
BATUDE: Budget-Aware Neural Network Compression Based on Tucker
Decomposition

Miao Yin1*, Huy Phan1, Xiao Zang1, Siyu Liao2†, Bo Yuan1

1Department of Electrical and Computer Engineering, Rutgers University,
2Amazon

{miao.yin, huy.phan, xiao.zang}@rutgers.edu, liasiyu@amazon.com, bo.yuan@soe.rutgers.edu

Abstract

Model compression is very important for the efficient deploy-
ment of deep neural network (DNN) models on resource-
constrained devices. Among various model compression ap-
proaches, high-order tensor decomposition is particularly at-
tractive and useful because the decomposed model is very
small and fully structured. For this category of approaches,
tensor ranks are the most important hyper-parameters that
directly determine the architecture and task performance of
the compressed DNN models. However, as an NP-hard prob-
lem, selecting optimal tensor ranks under the desired budget
is very challenging and the state-of-the-art studies suffer from
unsatisfied compression performance and timing-consuming
search procedures. To systematically address this fundamen-
tal problem, in this paper we propose BATUDE, a Budget-
Aware TUcker DEcomposition-based compression approach
that can efficiently calculate optimal tensor ranks via one-
shot training. By integrating the rank selecting procedure to
the DNN training process with a specified compression bud-
get, the tensor ranks of the DNN models are learned from
the data and thereby bringing very significant improvement
on both compression ratio and classification accuracy for the
compressed models. The experimental results on ImageNet
dataset show that our method enjoys 0.33% top-5 higher ac-
curacy with 2.52× less computational cost as compared to
the uncompressed ResNet-18 model. For ResNet-50, the pro-
posed approach enables 0.37% and 0.55% top-5 accuracy in-
crease with 2.97× and 2.04× computational cost reduction,
respectively, over the uncompressed model.

Introduction
Deep neural networks (DNNs) have been widely used in
many applications, such as image classification (He et al.
2016), objective detection (Girshick 2015) and image cap-
tion (Xu et al. 2015). Despite the current unprecedented suc-
cess, deploying DNNs on resource-constrained devices is
challenging – DNNs have huge storage and computational
demands to guarantee performance. To address this prob-
lem, many techniques like pruning (Han, Mao, and Dally
2015) and quantization (Han et al. 2015) have been proposed
to compress and accelerate DNNs. Among these methods,
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Figure 1: Comparison with existing tensor rank selection
methods, where the tensor ranks are determined via a com-
plicated search process with many times of full training.

tensor decomposition-based compression (Kim et al. 2016;
Novikov et al. 2015; Garipov et al. 2016; Yang, Krompass,
and Tresp 2017; Wang et al. 2018; Pan et al. 2019) is recently
getting increasing attentions. By decomposing large weight
matrices and tensors of DNNs to multiple small tensor cores,
tensor decomposition can bring very high compression ratio
with low performance degradation. Such unique compres-
sion strategy has another promising benefit – the decom-
posed model is very hardware friendly since the kernel com-
putation is just a series of small and dense matrix multiplica-
tions, which are very attractive for various computing plat-
forms, such as ASIC/FPGA and mobile devices (Deng et al.
2019a,b; Kim et al. 2016).

Tensor Rank Selection: Importance & Challenges. To
obtain a high-performance compressed DNN model under
desired budget (e.g. model size or computational cost) via
tensor decomposition approach, proper tensor rank selection
for the decomposed tensor is particularly important and crit-
ical. To be specific, as the hyper-parameter that reflects the
linear correlations in each dimension, tensor ranks directly
define the architecture and overall size of the decomposed
DNN model. Consequently, selecting the proper tensor ranks
significantly controls and impacts DNN compression perfor-
mance, in terms of storage and computational complexity, as
well as DNN task performance, such as classification accu-
racy and prediction quality.

Despite its criticality and fundamentality, selecting the
optimal rank is very challenging. Different from the rank se-
lection in matrix decomposition, where the rank is a scalar,
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the rank selection in tensor decomposition needs to identify
the proper vector-format tensor ranks. As indicated in (Hillar
and Lim 2013), exact determination of tensor ranks for lin-
ear tensor problem is theoretically NP-hard. Even worse,
since a modern DNN model typically consists of tens or even
hundreds of layers, the overall search space for determining
the rank for the decomposed DNN model is extremely huge.

