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Abstract
Graph Neural Networks (GNNs) have shown advantages
in various graph-based applications. Most existing GNNs
assume strong homophily of graph structure and apply
permutation-invariant local aggregation of neighbors to learn
a representation for each node. However, they fail to gener-
alize to heterophilic graphs, where most neighboring nodes
have different labels or features, and the relevant nodes are
distant. Few recent studies attempt to address this problem by
combining multiple hops of hidden representations of cen-
tral nodes (i.e., multi-hop-based approaches) or sorting the
neighboring nodes based on attention scores (i.e., ranking-
based approaches). As a result, these approaches have some
apparent limitations. On the one hand, multi-hop-based ap-
proaches do not explicitly distinguish relevant nodes from a
large number of multi-hop neighborhoods, leading to a severe
over-smoothing problem. On the other hand, ranking-based
models do not joint-optimize node ranking with end tasks
and result in sub-optimal solutions. In this work, we present
Graph Pointer Neural Networks (GPNN) to tackle the chal-
lenges mentioned above. We leverage a pointer network to
select the most relevant nodes from a large amount of multi-
hop neighborhoods, which constructs an ordered sequence
according to the relationship with the central node. 1D con-
volution is then applied to extract high-level features from the
node sequence. The pointer-network-based ranker in GPNN
is joint-optimized with other parts in an end-to-end manner.
Extensive experiments are conducted on six public node clas-
sification datasets with heterophilic graphs. The results show
that GPNN significantly improves the classification perfor-
mance of state-of-the-art methods. In addition, analyses also
reveal the privilege of the proposed GPNN in filtering out ir-
relevant neighbors and reducing over-smoothing.

Introduction
Graph Neural Networks (GNNs) have shown advantages
in various graph-based applications. Most existing GNNs
assume strong homophily of connected nodes have been
successfully applied to representation learning on graphs,
as well as multiple real-world applications from web-scale
recommendation (Ying et al. 2018) to molecular chemistry
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(a) Local aggregation.
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(b) Non-local aggregation.

Figure 1: Visual illustration of the local aggregation of exist-
ing GNNs and non-local aggregation in GPNN in one propa-
gation step. The colors of nodes represent their labels, while
grey means ignored. Traditional GNNs aggregate all nodes
in the local neighborhood including noises, while GPNN se-
lectively filters the irrelevant nodes and captures non-local
features.

inference (Gilmer et al. 2017). Most existing approaches
are based on a framework of message-passing neural net-
works (MPNNs), including ChebyNet (Defferrard, Bresson,
and Vandergheynst 2016), GCN (Kipf and Welling 2016),
GAT (Veličković et al. 2017) and GIN (Xu et al. 2018). They
learn each node’s representation by aggregating feature in-
formation from its neighbors. The aggregation often needs
to be permutation-invariant (e.g., Mean, Max or Sum) as
there is no ordering information of the neighboring nodes.
These methods are effective with an assumption of strong
homophily for graphs (such as citation networks (New-
man 2002)), where neighboring nodes always possess sim-
ilar features and belong to the same class. However, this
inductive bias is not suitable for graphs with heterophily.
In heterophilic graphs, most connected nodes are dissimi-
lar and may belong to different classes, while the semanti-
cally relevant nodes are often multi-hops away. As Figure 1
(a) shows, normal local aggregation in GNNs might intro-
duce noises for node representation in heterophilic graphs.
In such scenarios, even models that ignore the graph struc-
ture altogether (e.g., MLPs) can outperform state-of-the-art
GNNs (Zhu et al. 2020).

