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Abstract

More transformer blocks with residual connections have
recently achieved impressive results on various tasks. To
achieve better performance with fewer trainable parameters,
recent methods are proposed to go shallower by parameter
sharing or model compressing along with the depth. How-
ever, weak modeling capacity limits their performance. Con-
trastively, going wider by inducing more trainable matrixes
and parameters would produce a huge model requiring ad-
vanced parallelism to train and inference.
In this paper, we propose a parameter-efficient framework,
going wider instead of deeper. Specially, following exist-
ing works, we adapt parameter sharing to compress along
depth. But, such deployment would limit the performance.
To maximize modeling capacity, we scale along model width
by replacing feed-forward network (FFN) with mixture-of-
experts (MoE). Across transformer blocks, instead of shar-
ing normalization layers, we propose to use individual lay-
ernorms to transform various semantic representations in a
more parameter-efficient way. To evaluate our plug-and-run
framework, we design WideNet and conduct comprehensive
experiments on popular computer vision and natural language
processing benchmarks. On ImageNet-1K, our best model
outperforms Vision Transformer (ViT) by 1.5% with 0.72×
trainable parameters. Using 0.46× and 0.13× parameters,
our WideNet can still surpass ViT and ViT-MoE by 0.8%
and 2.1%, respectively. On four natural language processing
datasets, WideNet outperforms ALBERT by 1.8% on average
and surpass BERT using factorized embedding parameteriza-
tion by 0.8% with fewer parameters.

Introduction
Transformer-based models have achieved promising results
on various tasks (e.g., Q&A (Qu et al. 2019; Yang et al.
2020), relation extraction (Xue et al. 2020b,a; Zhou et al.
2020)). To further improve the effectiveness and efficiency
of the transformer, there are two trains of thought to de-
ploy trainable parameters. The first thought is to scale
transformer along width to more trainable parameters (e.g.,
Switch Transformer (Fedus, Zoph, and Shazeer 2021), ViT-
MoE (Riquelme et al. 2021)). These sparse models can scale
to extremely large models with comparable FLOPs by sparse
conditional computation. Another thought is to decrease the
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trainable parameters for a lite model. To this end, some
works propose to reuse the trainable parameters across trans-
former blocks (e.g., Universal Transformer (Dehghani et al.
2018) and ALBERT (Lan et al. 2019)). Model compres-
sion (Xu et al. 2020; Sun et al. 2019) can also make trans-
former more parameter efficient.

The two existing methods both have their own limita-
tions. For huge models, one typical and effective method
to scale trainable parameters is replacing part of the feed-
forward network (FFN) layer in transformer blocks with
Mixture-of-Experts (MoE) layers. In each MoE layer, to
refine one single token representation, only a few experts
are activated, so the MoE based transformer holds compa-
rable FLOPs with the vanilla transformer. However, during
training and inference, we are required to use advanced par-
allelisms (e.g., tensor (Shoeybi et al. 2019), sequence (Li
et al. 2021), pipeline (Huang et al. 2018) and expert paral-
lelism (Lepikhin et al. 2020)) to hold these models on TPU
or GPU. Also, the performance cannot improve linearly dur-
ing scaling. Another limitation is that the sparseness of MoE
based models cannot scale well on relatively small datasets.
We will discuss the reason for this phenomenon in the fol-
lowing sections. For small models, although they can re-
duce trainable parameters significantly by going shallower,
the performance of these shallower models is still under the
original transformers. These smaller models are constructed
by compressing the original model along with depth so all
transformer blocks share the same knowledge. Such struc-
ture induces the unavoidable loss of model capacity.