Existing Work and Limitations. To date, though tensor
decomposition has emerged as important DNN compres-
sion technique, efficient tensor rank selection has not been
systematically investigated. In most tensor decomposition-
based DNN compression studies (Garipov et al. 2016; Yang,
Krompass, and Tresp 2017; Wang et al. 2018; Pan et al.
2019), the tensor ranks for different layers are just set to
equal. Such heuristic searching requires tremendous human
efforts and extensive engineering – multiple attempts and
fine-tuning have to be spent to find a reasonable rank setting.
More importantly, considering different layers have differ-
ent redundancy and sensitivity for compression, their desired
tensor ranks should not be forced to be the same. Conse-
quently, such equal rank setting strategy severely hinders the
tensor decomposed DNN models to achieve the best com-
pression ratio and accuracy.

Very recently, (Li et al. 2020) and (Gusak et al. 2019) pro-
pose to use genetic algorithm and Bayesian approach to find
the proper tensor rank configuration, respectively. Compared
with the conventional equal setting scheme, these two strate-
gies show better compression ratio and classification accu-
racy. However these state of the arts still suffer several in-
herent limitations. For the genetic algorithm-based strategy,
inspired by the neural architecture search, it performs time-
consuming ”search space sampling → evolutionary phase
→ rank optimization → progressive search” in an iterative
way, and hence the overall searching procedure is still very
expensive. For the Bayesian approach-based strategy, it is
not a budget-aware solution: the tensor ranks cannot be ad-
justed automatically according to the target compression ra-
tio. In other words, the model complexity determined by the
selected ranks may still not satisfy the target resource bud-
get. Another drawback of the Bayesian approach-based rank
selection is that it is a layer-wise scheme – the optimal rank
selection for each individual layer may not be globally opti-
mal for the entire compressed DNN model.

Technical Preview and Contributions. To systemat-
ically overcome the challenge of tensor rank selection
within a desired budget and obtain high-performance com-
pressed DNN models, in this paper we propose BATUDE, a
Budget-Aware TUcker DEcomposition-based compression
approach, to automatically select the rank configurations for
the decomposed DNN models, as illustrated in Fig. 1. Our
key idea is to integrate the rank selection procedure into
an one-shot training procedure, and let the model automati-
cally learn the suitable rank setting from the data. To be spe-
cific, we first relax the original complicated NP-hard rank
selection problem to a tensor nuclear norm-regularized op-
timization problem with the constraint of model size for
DNN training. After such reformulation, during the train-
ing procedure we then develop a budget constrained alter-
nating direction Lagrangian (BC-ADL) algorithm to solve

this optimization problem via independently updating split-
ted variables. Upon the end of this one-shot training with
iterative optimization, the suitable tensor ranks are auto-
matically learned, and thereby bringing highly-compressed
highly-accurate tensor decomposed DNN models with tar-
get compression ratio. To sum up, the contributions of this
paper are summarized as follows:
• We propose an automatic tensor decomposition-based

compression method, which provides high-performance
compression service in a user-friendly way. Given the
original model and the overall target compression bud-
get, it can automatically select the proper tensor ranks for
each layer, and output the compressed DNN model after
a single run of training. Meanwhile, the high accuracy of
the original model is preserved, and even increased after
our compression.

• We propose to mathematically reformulate the original
NP-hard rank selection problem to a tensor nuclear norm-
regularized optimization problem with global rank bud-
get constraints, thereby enabling automatic global opti-
mal rank learning during one-shot training. To achieve
that, we propose BC-ADL algorithm for solving the re-
formulated optimization problem via alternately updat-
ing separate variables in an iterative way. Meanwhile, the
tensor ranks are adaptively learned and imposed on the
DNN model.

• We conduct experiments to evaluate the performance
of the proposed framework on multiple datasets. On
CIFAR-100 dataset, with 2.8× and 2.6× compression ra-
tio, our BATUDE brings even 1.27% and 0.85% accuracy
increase over the original uncompressed ResNet-20 and
ResNet-32 models, respectively. On ImageNet dataset,
our approach brings 0.33% top-5 accuracy increase with
2.52× computational cost reduction as compared to the
original uncompressed ResNet-18 model. For ResNet-50
our proposed approach enables 0.37% and 0.55% top-
5 accuracy increase with 2.97× and 2.04× computa-
tional cost reduction, respectively, over the original un-
compressed model.