Few recent studies address heterophilic graphs by com-
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bining multiple hops of hidden representations of central
nodes or ranking the nodes with attentions scores. For exam-
ple, Zhu et al. (2020) combine each node’s ego-features and
intermediate representations of multiple hops of neighbors
to boost learning from the heterophilic graph structure; Yuan
and Ji (2021) compute attention scores between neighboring
nodes and drop the nodes with lower scores manually. The
limitations of these methods lie in two aspects. First, multi-
hop-based approaches do not explicitly distinguish relevant
nodes from a large number of multi-hop neighborhoods.
The noises are still mixed up with helpful information and
lead to severe over-fitting and over-smoothing issues. Sec-
ond, the ranking procedure in state-of-the-art solution (Yuan
and Ji 2021) is non-differentiable, e.g., it cannot be opti-
mized jointly with the target classification tasks and leads
to sub-optimal results. GAT (Veličković et al. 2017) is able
to assign different weighting scores to each neighbor, but it
still suffers from over-smoothing and cannot fundamentally
solve the limitation when the number of neighbors or hops
are extremely large (Chen et al. 2020).

In this paper, we tackle the challenges above by proposing
a novel Graph Pointer Neural Networks (PGNN). For each
node, we first sample a sequence of nodes from the local
and remote neighborhoods. A pointer network is then uti-
lized to select the most relevant and valuable neighboring
nodes, which constructs a new sequence ranked by relations
to the central node. Afterward, a 1D-convolutional layer is
applied to the node sequence to capture high-level semantic
features. As Figure 1(b) shows, the central node can directly
capture helpful information from a distant node while ignor-
ing the irrelevant ones from the nearest neighborhood. We
can easily sample sufficient nodes from multiple-hop neigh-
bors in the implementation, enabling the model to capture
long-term dependencies of nodes in a heterophilic graph.

To prove the effectiveness of GPNN, we conduct exten-
sive experiments on a variety of real-world graphs with het-
erophily properties, including web-page linking networks
and co-occurrence networks. The results show that our
methods consistently improve the performance of existing
GNNs over all benchmarks, with an average lift of 6.3% over
the best state-of-the-art methods. Thorough analyses also re-
veal the privilege of the proposed GPNN in filtering out ir-
relevant neighbors and reducing over-smoothing.

In summary, the major contributions of this paper are
three-fold:

• First, we propose a novel framework termed Graph
Pointer Neural Networks (GPNN) tailored for het-
erophilic graphs. The adoption of a pointer network en-
ables GPNN to distinguish crucial information from dis-
tant nodes while filtering out irrelevant or noisy ones
in the nearest neighbors. Besides, the 1D-convolutional
layer can extract high-level structural information from
the ranked sequence of relevant nodes, enriching the rep-
resentation of nodes in heterophilic graphs.

• Second, experimental results show that GPNN consis-
tently outperforms previous methods, with an average lift
of 6.3% over the best state-of-the-art method. Especially,
we improve 1.9% on Chameleon and 3.0% on Cornell

respectively over the second-best results.
• Last but not least, we further demonstrate the privilege

of GPNN through extensive analysis. We prove that the
ranked sequence produced by the pointer network greatly
enhances the homophily property of neighboring nodes.
Moreover, GPNN mitigates the over-smoothing problem
and performs better than GCN and GAT as the number
of layers grows.