In this paper, we present a parameter deployment frame-
work that deploys trainable parameters more effectively: go-
ing wider instead of deeper. We then implement it on the
transformer and named it as WideNet. Specially, we first em-
ploys parameter sharing along with depth to go shallower.
Due to avoidable model capacity loss, we go wider by using
the same MoE layer in all transformer blocks. The multi-
head attention layer is also shared across the blocks. To help
the transformer blocks learn different semantics and max-
imize the modeling capacity from MoE layer, we do not
share the normalization layers. Different trainable param-
eters of the normalization layer enable transformer blocks
to be fed by diversified representations. Since the model-
ing capacity of each transformer block has been enhanced
by the MoE layer, it can model diversified semantics effec-
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Figure 1: The overall architecture of the proposed WideNet. Compared with vanilla transformer, we replace FFN layer by MoE
layer and share the trainable parameters except the normalization layers.

tively with the same trainable parameters. Therefore, with
one attention layer and one single stronger MoE layer learn-
ing complex representations, and independent normalization
layers for diversified semantic representations, going wider
instead of deeper is a more parameter-efficient and effective
framework.

Compared with simply scaling along the width, going
wider instead of deeper is a more parameter-efficient frame-
work, which makes the models small enough to be adapted
to downstream tasks without advanced parallelisms. Second,
each expert in WideNet can be trained by more token repre-
sentations so that it has better generalization performance.

Compared with the models simply compressed along with
the depth, all transformer blocks in WideNet share one same
MoE layer instead of one FFN layer. Such structure maxi-
mizes the modeling ability of every transformer block. More
experts can model more complex token representations with
a stronger capacity. Another difference is the independent
normalization layers. These layers come with few additional
trainable parameters, but they can transform input represen-
tations to other semantic domains. In this case, with a strong
enough single MoE layer, WideNet can still model seman-
tics from different levels well. Moreover, in every trans-
former block, each expert only receives a part of token repre-
sentations that usually correspond to different input tokens.

Our contributions are summarized as three folds:

• To improve the parameter efficiency, we propose sharing
the MoE layer across transformer blocks. The shared ex-
perts can receive diversified token representations in dif-
ferent transformer blocks, which enables each expert to
be fully trained.

• We propose to keep individual normalization layer across
transformer blocks. The individual normalization layers

can transform input hidden vectors to semantic informa-
tion by adding few trainable parameters. Then, diversi-
fied input can be fed into the same attention layer or
stronger MoE layer to model different semantics.

• By combing the two thoughts above, we propose go-
ing wider instead of deeper, a more parameter-efficient
and effective framework. We then implement this frame-
work as WideNet and evaluate it on both computer vi-
sion and natural language processing tasks. Due to the
more efficient parameter deployment, WideNet outper-
forms baselines with less trainable parameters. We ex-
pect our WideNet can serve as a next-generation trans-
former backbone.

Mixture-of-Experts
In this paper, we focus on a novel trainable parameter de-
ployment framework and implement this framework on the
transformer as WideNet. The overall structure is shown in
Fig. 1. We use Vision Transformer as the backbone in this
example, which means we normalize the representations
before the attention layer or FFN layer. We also extend
WideNet to other transformer models (e.g., BERT (Devlin
et al. 2019)) in this paper. In WideNet, we replace the FFN
layer with the MoE layer. Parameter sharing across trans-
former blocks is employed for a more parameter-efficient
deployment. Within each MoE layer, we have one router
to select K experts to learn more complex representations.
Please note the trainable parameters in layer normalization
are not shared for more diversified semantic representations.

Conditional Computation with MoE
Our core idea is to deploy more trainable parameters along
the width and fewer trainable parameters along with the
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depth. To this end, we employ MoE to scale transformer
along with width. As a typical conditional computation
model (Bengio 2013), MoE only activates a few experts, i.e.,
subsets of a network. For each input, we feed only a part of
hidden representations required to be processed into the se-
lected experts.

Following Shazeer et al. (2017), givenE trainable experts
and input representation x ∈ RD, the output of MoE model
can be formulated as:

MoE(x) =
E∑
i=1

g(x)iei(x) (1)

where ei(·) is a non-linear transformation RD → RD of
ith expert, and g(·)i is ith element of the output of trainable
router g(·), a non-linear mapping RD → RE . Usually, both
e(·) and g(·) are parameterized by neural networks.

According to the formulation above, when g(·) is a sparse
vector, only part of experts would be activated and updated
by back-propagation during training. In this paper, for both
vanilla MoE and our WideNet, each expert is an FFN layer.