Related Work
Model Compression
Pruning. Pruning, as the most popular model compression
approach, realizes model size reduction via setting parts of
the weight as zeros. According to different sparsity pat-
tern after pruning, pruning approach can be categorized as
unstructured pruning and structured pruning. Unstructured
pruning (Han, Mao, and Dally 2015; Zhang et al. 2018) can
provide high compression ratio and accuracy, but the inher-
ent unstructured sparsity pattern prevents this approach from
delivering its theoretical speedup on the practical hardware
platforms. Structured pruning, such as filter (Luo, Wu, and
Lin 2017; He et al. 2019; Lin et al. 2020; Sui et al. 2021) and
channel (He, Zhang, and Sun 2017; Zhuang et al. 2018; Peng
et al. 2019) pruning are hardware-friendly solutions. How-
ever, the purposely imposed structure pattern, on the other
hand, limits the performance of pruned models in terms of
compression ratio and accuracy.
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Quantization. Quantization, as a compression approach
that uses limited number of bits to represent weight and/or
activation (Han, Mao, and Dally 2015; Rastegari et al. 2016;
Jacob et al. 2018; Gong et al. 2019), is widely adopted in
the DNN deployment on practical devices, especially for
specialized DNN chips (Han et al. 2016; Chen, Emer, and
Sze 2016). The number precision used in the quantization
scheme typically highly depends on the resource budget
and accuracy requirement. In (Rastegari et al. 2016; Cour-
bariaux, Bengio, and David 2015), 1-bit weight, as a very
aggressive quantization scheme, is proposed to realize very
low storage and computational costs.

Tensor Decomposition. In tensor theory tensor decom-
position is used for compact representation of large-scale
tensor-format data objective. Starting from (Lebedev et al.
2015; Kim et al. 2016), many existing tensor decomposi-
tion approaches have been introduced to compresses DNN
models by factorizing the original weight matrices/tensors
into small core tensors. In (Kim et al. 2016), Tucker de-
composition (Tucker 1966) is adopted for compressing and
accelerating convolutional neural networks (CNNs). CP de-
composition (Bro 1997), as a special format of Tucker de-
composition, is also used for CNN compression (Lebedev
et al. 2015). In (Yang, Krompass, and Tresp 2017; Pan et al.
2019; Yin et al. 2021a,b), tensor train (TT), tensor ring (TR)
and hierarchical Tucker (HT) decomposition are used to ob-
tain compact recurrent neural network (RNN) models for
video recognition, achieving extremely high parameters re-
duction. Most recently, (Phan et al. 2020) proposes a low-
rank Tucker-CP decomposition, which can stabilize the ap-
proximation of weight tensors of convolutional layers, to
achieve high-accuracy CNN compression.

Tensor Rank Selection
To obtain high-performance tensor decomposition-based
DNN models, proper selection of tensor ranks are very crit-
ical and important since tensor ranks directly determine the
model size and architecture. Due to the inherent complex-
ity of tensor rank selection procedure, most of the existing
tensor decomposition works (Novikov et al. 2015; Garipov
et al. 2016; Wang et al. 2018; Yang, Krompass, and Tresp
2017; Pan et al. 2019) adopt manual searching – using mul-
tiple attempts and fine-tuning to find a tensor rank setting.
Meanwhile, in order to reduce the searching complexity, the
identified tensor ranks are shared by different layers. Evi-
dently, such heuristic strategy does not only require exten-
sive engineering, but also causes limited compression/accu-
racy performance – different layers should not be forced to
use the same tensor rank setting.

Some recent studies have begun to investigate the ef-
ficient tensor rank determination. In (Li et al. 2020),
a genetic algorithm-based searching strategy is proposed
to progressively search the tensor ranks for the TR
decomposition-based DNN models. Inspired by neural ar-
chitecture search, this approach performs iterative searching
on the sampled model space via some crafted rules. Con-
sequently, the overall searching procedure is still a very
time-consuming process. (Gusak et al. 2019) proposes a
multi-stage Tucker decomposition-based compression using

Bayesian approach-based rank selection. The inherent char-
acteristics of Bayesian approach makes this type of rank
determination require additional auxiliary hyper-parameters
during the searching. Meanwhile, this strategy is not budget-
aware solution: the model size determined by the selected
tensor ranks may not satisfy the target compression require-
ment. Besides, the layer-wise rank selection scheme adopted
in this approach may not bring the globally optimal rank de-
termination for the entire compressed model.