Related Work
Graph Neural Networks Graph Neural Networks have
many variants and applications. Here we focus on a brief
introduction of representation learning for graph nodes in
a supervised or semi-supervised setting. Most existing ap-
proaches follow a message-passing framework and use a
permutation-invariant local aggregation scheme to update
each node’s representation (Scarselli et al. 2008; Deffer-
rard, Bresson, and Vandergheynst 2016; Kipf and Welling
2016; Veličković et al. 2017). For example, GCNs (Kipf
and Welling 2016) average features from each node’s di-
rectly connected neighbors (including the node’s self fea-
ture) to update its representation. GATs (Veličković et al.
2017) introduces the attention mechanism (Vaswani et al.
2017) to attend over all neighbors with the learned weights.
Sampling-based techniques have been developed for fast
and scalable GNN training, such as GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017) and FastGCN (Chen, Ma,
and Xiao 2018). Simplifying methods (Tiezzi et al. 2021;
Wu et al. 2019) are also proposed to make the GNN mod-
els more easily implementable and more efficient. Mix-
hop (Abu-El-Haija et al. 2019) and Graph Diffusion Con-
volution(GDC) (Klicpera, Weißenberger, and Günnemann
2019) explored combining feature information from multi-
hop neighborhoods, while PPNP (Klicpera, Bojchevski, and
Günnemann 2018) and PPRGo (Bojchevski et al. 2020) de-
rived an improved propagation scheme of high-order infor-
mation based on personalized PageRank. In order to directly
learn weights in the local filter, LGCN (Gao, Wang, and Ji
2018) adopt regular 1D convolutions through top-k ranking.
Besides, data augmentation and consistency regularization
are applied in GRAND (Feng et al. 2020) to increase the ro-
bustness of GNN models as well as reduce the risk of over-
smoothing. Other recent works (Ying et al. 2021; Kreuzer
et al. 2021) generalize standard Transformers (Vaswani et al.
2017) to graphs and preserve the structural information by
extra encodings, such as centrality encodings, spatial encod-
ings, Edge Encodings, or Laplacian eigen-vectors as posi-
tional encodings.

GNNs addressed heterophily Without the inductive bias
of strong homophily, traditional GNNs based on local ag-
gregation face a severe performance reduction on the het-
erophilic graphs. To address this challenge, Geom-GCN (Pei
et al. 2020) proposes to pre-compute unsupervised node em-
beddings and defines a new graph convolution with a struc-
ture neighborhood built by geometric relationships in the la-
tent space. Furthermore, some other works (Liu, Wang, and
Ji 2020; Jiang et al. 2021) share the idea of re-connect graphs
to improve the homophily property. Recently, H2GCN (Zhu
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et al. 2020) combines a set of intermediate representations
including ego- and high order neighborhoods to boost learn-
ing from a heterophilic graph structure. Node2Seq (Yuan
and Ji 2021) proposes to sort the nodes and apply regular
1D convolutions. These approaches have shown advantages
on datasets with heterophilic graphs. However, since the ir-
relevant features are mixed up, and the ranking procedure
does not jointly optimize, these methods fail to generate the
optimal results.

Preliminaries
Let G = (V, E) be an undirected graph with node set V and
edge set E . The nodes are associated with a feature matrix
X ∈ RN×F , where N = |V| denotes the number of nodes
and F denotes the number of input features. A ∈ {0, 1}N×N

is the adjacency matrix, where Auv = 1 means the node u
and node v are connected. xv is the feature vector of node v,
and the corresponding label is yv . The k-hop neighborhood
of node v is denoted as Nk(v). For example, the directly
connected (1-hop) neighborhood is N1(v), including self-
loops.

Homophily and Heterophily
Graphs such as community networks and citation networks
are often of high homophily, where the linked nodes are
more likely to have similar features and belong to the
same class. However, there are a large number of real-
world graphs with heterophily (e.g., web-page linking net-
works (Ribeiro, Saverese, and Figueiredo 2017)). That is,
the linked nodes usually have dissimilar features and be-
long to different classes. It is worth noting that heterophily
is different from heterogeneity, as a heterogeneous network
means that the network has multiple types of nodes and dif-
ferent relationships between them.

To clearly measure the homophily or heterophily of a
graph, we follow Pei et al. (2020) to define the homophily
ratio H(G) and use it to distinguish graphs with strong ho-
mophily or heterophily:

H(G) = 1

|V|
∑
v∈V

∑
u∈N1(v)

(yu = yv)

|N1(v)|
(1)

A high homophily ratio H(G) → 1 means that the graph is
with strong homophily while a graph of strong heterophily
has a small homophily ratio H(G) → 0.