Routing
To ensure a sparse routing g(·), we use TopK() to select the
top ranked experts. Then, following Riquelme et al. (2021),
g(·) can be written as:

g(x) = TopK(softmax(f (x) + ε)) (2)

where f(·) is routing linear transformation RD → RE , and
ε ∼ N (0, 1

E2 ) is a Gaussian noise for exploration of ex-
pert routing. We use softmax after f(·) for better perfor-
mance and more sparse experts (Riquelme et al. 2021; Fe-
dus, Zoph, and Shazeer 2021). When K � E, most ele-
ments of g(x) would be zero so that sparse conditional com-
putation is achieved.

Balanced Loading
In MoE based transformer, we dispatch each token to K
experts. During training, if the MoE model has no regular-
ization, most tokens may be dispatched to a small portion
of experts. Such an unbalanced assignment would decrease
the throughput of the MoE model. In addition, more im-
portantly, most additional trainable parameters would not be
fully trained so that the sparse conditional model cannot sur-
pass the corresponding dense model during scaling. There-
fore, for balanced loading, we have two things to avoid:
(1) too many tokens dispatched to one single expert, and
(2) too few tokens received by one single expert. To solve
the first issue, buffer capacity B is required. That is, for
each expert, we only preserve B token at most regardless of
how many tokens are dispatched to this expert. If more than
B = CKNL tokens are assigned, the left tokens would be
dropped. C is the capacity ratio, a pre-defined hyperparam-
eter to control the ratio of tokens preserved for each expert.
Usually, C ∈ [1, 2], and we set C as 1.2 when no special
explanation is used. K is the number of selected experts for

each token. N is the batch size on each device1. L is the
sequence length. For computer vision tasks, L denotes the
number of patch tokens in each image.

Buffer capacityB helps us drop redundant tokens for each
expert to maximize throughput but it cannot ensure all ex-
perts to receive enough token to train. In other words, un-
til now, the routing is still unbalanced. Therefore, we fol-
low Fedus, Zoph, and Shazeer (2021) to use a differen-
tiable load balance loss instead of separate load-balancing
and importance-weighting losses for a balanced loading in
the router. For each routing operation, given E experts and
N batches with NL tokens, the following auxiliary loss is
added to the total model loss during training:

lbalance = E ·
E∑
i=1

mi · Pi (3)

where m is vector. ith element is the fraction of tokens dis-
patched to expert i:

mi =
1

L

L∑
j=1

h(xj)i (4)

where h(·) is a index vector selected by TopK in Eq. 2.
h(xj)i is ith element of h(xj). It is noticeable that, different
from g(x)i in Eq. 2, mi and h(xj)i are non-differentiable.
However, a differentiable loss function is required to opti-
mize MoE in an end-to-end fashion. Therefore, we define Pi

in Eq. 3 as:

Pi = softmax(f(x) + ε)i (5)
We can observe Pi is ith element of routing linear trans-

formation after softmax activation function, and Pi is dif-
ferentiable.

The goal of load balancing loss is to achieve a balanced
assignment. When we minimize lbalance, we can see both m
and P would close to a uniform distribution.

Go Wider Instead of /-eeper
Sharing MoE across Transformer Blocks
As shown in Fig. 1, WideNet adopts parameter sharing
across transformer blocks to improve parameter efficiency,
and MoE layer is used to improve model capacity. In addi-
tion, as we use the MoE layer to obtain a stronger modeling
ability, to overcome the overfitting from sparse conditional
computation, we are required to feed enough tokens to each
expert. To this end, WideNet uses the same router and ex-
perts in different transformer blocks. Formally, given hid-
den representations H1 = {h11, h12, . . . , h1L} as input of the
first transformer block, we can define the parameter sharing
as Hi+1 = MoE(Hi), which is different from the existing
MoE based models Hi+1 = MoEi(Hi). Please note that,
although we share trainable parameters in the MoE layer in-
cluding the router, token representations corresponding to
the same token are different in every transformer block.