Preliminaries
Notation. We use boldface calligraphic script letters to high-
dimensional denote tensor, e.g. A. A matrix and a vector are
represented by boldface capital letters and boldface lower-
case letters, respectively, e.g. A and a. Also, non-boldface
letters with indices A(i1, · · · , id), A(i, j) and a(i) denote
the entry of d-dimensional tensor A, matrix A and vector
a, respectively.
τ -Shrinkage. LetA = UΣV T be the singular value de-

composition (SVD) of matrix A. We define the shrinkage
operation as Sτ (A) = UΣτV

T , where

Στ (i) =

{
σi if σi > τ,

0 otherwise,

and σi = Σ(i) is the i-th largest singular value.
Mode-k Matricization. Given a tensor A ∈ Rn1×···×nd ,

the mode-k matricization (also called unfolding) of A is
denoted as A(k) ∈ Rnk×(n1···nk−1nk+1···nd). The entry
(i1, · · · , id) of the given tensor is mapped to the entry (ik, j)
of the unfolded matrix, i.e. A(i1, · · · , id) = A(k)(ik, j),
where

j = 1 +

d∑
p=1,p 6=k

(ip − 1)Jp with Jp =

p−1∏
q=1,q 6=k

nq.

Based on the matricization, we define the following two op-
erations:

unfoldk(A) = A(k),

foldk(A(k)) = A.
Tucker-Format Convolution. Considering a normal con-

volutional layer with kernel tensor W ∈ RS×C×K×K , the
input tensor X ∈ RW×H×C is transformed into the output
tensor Y ∈ RW ′×H′×S by convolving with the kernel:

Y(w′, h′, s) =
K∑
i=1

K∑
j=1

C∑
c=1

W(s, c, i, j)X (w, h, c)

with w = w′ + i− 1 and h = h′ + j − 1,

(1)

where W ′ = W −K + 1 and H ′ = H −K + 1.
In Tucker-format convolutional layer, in order to retain the

spatial information, the orders associated to the kernel size
are not decomposed. This decomposing approach is called
Tucker-2 (Tucker 1966) decomposition, by which the kernel
tensor can be represented as

W(s, c, i, j) =

R1∑
r1=1

R2∑
r2=1

C(r1, r2, i, j)B1(r1, s)B2(r2, c),

(2)
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where C ∈ RR1×R2×K×K , B1 ∈ RR1×S and B2 ∈
RR2×C .

With the Tucker-2 format, the original full convolution
layer is decomposed into a sequence of small convolutions,
thus the output tensor is obtained by:

T1(w, h, r2) =
C∑
c=1

B2(r2, c)X (w, h, c), (3)

T2(w′, h′, r1) =
K∑
i=1

K∑
j=1

R2∑
r2=1

C(r1, r2, i, j)T1(w, h, r2),

(4)

Y(w′, h′, s) =

R1∑
r1=1

B1(r1, s)T2(w′, h′, r1), (5)

where T 1 ∈ RW×H×R2 and T 2 ∈ RW ′×H′×R1 . More de-
tails can be referred to (Kim et al. 2016).

Tucker Rank. For a tucker-format convolutional layer,
only the first and second dimension (i.e. the output and in-
put channel) are decomposed. Correspondingly, according
to (Gandy, Recht, and Yamada 2011), the Tucker rank of the
4-dimensional convolutional kernel W is the tuple of the
ranks of mode-1 and mode-2 matricizations:

tk-rank(W) = [R1, R2] , (6)

where R1 = rank(W(1)) and R2 = rank(W(2)).

Problem Analysis & Formulation
Without loss of generality, we aim to compress an L-layer
convolutional neural network (CNN) using Tucker decom-
position1. To simplify the notation, we use W without sub-
script to represent the weight of all layers ({W i}Li=1, W i is
a 4-dimensional kernel tensor) and omit the bias parameters.
The loss function is denoted by `(W) (e.g. cross-entropy
loss for classification task).

With such notation, our goal is to minimize the loss func-
tion and the Tucker rank of each layer simultaneously, i.e.
minW `(W) and minW tk-rank(W), with budget con-
straints to satisfy the target compression ratio. Obviously,
decreasing the tensor ranks would inevitably lower the ca-
pacity of the CNN model, thus making it more difficult for
the loss function to reach the optimal point. Therefore, the
best solution for this problem is to find a sweet point where
the loss is in the acceptable range and meanwhile the tensor
ranks also satisfy the compression demand. Unfortunately,
since exact determination of tensor ranks for linear tensor
problem is NP-hard (Hillar and Lim 2013), it is impossible
to obtain the optimal tensor ranks via direct searching ap-
proaches.