Traditional GNNs
Message Passing Framework. Most existing GNNs adopt
message-passing framework, which applies local aggrega-
tion to learn node representations. At each propagation step
t, the hidden representation of node v is derived by:

ht
v = f(aggr(ht−1

u |u ∈ N1(v))) (2)

where h0
v = xv , f(·) is the transformation function between

two propagation steps, and aggr(·) aggregates all 1-hop
neighbors’ features. For example, GCN (Kipf and Welling
2016) aggregates and updates the node features by:

ht
v = σ(W

∑
u∈N1(v)

1√
d̂ud̂v

ht−1
u )) (3)

where σ is the activation function, W is a learnable weight
matrix, d̂v is the degree of node v obtained from the adja-
cency matrix with self-loops Â = A+ I , 1/

√
d̂ud̂v denotes

the weight between node u and v. The propagation depth t
is usually limited to prevent the over-smoothing phenomena.
However, under the situation of heterophily, most of the di-
rectly connected nodes are noisy, while semantically similar
nodes are always distant.

Attention-based approaches compute the attention
scores between connected nodes as:

αuv = a(Whu,Whv) (4)

where a(·) is the function computing the similarity between
two connected nodes. Based on the attention scores αuv , the
neighboring nodes can be considered differently or sorted
manually.

Multi-hop-based approaches consider the representa-
tions of different propagation steps to combine information
from different distance as:

ht
v = combine(h0

v, h
1
v, . . . , h

t−1
v ) (5)

but the noises of the local neighborhood are also considering
and always facing the over-smoothing issue.

Sequence-to-Sequence Model
Formally, given a sequence s containing L nodes embedded,

s = {x̂1, x̂2, . . . , x̂L} ∈ RL×d (6)

our target is to select the top-m most relevant nodes in
them and output a sequential list reflecting the appropri-
ate order. We denote the m indices of selected nodes with
c = {c1, c2, . . . , cm}, the sequence-to-sequence model aims
to compute the conditional probability:

pϑ(ci|c1, c2, . . . , ci−1, s;ϑ) (7)

and learn the parameters ϑ by maximizing the probability:

ϑ∗ = arg max
ϑ

∑
s,c

log p(c|s;ϑ) (8)

Motivation of GPNN
Motivated by the limitations of traditional GNNs, we pro-
pose a novel GNN framework termed Graph Pointer Neural
Networks (GPNN), which constructs node sequences con-
taining local neighboring nodes and high-order distant nodes
to capture both local and non-local semantic information. A
pointer network is then leveraged to select and rank the most
relevant nodes in structure and semantics. The pointer net-
work can be jointly optimized with graph embedding, result-
ing in significant improvement over state-of-the-art meth-
ods. The details are described in the next section.

Graph Pointer Neural Networks
In this section, we present our proposed Graph Pointer Neu-
ral Networks (GPNN) for node representation learning of
heterophilic graphs (see Figure 2). We first describe the node
sequence sampling strategy to construct a node sequence in-
cluding local and high-order neighborhood nodes. Then we
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Figure 2: An illustration of the graph pointer generator layer. With the central node A and a sampling depth k=2, the neighbors
within two hops are assembled after the node sequence sampling. The pointer network then selects the most relevant nodes to
A, followed by a 1D-convolution layer to extract high-level and non-local features at the end.

introduce the graph pointer generator, which includes a node
embedding layer, a pointer network to select and rank these
nodes, and a 1D-convolution layer to extract high-level se-
mantics from the ranked sequence. Finally, we introduce the
proposed graph pointer neural networks for node classifica-
tion tasks.

Multi-hop Node Sequence Sampling
In graphs with heterophily, nodes with helpful information
are located both in the local and non-local high-order neigh-
borhoods. In order to capture these two affinities between
nodes, we aim to construct a node sequence for each node
that contains neighbors from multiple hops. Unlike the grid-
like data such as time series and images, there are several
challenges to turn generic graph structure into sequences.
The number of node’s adjacent neighbors is always varying,
and there is no ordering information among them. To tackle
these challenges, we propose a multi-hop node sampling
strategy to construct node sequences for encoding structural
and semantic information. Algorithm 1 describes the pro-
cedure in detail. For each node in the graph, we sample
the nodes from its 1-hop neighborhood to k-hop neighbor-
hood. We use a Breath-First-Search (BFS) to expand adja-
cent neighbors. Nodes in the sequence are ranked by the
distance to the central node. Theoretically, since the sam-
pling depth hyperparameter k can be set flexibly to cover the
whole graph, the strategy is eligible to capture long-range
dependencies even the two nodes are distant. In case some
nodes have two many neighbors, we set a fixed max length
L of the sequence and stop sampling when meeting this lim-
itation.