1For easier using on downstream tasks, we implement our
method with only data parallelism.
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That is, hji and hj+1
i may be dispatched to different experts.

Therefore, each expert would be trained by more varied to-
kens for better generalization performance.

Individual Layer Normalization
Although existing works (Lan et al. 2019) show that the ac-
tivations in different transformer blocks are similar, the co-
sine distance is still much larger than zero. Therefore, dif-
ferent from existing works (Dehghani et al. 2018; Lan et al.
2019) sharing all weights across transformer blocks, to en-
courage more diversified input representations of different
blocks, we only share multi-head attention layer and FFN
(or MoE) layer, which means trainable parameters of layer
normalization are different across blocks.

In summary, ith transformer block in our framework can
be written as:

x′ = LayerNormalatti (x)

x = MHA(x′) + x

x′′ = LayerNormalmoe
i (x)

x = MoE(x′′) + x

(6)

The normalization layer LayerNormal(·) is:

LayerNormal(x) =
x− E[x]√
Var[x] + ε

∗ γ + β (7)

where γ ∈ RD and β ∈ RD are two trainable vectors.
Layer normalization only requires these two small vectors
so individual normalization would just add few trainable pa-
rameters into our framework. We can find the difference be-
tween shared layer normalization and the individual ones is
the mean and magnitude of output. For shared layer normal-
ization, the input of MHA and MoE layer are more similar in
different transformer blocks. Since we have shared trainable
matrixes, we encourage more diversified input to represent
various semantics in different transformer blocks.

Optimization
Although we reuse the trainable parameters of the router in
every transformer block, the assignment would be different
due to different input representations. Therefore, given T
times routing operation with the same trainable parameters,
we have the following loss for optimization:

loss = lmain + λ

T∑
t=1

ltbalance (8)

where λ is a hyper-parameter to ensure a balanced assign-
ment, and we set it as a relatively large number, i.e., 0.01 in
this work. Similar to existing MoE based models, we found
the performance is non-sensitive to λ. lmain is the main tar-
get of our transformer. For example, on supervised image
classification, lmain is cross-entropy loss.

Experiments
Computer Vision
Experimental Settings We use ILSVRC-2012 Ima-
geNet (Deng et al. 2009) and Cifar10 as platforms to eval-
uate our framework. ImageNet we used in this work has

Model Parameters ImageNet-1K

ViT-B 87M 78.6
ViT-L 305M 77.5

ViT-MoE-B 128M 77.9
ViT-MoE-L 406M 77.4

WideNet-B 29M 77.5
WideNet-L 40M 79.5
WideNet-H 63M 80.1

Table 1: Top-1 Accuracy on ImageNet-1K pretraining.

1k classes and 1.3M images. We denote it as ImageNet-1K
in the following experiments. We select ViT (Dosovitskiy
et al. 2020) and ViT-MoE (Riquelme et al. 2021) as base-
lines. We first reimplement ViT by Tensorflow 2.x and tune
it to a reasonable performance. For all models in this section,
we use Inception-style pre-processing, Mixup (Zhang et al.
2017), RandAugment (Cubuk et al. 2020) and label smooth-
ing (Szegedy et al. 2016; Yuan et al. 2020) as data augmen-
tation. We also observe that AdamW optimizer (Loshchilov
and Hutter 2017) is sensitive to hyper-parameters and learn-
ing schedules. LAMB optimizer (You et al. 2019b) can
achieve comparable performance but it is more robust to the
hyper-parameters. For fair comparison, following Zhai et al.
(2021), we evaluate WideNet on three scales (i.e., WideNet-
Base, WideNet-Large and WideNet-Huge). The attention
and FFN dimensions of different scales are the same as ViT-
MoE except for WideNet-B. For WideNet-B, we use a hid-
den dimension of FFN as 4096 instead of 3072 for a more
stable training.