To overcome this challenge, based on the fact that the nu-
clear norm or trace norm ‖ · ‖∗ is the tightest surrogate for
rank(·) (Cai, Candès, and Shen 2010; Liu et al. 2012), we

1To compress other types of DNNs, e.g., recurrent neural net-
work (RNN), or use other tensor decomposition, e.g., tensor train
or tensor ring, similar solution can also be derived under the opti-
mization framework proposed in this paper.

relax the second objective and approximately re-formulate
the original problem as follows:

min
W

`(W) + ‖W‖∗,

s.t. P(tk-rank(W)) ≤ β,
(7)

where ‖W‖∗ is the tensor nuclear norm of W , P(·) returns
the overall model size with the current ranks, and β, as the
”budget”, is the desired model size after compression.

Recall the Tucker-format convolution, where only the first
mode and the second mode are decomposed to retain the
spatial information, and the definition of Tucker rank Eq.
(6). We define the Tucker-2 nuclear norm of the kernel W
is the sum of the nuclear norms of the mode-1 and mode-2
matricization:

‖W‖∗ = ‖W(1)‖∗ + ‖W(2)‖∗. (8)

Hence, the formulated optimization problem (7) can be
rewritten as

min
W

`(W) + ‖W(1)‖∗ + ‖W(2)‖∗,

s.t. P(R1, R2) ≤ β.
(9)

In the next section, we introduce how to efficiently solve
this optimization problem via BC-ADL and automatically
learn the tensor ranks.

Budget-Aware Compression: Learning Tucker
Ranks via One-Shot Training

As analyzed in (Liu et al. 2012), minimizing the objective
that contains two entries-shared non-smooth nuclear norm
terms (e.g. W(1) and W(2)), as the problem format that Eq.
(9) exactly exhibits, is very challenging. In this section, we
derive a budget constrained augmented direction Lagrangian
(BC-ADL) algorithm to efficiently solve the optimization
problem. BC-ADL is an application of Douglas-Rachford
splitting algorithm (Gabay and Mercier 1976; Eckstein and
Bertsekas 1992), which can take advantage of the minimiza-
tion of f(x) + g(x). To that end, we first attribute separate
variables to mode-1 and mode-2 matricizations of W , i.e.
introduce auxiliary variables Z1 and Z2 whose shapes are
identical to W such that Z1(1) = W(1) and Z2(2) = W(2).
Then, with the introduced variables, we rephrase the opti-
mization problem (9) as

min
W,Z1,Z2

`(W) + ‖Z1(1)‖∗ + ‖Z2(2)‖∗,

s.t. W = Z1,W = Z2,P(R1, R2) ≤ β.
(10)

Hence, the corresponding augmented Lagrangian with dual
multipliers of (10) can be defined as:

Lλ(W ,Z1,Z2,M1,M2) =

`(W) + ‖Z1(1)‖∗ + ‖Z2(2)‖∗ + 〈W −Z1,M1〉

+〈W −Z2,M2〉+
λ

2
‖W −Z1‖2F +

λ

2
‖W −Z2‖2F ,

(11)
where M1 and M2 are the dual multipliers. Next, we can
optimize the problem by separately updating the original and
auxiliary variables.
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Updating Step for Z1,Z2-Variable
We first describe how to perform minimization of Lλ with
respect to the variables Z1 and Z2. Considering the terms in
Eq. (11) either contain Z1 or Z2 and they are independent
non-negative functions, thus we can minimize each Lλ with
respect to Z1 and Z2 separately. Taking the sub-problem
of Z1 as a detailed example, the matrix form of Z1 along
mode-1 is updated by

Z1
k+1
(1) = argmin

Z1(1)

‖Z1(1)‖∗ + 〈W k
(1) −Z1(1),M1

k
(1)〉

+
λ

2
‖W k

(1) −Z1(1)‖2F
= argmin

Z1(1)

‖Z1(1)‖∗

+
λ

2
‖W k

(1) −Z1(1) +M1
k
(1)/λ‖2F ,

(12)
where k is the iteration step. According to (Ma, Gold-
farb, and Chen 2011), Eq. (12) has the closed-form solution
Sτ1(W k

(1) +M1
k
(1)/λ). Hence, Z1 can be updated by

Zk+1
1 = fold1(Sτ1(W k

(1) +M1
k
(1)/λ)). (13)

For updating Z2, since this procedure is independent from
Z1-update, Z2 can be updated in parallel using the similar
way as follows:

Zk+1
2 = fold2(Sτ2(W k

(2) +M2
k
(2)/λ)). (14)

In such updating steps, the automatic determination of the
Tucker ranks R1 and R2 is performed via the shrinkage op-
eration S(·) in Eq. (13) and (14) with τ1, τ2 for the current
iteration. To be specific, we first compute the singular value
decomposition U1diag(σ1)V T

1 = W k
(1) + M1

k
(1)/λ and

U2diag(σ2)V T
2 = W k

(2) + M2
k
(2)/λ, where the singular

values σ1i, σ2i in σ1,σ2 are sorted in a decreasing order,
respectively.

Then we can obtain τ1 and τ2 by solving the following
simple problem:

max
s1,s2∈{0,1}

〈σ1, s1〉+ 〈σ2, s2〉,

s.t. P(‖s1‖0, ‖s2‖0) ≤ β,
(15)

where s1 and s2 are binary vectors. The lengths of s1 and s2
are identical to σ1 and σ2, respectively, and the number of
non-zero elements in s1 and s2 are equal to R1 and R2, re-
spectively. Once τ1 and τ2 are obtained, R1 and R2 are also
correspondingly determined. This problem can be consid-
ered as a 0-1 programming problem, which can be efficient
solved via greedy algorithm provided by (Kellerer, Pferschy,
and Pisinger 2004) with very low computational complexity.
To be specific, we can select the largest value in σ1 and σ2

and toggle the corresponding zero entry to one in s1 and s2
every time. When P(‖s1‖0, ‖s2‖0) reaches the budget β,
the algorithm terminates. Hence, we can set τ1 and τ2 as the
current selected values in σ1 and σ2. Correspondingly, R1

and R2 can be naturally obtained by
R1 = max{i|σ1i > τ1, i = 1, 2, · · · }, (16)
R2 = max{i|σ2i > τ2, i = 1, 2, · · · }. (17)

Algorithm 1: Budget-Aware Training with BC-ADL

1: Inputs: Weight tensor W , learning rate α, penalty pa-
rameter λ, number of epoch T , target budget β.

2: Output: Optimized weight tensor W , selected rank R1

and R2.
3: Z1 ←W ,Z2 ←W ;
4: M1 ← zeros like(W);
5: M2 ← zeros like(W);
6: while k < T do
7: Obtain τ1 and τ2 by solving Eq. (15);
8: Determine R1 and R2 using Eq. (16) and (17);
9: Update Zk+1

1 using Eq. (13);
10: Update Zk+1

2 using Eq. (14);
11: Update Wk+1 using Eq. (20) with SGD;
12: Mk+1

1 ←Mk
1 + λ(Wk

1 −Zk
1);

13: Mk+1
2 ←Mk

2 + λ(Wk
2 −Zk

2);
14: end while

Upon finding the solution, the singular values that are
smaller than τ1 and τ2 are truncated.

Updating Step forW-Variable
After determining the tensor ranks and updating Z1,Z2-
variable at the current iteration, we then perform update for
W via minimizing Lλ over W . As fixing all variables ex-
cept W , the minimization of Lλ(W) becomes to minimize
a quadratic function:

min
W

`(W) + 〈W −Zk
1 ,M

k
1〉+ 〈W −Zk

2 ,M
k
2〉

+
λ

2
‖W −Zk

1‖2F +
λ

2
‖W −Zk

2‖2F ,
(18)

which is differentiable. Hence, the gradient of Lλ(W) over
W is given by

∂Lλ(W)

∂W =
∂`(W)

∂W +
λ

2
(W −Zk

1 + Mk
1/λ)

+
λ

2
(W −Zk

2 + Mk
2/λ).

(19)

Then, W can be updated by standard stochastic gradient de-
scent (SGD) approach as:

Wk+1 = Wk − α∂Lλ(W)

∂W , (20)

where α is the learning rate for DNN training.
Once W-variable is updated, another round of Z1,Z2-

variable update will be performed based on the latest W-
variable. Such iterative update will continue till the end of
training procedure. After that, the desired tensor decom-
posed weight tensor are well trained and obtained. Mean-
while, the finally selected tensor ranks are automatically de-
termined as the R1 and R2 calculated by Eq. (16) (17) at
the last iteration. To sum up, the overall procedure of the
proposed training procedure with automatic rank selection
is summarized in Algorithm 1.
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Model Compression
Method