Graph Pointer Generator
The sampled node sequence contains both relevant and irrel-
evant nodes for the central node. In order to select the most
informative nodes out and eliminate noises, we consider the

Algorithm 1: Multi-hop node sequence sampling
Input: Adjacency matrix A, Number of nodes N ,

Sampling depth k
Output: Node sequence S

1 Inital S → ∅
2 for nodei = 1, 2, . . . , N do
3 S[nodei].append(nodei)
4 end
5 for i = 1, 2, . . . , k do
6 A = Ai

7 for nodei = 1, 2, . . . , N and
nodej = 1, 2, . . . , N do

8 if Aij == 1 and nodej /∈ S[nodei] then
9 S[nodei].append(nodej)

10 end
11 end
12 end
13 Return S

selection as a sequence-to-sequence problem: the nodes in
the output sequence are selected from the input sequence,
while the resulting order reflects the relevance or relation-
ship with the central node.

We leverage the Pointer Networks (Vinyals, Fortunato,
and Jaitly 2015) as an embedded component to achieve this
goal. For each input sequence of neighboring nodes, we first
embed the node feature vector into a latent space of dimen-
sion d, then LSTMs (Hochreiter and Schmidhuber 1997) are
utilized in the pointer network for the sequence-to-sequence
task.

Node Embedding Node embedding is a fundamental
method to preserve the connection and distance pattern in
a graph. In this step, we apply a GCN layer aiming to cap-
ture the local structural information of each node. With the
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input nodes feature X , the output embedding is denoted as:

X̂ = GCN(X) ∈ RN×d (9)
where we use the vanilla GCN layer in Equation (3), and
embed the feature vectors into d-dimentional hidden repre-
sentations.

Pointer Network After embedding, the sampling node se-
quence is fed into a pointer network to select the most rele-
vant nodes and rank the nodes by the relevance or relation-
ship to the central node.

We adopt a sequence-to-sequence architecture based on
LSTMs for the pointer network to model the conditional
probability pϑ in Equation (7). Two separate LSTMs are ap-
plied as Encoder and Decoder respectively.

The encoder generates hidden states for the input se-
quence. At each time step i, x̂i is fed into the encoder, the
hidden state is denoted as:

ei = tanh(W [ei−1, x̂i]) (10)
where e0 is initialed to 0. After L time steps, we obtain L
hidden states of input sequence and combine them into a
content vector E = {e1, e2, . . . , eL} that records the infor-
mation of entire sequence of L nodes.

The decoder then selects node with attention scores
among the L nodes. At each output time i, the hidden state
of decoder di is:

di = tanh(W [di−1, x̂ci−1
]) (11)

where d0 is the output hidden state eL from the encoder, ci−1

is the index of selected node at time step i− 1, c0 is a signal
of [start]. We compute the attention vectors over the input
sequence as following:

ui
j = vT tanh(W1ej +W2di) j ∈ (1, 2, . . . , L) (12)

p(ci|c1, c2, . . . , ci−1, s) = softmax(ui) (13)
where v, W1, and W2 are learnable parameters of the de-
coder model, softmax normalizes the vector ui (of length
L) to be an output distribution over the L nodes of input se-
quence. As Figure 2 shows, with the probability distribution
ui , we can intuitively use ui

j as pointers to select the i-th
node of output sequence, until all the top-m nodes are se-
lected step by step. After m output time steps, we obtain the
sequence of top-m relevant nodes

o = {x̂c1 , x̂c2 , . . . , x̂cm} ∈ Rm×d (14)
which is ranked with the output order.