Instead of achieving SoTA performance, the goal of this
paper is to show that our parameter deployment frame-
work can improve the transformer backbone with less train-
able parameters. Therefore, we employ LAMB instead of
AdamW for more general and typical experiments. For MoE
based models (i.e., ViT-MoE and WideNet), we set the
weight of load balance loss λ as 0.01. Without special in-
structions, we use 4 experts in total and Top 2 experts se-
lected in each transformer block. The capacity ratio C is
set as 1.2 for a trade-off between accuracy and speed. We
pretrain our models on 256 TPUv3 cores. According to re-
cent work (Zhai et al. 2021), different types of the prediction
head have no significant difference on ImageNet’s few-shot
performance. We also verify this conclusion on training Im-
ageNet from scratch. In this work, for ViT, we use the typical
token head, which means we insert [CLS] token at the start
of patch tokens and use it to classify the image. For MoE
based models, to fully use the token representations after the
final MoE layer, we employ a global average pooling head
instead of the token head.

During finetuning, we still follow (Dosovitskiy et al.
2020) and use SGD optimizer with momentum. Compared
with pretraining on ImageNet-1K, label smoothing and
warm-up are removed.

Comparison with baselines We follow the hyper-
parameter setting of baselines in pretraining and finetuning
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Model #para SQuAD1.1 SQuAD2.0 MNLI SST-2 Avg

ALBERT 12M 89.3/82.3 80.0/77.1 81.5 90.3 84.0
BERT 89M 89.9/82.8 80.3/77.3 83.2 91.5 85.0

WideNet 4 experts 26M 89.6/82.7 80.6/77.4 82.6 91.1 84.7
WideNet 8 experts 45M 90.0/82.7 80.6/77.7 83.3 91.9 85.2
WideNet 16 experts 83M 90.9/83.8 81.0/77.9 84.1 92.2 85.8

Table 2: Results of funetuning on GLUE benchmarks

for a fair comparison. Please see Appendix for details. Such
implementation also shows that our model is robust to hyper-
parameters.

We report the Top-1 accuracy on ImageNet-1K in Ta-
ble 1 and Cifar10 in Appendix. Observe that WideNet-H
achieves the best performance and significantly outperforms
ViT and ViT-MoE models on ImageNet-1K. Compared with
the strongest baseline, our WideNet-H outperforms ViT-B
by 1.5% with less trainable parameters. Even if we use the
smallest model, WideNet-B, it still achieves comparable per-
formance with ViT-L and ViT-MoE-B with over 4× less
trainable parameters. When we scale up to WideNet-L, it
has surpassed all baselines with half trainable parameters of
ViT-B and 0.13× parameters of ViT-L.

Another observation is, unlike training MoE based mod-
els on huge datasets (e.g., JFT-300M (Sun et al. 2017)
and C4 (Raffel et al. 2019)), MoE cannot benefit ViT on
ImageNet-1K, which is 200 times smaller than original ViT-
MoE used in pretraining2.

Natural Language Processing
The main contribution of this work is to design a more
parameter-efficient and plug-in framework for various AI
applications. Therefore, we further evaluate our work on nat-
ural language processing (NLP) after computer vision (CV).
The training of experiments on NLP can still be splitted into
2 stages, pretraining and finetuning.

Experimental Settings Following BERT (Devlin et al.
2019) and ALBERT (Lan et al. 2019), in this section, we
pretrain all models by English Wikipedia (Devlin et al.
2019) and BOOKCORPUS (Zhu et al. 2015). Since the goal
of this work is to design a parameter-efficient framework, all
models including BERT use factorized embedding parame-
terization. That is, the WordPiece embedding size E is 128.
The hyperparameter settings of experiments on NLP can be
found in Appendix, which is the same as ALBERT for a
fair comparison. Similar to the experiments on vision tasks,
we pretrain our models by LAMB on 256 TPUv3 cores.
The learning rate is 0.00176, which is the same as ALBERT
claimed (You et al. 2019a).

During finetuning, we evaluate our model on the Gen-
eral Language Understanding Evaluation (GLUE) bench-
mark (Wang et al. 2018), two versions of the Stanford Ques-
tion Answering (SQuAD) dataset (Rajpurkar et al. 2016; Ra-
jpurkar, Jia, and Liang 2018). For GLUE experiments, we

2This dataset is not publicly available.

report median over 5 runs on development set because of
relatively large variance.