Rank
Selection

Top-1 (%) # Param.↓ Top-1 (%) # Param.↓
ResNet-20 ResNet-32

Original (He et al. 2016) - - 91.25 1.0× 92.49 1.0×
Std. Tucker (Kim et al. 2016) Tucker Fixed 87.41 2.6× 87.70 5.1×
PSTR-M (Li et al. 2020) Tensor Ring Genetic Algorithm 88.50 6.8× 90.6 5.8×
PSTR-S (Li et al. 2020) Tensor Ring Genetic Algorithm 90.80 2.5× 91.44 2.7×
BATUDE (Ours) Tucker BC-ADL 89.47 6.8× 91.47 5.8×
BATUDE (Ours) Tucker BC-ADL 91.02 2.6× 92.18 2.8×
Table 1: Comparison with different tensor decomposition-based approaches for ResNet-20 and ResNet-32 on CIFAR-10.

Model Compression
Method

Rank
Selection

Top-1 (%) # Param.↓ Top-1 (%) # Param.↓
ResNet-20 ResNet-32

Original (He et al. 2016) - - 65.4 1.0× 68.10 1.0×
Std. Tucker (Kim et al. 2016) Tucker Fixed 57.53 2.5× 59.03 2.5×
PSTR-M (Li et al. 2020) Tensor Ring Genetic Algorithm 63.62 4.7× 66.77 5.2×
PSTR-S (Li et al. 2020) Tensor Ring Genetic Algorithm 66.13 2.3× 68.05 2.4×
BATUDE (Ours) Tucker BC-ADL 64.91 4.7× 66.96 5.2×
BATUDE (Ours) Tucker BC-ADL 66.67 2.8× 68.95 2.6×
Table 2: Comparison with different tensor decomposition-based approaches for ResNet-20 and ResNet-32 on CIFAR-100.

Experiments
We evaluate the proposed BATUDE for various popular
CNN models on CIFAR-10, CIFAR-100 and ImageNet
datasets.

Settings. Learning rate is set as 0.1 and 0.01 for CIFAR
and ImageNet dataset, respectively. The learning rate is mul-
tiplied by a factor of 0.1 every 30 epochs. Training optimizer
is set as momentum SGD. For other hyper-parameters, batch
size, weight decay and λ are set as 256, 0.0001, and 0.001.
Also, the compressed Tucker-format models are fine-tuned
with learning rate 0.005 and 0.001 on CIFAR and ImageNet
dataset, respectively.

Experimental Results on CIFAR-10
Table 1 shows the evaluation results on CIFAR-10 dataset,
For ResNet-20 model, with the same compression ratio of
2.6×, BATUDE outperforms the standard Tucker method
using the equal rank setting with 3.61% higher accuracy.
Also, compared with the genetic algorithm-based tensor se-
lection scheme (Li et al. 2020), our approach also shows sig-
nificant performance improvement (almost 1% higher accu-
racy) with the same compression ratio of 6.8×.

For ResNet-32, our method is also superior to the state of
the arts. Compared with (Li et al. 2020) the model trained
by our method achieves 0.74% higher accuracy with higher
compression ratio of 2.8×. Also, with the same compression
ratio 5.8×, our approach brings 0.87% higher accuracy.

Experimental Results on CIFAR-100
Table 2 shows the evaluation results on CIFAR-100 dataset.
For ResNet-20, compared with standard Tucker decomposi-
tion with equal setting, our approach brings 9.14% accuracy
improvement with higher compression ratio. Compared with
the state-of-the-art rank selection scheme (Li et al. 2020),

BATUDE brings 0.54% higher accuracy with 0.5× higher
compression ratio. This performance is even 1.27% higher
than the original uncompressed model. When the targeted
compression ratio increases to 4.7×, BATUDE still outper-
forms the state of the art with 1.29% higher accuracy.

For ResNet-32, the proposed BATUDE achieves 68.95%
accuracy with compression ratio 2.6×, which enjoys 9.92%
and 0.85% higher accuracy than the standard Tucker de-
composition and (Li et al. 2020), respectively. Notably,
our model provides 0.85% accuracy improvement compared
with the original uncompressed model. Also, with the same
5.2× compression ratio, our approach brings 66.96% accu-
racy; while (Li et al. 2020) only has 66.77% accuracy.