Non-local Aggregation Based on the ranked sequence
output from the graph pointer generator, we extract and
aggregate structural and semantic features from non-local
neighbors. A regular 1D-convolution layer is first applied to
extract the affinities between the sequential nodes even the
nodes are distant in the generic graph. Let the output chan-
nel be d′, we then aggregate all the node features to obtain a
representation z ∈ R1×d′

of the central node.

z = aggr((conv(o)) ∈ R1×d′
(15)

where the aggr(·) function can be a pool operation, such as
max-pooling and mean-pooling.

GPNN for Node Classification
With aforementioned designs, we build our proposed graph
pointer neural networks for node classification tasks. We
combine the non-local features from non-local aggregation
in Equation (15), neighborhood structural information from
the node embedding step in Equation (9) and each node’s
ego-feature to obtain the final representation. A linear trans-
formation W ∈ RF×d0 is performed on the ego-feature
x ∈ R1×F and the three type of embeddings are combined
via concatenation.

xfinal = concat(xW, x̂, z) ∈ R1×(d0+d+d′) (16)

Finally, we utilize a fully-connected layer to make predic-
tions of node classfication task and train the model with a
cross-entropy loss.

ypred = softmax(FFN(xfinal)) (17)

L =

Nl∑
i=1

yi log ypred i (18)

where the number of labeled nodes is Nl.

Experiments
For a comprehensive evaluation of GPNN, we conduct ex-
periments for node classification tasks and compare it with
various baselines. Analyses are also performed to reveal
GPNN’s privilege in filtering out irrelevant neighbors and
reducing over-smoothing.

Datasets
We evaluate our proposed graph pointer neural networks
(GPNN) on six public heterophilic graph datasets. The
dataset statistics are summarized in Table 1.

• Chameleon and Squirrel are subgraphs of web pages
in Wikipedia (Rozemberczki, Allen, and Sarkar 2021),
where nodes represent web pages regarding correspond-
ing topics, edges denote mutual links between pages, and
node features correspond to several informative nouns in
the Wikipedia pages. All nodes are classified into five
categories based on the average monthly traffic of the
web page.

• Actor is a subgraph extracted from film-director-actor-
writer network (Tang et al. 2009), where each node cor-
responds to an actor, edge between two nodes denotes
co-occurrence on the same Wikipedia page, and node
features correspond to some keywords in the Wikipedia
pages. All nodes are classified into five categories ac-
cording to the types of the actors.

• Cornell, Texas and Wisconsin are three subsets of the
WebKB dataset collected by CMU, which represent links
between web pages of the corresponding universities. In
these networks, nodes represent web pages, edges are hy-
perlinks between them, and node features are the bag-of-
words representation of web pages. All nodes are clas-
sified into five categories: student, project, course, staff,
and faculty.
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Datasets Chameleon Squirrel Actor Cornell Texas Wisconsin

#Nodes 2277 5201 7600 183 183 251
#Edges 36101 217073 33544 295 309 499
#Features 2325 2089 931 1703 1703 1703
#Classes 5 5 5 5 5 5
#Homophily ratio H(G) 0.25 0.22 0.24 0.11 0.06 0.16

Table 1: Statistics and properties of benchmark datasets with heterophily.