Downstream Evaluation Different from the experiments
on CV, we report the evaluation results on downstream tasks
directly in this section. As shown in Table 2, when we use
more experts, our WideNet outperforms ALBERT by a large
margin. For instance, WideNet with 4 experts surpasses AL-
BERT by 1.2% in average. When we increase the number of
experts E to 16 to achieve slightly less trainiable parameters
than BERT with factorized embedding parameterization, our
WideNet also outperforms it on all four downstream tasks,
which shows the parameter-efficiency and effectiveness of
going wider instead of deeper.

MoE Analysis
To investigate the reason why MoE cannot scale well on
smaller datasets like ImageNet-1K, we conduct two sets of
experiments on ViT-MoE and WideNet, respectively. Given
following hyper-parameters: (1) Number of training images
NI ; (2) Number of patch tokens per image Np; (3) Num-
ber of experts in each transformer block E; (4) Capacity ra-
tio C; (5) Number of experts selected in each transformer
block K, as we usually use a large λ, we can assume few to-
kens would be dropped when we are using C slightly larger
than 1.0. Then, we can approximate T ≈ NINpK

E . Existing
works (Riquelme et al. 2021; Yang et al. 2021) have shown
that decreasing NI , Np, K and C can induce a performance
drop. In the first set of experiments of this section, we scale
the number of experts in every transformer block E to con-
trol the tokens fed into each expert on ImageNet-1K.

Results are shown in Fig. 2. We observe that more experts
(trainable parameters) lead to overfitting although more ex-
perts mean stronger modeling capacity. Training accuracy is
lower than testing accuracy because of data augmentation
we introduced in the Experimental Settings Section.

To further verify that each expert requires varied tokens to
train, we conduct the second set of experiments on WideNet.
We define the transformer blocks using the same routing as-
signment that belongs to one group. To change the input di-
versity of each expert, each group includes more than one
transformer block. That is, the hidden representations cor-
responding to the same token would be fed into the same
expert within the same group. We set G groups in total and
each group includes D

G transformer blocks, where D is the
number of transformer blocks.

As shown in Fig. 3, when we use fewer groups, which
means we have fewer routing operations, there is an obvious
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Figure 2: Top-1 Accuracy of scaling the number of
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Figure 3: Top-1 Accuracy of scaling the number of
groups.

performance drop. We can suggest less diversified tokens are
fed to each expert because fewer groups mean less routing
and assignments. Therefore, more diversified tokens are re-
quired to train MoE based models on smaller datasets. More
importantly, such results show the effectiveness and neces-
sity of our design, routing at every transformer block.

Layer Norm Analysis

We are to analyze the reason why individual layer normal-
ization can improve performance in this section. Compared
with the vanilla transformer structure, we share trainable
matrixes in MHA and FFN (or MoE) layer across trans-
former blocks. The modeling capacity is compressed due
to the same trainable parameters across blocks. Although
WideNet uses the MoE layer to replace the FFN layer to
improve capacity, different blocks are still using the same
trainable parameters. Therefore, in WideNet, we encourage
more diversified input to represent various semantics in dif-
ferent transformer blocks. Compared with vanilla ViT, we
expect a larger variance of trainable vectors γ and β across
blocks. In this section, we are interested in layer normaliza-
tion before MoE or FFN.

Therefore, for ith element of trainable vector γ or β in jth
block, we compute the distance between this element and all
other elements of all vectors from other blocks. Taken γ as
example, we can formulate the value y we are interested in
as:

y =
1

MN2

N∑
j=1

M∑
m=1

N∑
n=1

I(j 6=n)|γij − γmn| (9)

where N is the number of transformer blocks, M is the di-
mension of vector γ or β.

In Fig. 4 and Fig. 5, we can observe that both γ and β
in WideNet have larger y than those in ViT, which means
MoE receives more diversified input than ViT. Such result
proves our assumption that individual normalization layer
can help to model various semantics model with shared large
trainable matrixes like MoE.

