. arXiv preprint
arXiv:2006.07739.

Li, J.; Zhang, T.; Tian, H.; Jin, S.; Fardad, M.; and Zafarani,
R. 2020b. SGCN: A Graph Sparsifier Based on Graph Con-
volutional Networks. In Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, 275–287. Springer.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018.
Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270.
Mukund Kalibhat, N.; Balaji, Y.; and Feizi, S. 2020. Win-
ning Lottery Tickets in Deep Generative Models. arXiv e-
prints, arXiv–2010.
Peng, W.; Hong, X.; Chen, H.; and Zhao, G. 2020. Learning
Graph Convolutional Network for Skeleton-Based Human
Action Recognition by Neural Searching. In AAAI, 2669–
2676.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine, 29(3): 93–93.
Simonovsky, M.; and Komodakis, N. 2017. Dynamic
edge-conditioned filters in convolutional neural networks on
graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3693–3702.
Tailor, S. A.; Fernandez-Marques, J.; and Lane, N. D.
2020. Degree-Quant: Quantization-Aware Training for
Graph Neural Networks. arXiv preprint arXiv:2008.05000.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
International Conference on Learning Representations.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learn-
ing Systems.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In International Con-
ference on Learning Representations.
Yan, M.; Deng, L.; Hu, X.; Liang, L.; Feng, Y.; Ye, X.;
Zhang, Z.; Fan, D.; and Xie, Y. 2020. Hygcn: A gcn ac-
celerator with hybrid architecture. In 2020 IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), 15–29. IEEE.
You, H.; Li, C.; Xu, P.; Fu, Y.; Wang, Y.; Chen, X.; Baraniuk,
R. G.; Wang, Z.; and Lin, Y. 2020. Drawing Early-Bird Tick-
ets: Toward More Efficient Training of Deep Networks. In
International Conference on Learning Representations.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
end-to-end deep learning architecture for graph classifica-
tion. In Thirty-Second AAAI Conference on Artificial Intel-
ligence.
Zhang, Y.; You, H.; Fu, Y.; Geng, T.; Li, A.; and Lin, Y.
2021. G-CoS: GNN-Accelerator Co-Search Towards Both
Better Accuracy and Efficiency. CoRR, abs/2109.08983.
Zheng, C.; Zong, B.; Cheng, W.; Song, D.; Ni, J.; Yu, W.;
Chen, H.; and Wang, W. 2020. Robust Graph Represen-
tation Learning via Neural Sparsification. In Proceedings

8917

of the 37th International Conference on Machine Learning,
volume 119, 11458–11468. PMLR.

8918