Methods Chameleon Squirrel Actor Cornell Texas Wisconsin Average

MLP 47.36±2.37 29.82±1.99 35.79±1.09 82.16±7.45 81.08±3.82 85.49±4.99 60.28
GCN 65.92±2.58 49.78±2.06 30.16±1.27 58.91±8.33 59.73±3.24 58.82±6.06 53.89
GAT 65.32±2.00 46.79±2.08 29.74±1.46 56.76±5.70 59.45±6.37 57.06±7.07 52.52
GraphSage 58.73±1.68 41.61±0.74 34.23±0.99 75.95±5.01 82.43±6.14 81.18±5.56 62.36
MixHop 60.50±2.53 43.80±1.48 32.22±2:34 73.51±6.34 77.84±7.73 75.88±4.90 60.58

Geom-GCN 60.90 38.14 31.63 60.81 67.57 64.12 53.86
H2GCN 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69 64.47
Node2Seq 69.4±1.6 58.8±1.4 31.4±1.0 58.7±6.8 63.7±6.1 60.3±7.0 57.05

GPNN (ours) 71.27±1.88 59.11±1.13 37.08±1.41 85.14±6.00 85.23±6.40 86.86±2.62 70.78

Table 2: Mean accuracy±stdev over different data splits on the six real-world heterophilic graph datasets. The best result is
highlighted.

Baselines
• A simple MLP model that ignores the graph structure.
• Four traditional GNN models for node classification

tasks: GCN (Kipf and Welling 2016), GAT (Veličković
et al. 2017), GraphSage (Ying et al. 2018) and Mix-
Hop (Abu-El-Haija et al. 2019).

• Three state-of-the-art models addressed heterophily:
Geom-GCN (Pei et al. 2020), H2GCN (Zhu et al. 2020)
and Node2Seq (Yuan and Ji 2021).

Experimental Setup
To make a fair comparison, the number of layers in MLP,
GCN and GAT is set to 2. We run 2000 epochs and apply
an early stopping strategy with a patience of 100 epochs on
both the cross-entropy loss and accuracy on the validation
set to choose the best model. For GPNN, the depth of node
sampling is 2 with a max sequence length of 16. Other hy-
perparameters are tuned on the validation set: hidden unit ∈
{16, 32, 64}, learning rate ∈ {0.01, 0.005}, dropout in each
layer ∈ {0, 0.5, 0.99}, weight decay ∈ {1E-3, 5E-4, 5E-5,
5E-6}, number of the selected nodes from each sequence ∈
{1, 2, 4, 8}. Our methods are implemented using Pytorch
and Pytorch Geometric. We closely follow the experimental
procedure with Zhu et al. (2020). For all datasets, we use the
same feature vectors, labels and ten random splits provided
by Pei et al. (2020).

Results on Heterophilic Graphs
Table 2 summarizes the prediction results of node classifi-
cation for six datasets. We report the mean accuracy with a

standard deviation over ten different data splits.

Comparision between MLP and GNNs. As most nodes
within the local neighborhood have different features or la-
bels in heterophilic graphs, local aggregation brings more
noises than helpful information. Even a simple MLP model
outperforms classic GNNs on Actor, Cornell, Texas, and
Wisconsin. GraphSage concatenates the ego-feature and
neighborhood features explicitly, which shows better per-
formance compared to those mix up different features (e.g.,
GCN and GAT) on these four datasets, too. This recalls our
motivation that it is necessary to distinguish helpful nodes
from massive neighbors. On the other hand, the local struc-
tural information is more critical for Chameleon and Squir-
rel, on which GNNs behave better than MLP. Nevertheless,
as we will discuss later, ranking of relevant neighboring
nodes is more beneficial for these two datasets.

Comparison between GPNN and SOTAs. With selec-
tive non-local aggregation, GPNN achieves a better bal-
ance between neighborhood information and non-local se-
mantic features. It significantly improves the performance
over all six benchmarks, with an average lift of 6.3% over
the best state-of-the-art method. Especially, we improve
1.9% on Chameleon and 3.0% on Cornell respectively over
the second-best results. As GPNN ignores most irrelevant
nodes, it shows consistent improvements compared with
H2GCN, which does not explicitly distinguish nodes from
multi-hop neighborhoods. Node2Seq shows remarkable per-
formances on both Chameleon and Squirrel; however, since
the nodes’ ranking is not jointly optimized, it is hard to select
the most valuable nodes. In addition, mixing up the neigh-
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Figure 3: Comparision of homophily ratios between 1-hop
neighbors, nodes ranked with attention scores and nodes se-
lected with pointer network in GPNN.

borhood nodes (see the results of Node2Seq) also reduces
the performance of the other four datasets. GPNN considers
three different kinds of information jointly, including ego-
features, structural neighborhood, non-local semantic fea-
tures, and adopts a practical nodes ranking module to filter
out irrelevant nodes. This design consistently shows advan-
tages in different scenarios.