Experimental Results on ImageNet
We also evaluate our BATUDE on ImageNet dataset for
compression on ResNet-18 and ResNet-50 model. Table 3
compares the performance of our method with the other ten-
sor decomposition approaches as well as other compression
methods, such as pruning and matrix SVD. For ResNet-18, it
is seen that BATUDE achieves 89.04% top-5 accuracy with
3.22× floating-point operations per second (FLOPs) reduc-
tion, while the state-of-the-art tensor decomposition-based
method (Stable EPC (Phan et al. 2020)) has lower accu-
racy (88.93%) than ours with even lower FLOP reduction
(3.09×). Moreover, for our compressed model with 2.52×
FLOPs reduction, BATUDE can even achieve 0.33% top-5
accuracy increase over the original baseline model.

For ResNet-50, BATUDE also shows improved perfor-
mance over the state-of-the-art approaches. With 2.97×
FLOPs reduction, our compressed model achieves 93.24%
top-5 accuracy, which is 0.37% higher than the uncom-
pressed model. With 2.04× FLOPs reduction, BATUDE
brings 0.55% more accuracy over the uncompressed model.
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Model Compression
Method

Budget-
Aware

Top-5 (%) FLOPs↓ Top-5 (%) FLOPs↓
ResNet-18 ResNet-50

Torchvision - - 89.08 1.00× 92.87 1.00×
TRP (Xu et al. 2020) Low-Rank Matrix 7 86.74 2.60× 92.07 1.80×
VCNNP (Zhao et al. 2019) Channel Pruning 7 - - 92.10 1.67×
FPGM (He et al. 2019) Filter Pruning 7 88.53 1.72× 92.63 1.73×
HRank (Lin et al. 2020) Filter Pruning 7 - - 92.33 1.78×
DSA (Ning et al. 2020) Budgeted Pruning 3 88.35 1.72× 92.06 2.00×
Std. Tucker (Kim et al. 2016) Tucker 7 87.53 2.25× 91.12 2.04×
MUSCO (Gusak et al. 2019) Tucker 7 88.78 2.42× - -
Stable EPC (Phan et al. 2020) Tucker-CP 7 88.93 3.09× 92.16 2.64×
BATUDE (Ours) Tucker 3 89.04 3.22× 93.24 2.97×
BATUDE (Ours) Tucker 3 89.41 2.52× 93.42 2.04×

Table 3: Comparison with multiple compression approaches for ResNet-18 and ResNet-50 on ImageNet dataset. (Li et al. 2020)
does not report results on ImageNet.
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Figure 2: The change of (a) training loss and (b) Top-1 test accuracy, (c) Rank variations for two example component convo-
lutional layer during training and (d) number of parameters in the training process for ResNet-18 on ImageNet dataset. The
compression budget is set as 5.058× 106 parameters.

Figure 3: Final rank distribution using BATUDE for com-
pressing ResNet-18 on ImageNet dataset.

Experimental Analysis & Discussion
To obtain deep understanding of the effect of the pro-
posed BATUDE, we also analyze the training procedure for
ResNet-18 compression on ImageNet dataset. Fig. 2 illiter-
ates the curves of training loss, top-1 test accuracy and over-
all number of parameters with respect to training epochs.
Here as shown in Fig. 2a and Fig. 2b, both training loss
and top-1 accuracy converge well, thereby demonstrating
that the training process with BC-ADL enjoys very good
convergence characteristic – the optimization process finally
reaches a good point where not only the loss function term
is very small but also the tensor nuclear norm term in Eq. (7)

satisfies the budget constraint. In other words, it implies that
BATUDE successfully maximizes the representative ability
of the compressed model in a fixed size via learning the op-
timal tensor ranks from data, as we target in Section .

In addition, Fig. 2c and Fig. 3 shows the tensor rank
change for two example layers and the final rank distribution
for the overall compressed model. As shown in Fig. 2c and
Fig. 2d, we can observe that the tensor ranks are dynamically
adjusted as the epoch increases and finally converge to con-
stant values; meanwhile, the overall number of parameters is
kept very close to the pre-set budget during the entire train-
ing process. This indicates that our BATUDE indeed can
gradually impose low-rank properties on the DNN models
and simultaneously satisfy the target compression demand.

Conclusion
In this paper, we propose BATUDE, a budget-aware DNN
compression approach based on Tucker Decomposition with
automatic tensor rank selection. By integrating the rank se-
lection to the training procedure, we enable the decom-
posed DNN models to automatically learn the suitable rank
from data. Evaluation on different models show that our ap-
proach significantly outperforms the other state-of-the-art
DNN model compression approaches.
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