Analysis of Node Ranking
Noises introduced by irrelevant nodes within the local neigh-
borhood severely harm the classification results. Our moti-
vation is that we can filter out the irrelevant nodes, i.e., im-
prove the homophily ratio H(G) of a graph. Then the ag-
gregation would be more informative and accurate. Graph
Pointer Neural Networks achieve this goal by learning an
ordered sequence of most relevant neighboring nodes. Pre-
vious state-of-the-art, Node2Seq (Yuan and Ji 2021) applies
attention-based approaches to calculate relevance scores and
rank the neighboring nodes in descending order. However,
the ranking procedure is non-differentiable and can not be
optimized jointly in an end-to-end pipeline.

Our analysis conducts experiments to demonstrate the ad-
vantages of ranking nodes through the graph pointer network
in a joint-optimized manner. For each node, we find the most
relevant five nodes ranked by graph pointer network and at-
tention scores in Node2Seq, respectively, and then calculate
the homophily ratio of these nodes. To compare with tradi-
tional GNNs, we also randomly select five 1-hop neighbors
and calculate their homophily ratio for reference. The results
are summarized in Figure 3. We observe that the node rank-
ing strategies in GPNN and Node2Seq both improve the ho-
mophily ratio of original 1-hop neighbors, indicating the ef-
fectiveness of neighborhood selection. Moreover, compared
with Node2Seq, GPNN achieves better results, owing to its
capability of joint optimization. Specifically, the average ho-
mophily ratio of GPNN is improved by 46% over Node2Seq.

Analysis of Over-smoothing
Many GNNs suffer from the over-smoothing issue. When
the layers of the GNN model increase, the mixture of neigh-
borhood features by graph convolution tends to be indistin-
guishable, as important discriminating information from the
input is erased (Li, Han, and Wu 2018; Dehmamy, Barabási,
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Figure 4: Over-Smoothing on Chameleon and Squirrel
datasets. The top figures show the test accuracy while the
bottom ones are relative decays of GCN and GAT compared
to GPNN.

and Yu 2019). We study the degree of over-smoothing by
stacking a different number of GCN, GAT, GPNN layers and
comparing their test accuracy of node classification. Figure 4
shows the results on both Chameleon and Squirrel datasets.
The top figures are the test accuracy of the three models with
the different number of layers, and the bottom ones are rela-
tive decays compared to GPNN. For GCN and GAT, the test
accuracy decreases fast when stacking more than two lay-
ers. For example, the test accuracy on Chameleon drops by
18% and 33% for GCN and GAT, respectively. For GPNN,
the test accuracy decrease from 0.71 to 0.65, resulting in a
slight decay of 6%. This indicates that GPNN is more pow-
erful to alleviate over-smoothing.

Conclusion

In this work, we focus on the node representation learning
of heterophilic graphs and present a novel GNN framework
termed Graph Pointer Neural Networks (GPNN). Since most
of the connected nodes in heterophilic graphs always pos-
sess dissimilar features or belong to different classes, we
propose to incorporate a graph pointer generator to the
GNN architecture, which distinguishes crucial information
from distant nodes and performs non-local aggregation se-
lectively. Experiments demonstrate the superiority of GPNN
over previous state-of-the-art GNN models. In addition, ex-
tensive analyses are conducted to show GPNN’s advan-
tages in both filtering irrelevant nodes and alleviating over-
smoothing phenomena. In future works, we will explore
more techniques for improving the scalability of GPNN,
such as advanced sampling strategies and more efficient net-
work architectures.
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