Model Top-1 Parameters

WideNet-B 77.5 29M
w/ shared Layer Norm 76.3 29M
w/o MoE layer Nan 9M
w/o parameter sharing 77.9 128M

WideNet-L 79.5 40M
w/ shared Layer Norm 78.3 40M
w/o MoE layer 76.9 15M
w/o parameter sharing 77.4 406M

WideNet-H 80.1 63M
w/ shared Layer Norm 76.6 63M
w/o MoE layer 79.0 23M
w/o parameter sharing OOM

Table 3: Top-1 Accuracy of ablation study on ImageNet-1K
to to investigate the contributions of our three key modifica-
tions (i.e., Independent Layer Normalization, scaling width
with MoE layer and compressing depth with parameter shar-
ing).

Ablation Study: Contributions of Key
Modifications
We first conduct the ablation study to investigate the con-
tributions of our three key modifications (i.e., Independent
Layer Normalization, scaling width with MoE layer, and
compressing depth with parameter sharing). The results are
reported in Table 3.

We first replace the individual layer normalizations with
the shared ones. We can observe there is a performance drop
with almost the same trainable parameters. Such observa-
tion shows the effectiveness of our design. In addition, we
recover the MoE layer to the FFN layer. Without the MoE
layer, the training would be extremely difficult with much
less trainable parameters. For example, WideNet-B without
MoE layer encounters gradient explosion, and there is a sig-
nificant performance drop. Finally, without parameter shar-
ing across transformer blocks, we can also observe a slight
performance drop and significant parameter increment. For
WideNet-H without parameter sharing, it encounters out-of-
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Figure 5: Divergence of β with LayerNorm layers.

Model #Blocks FFN dim Para Sharing Top-1 #Para Time

ViT-L 24 4096 × 77.5 305M 0.08K
ViT-L 24 4096

√
76.9 15M 0.07K

WideNet-L 12 4096
√

78.2 40M 0.07K

ViT-L 24 8192
√

75.8 24M 0.09K
WideNet-L 24 4096

√
79.5 40M 0.14K

Table 4: Ablation study on ImageNet-1K to evaluate our WideNet with comparable speed or computation cost. #Blocks is the
number of transformer blocks. FFN dim means the dimension of FFN layer. Para Sharing is whether we shared parameters
across transformer blocks. Time denotes to TPUv3 core days.

memory when training on 256 TPUv3 cores.

Ablation Study: Comparison with Comparable Speed or
Computation Cost As we set the number of selected ex-
perts K as 2 and capacity ratio C as 1.2 in WideNet, there is
extra computation cost than vanilla ViT. Therefore, we con-
duct a second set of ablation studies to evaluate our WideNet
with comparable speed or computation cost with the base-
lines.

As shown in Table 4, compared with ViT-L, WideNet-
L is more computation expensive. We can observe a train-
ing time increment. However, when WideNet-L uses fewer
transformer blocks (i.e., 12 blocks) than ViT-L, WideNet-L
outperforms ViT-L by 0.7% with slightly less training time
and 13.1% parameters, and, similarly, there is a larger per-
formance improvement than ViT-L with parameter sharing.
We also scale ViT-L using parameter sharing to a wider FFN
layer. Then, for each token, ViT-L would have comparable
computation with WideNet-L setting K as 2. We can see
scaling to more trainable parameters and FLOPs cannot im-
prove the performance of ViT-L, which also shows the ef-
fectiveness and necessity of our framework. Although ViT-L
has a comparable computation cost with WideNet for each
token, WideNet still spends more training time per epoch.
According to our experiments, there are two reasons, i.e.,
routing operation and C > 1.0. We leave optimize this as
our future work.

Conclusion
In this paper, we propose to go wider instead of deeper for
more efficient and effective parameter deployment. We im-
plement this plug and play framework as WideNet. Espe-
cially, WideNet first compresses trainable parameters along
with depth by parameter-sharing. To maximize the modeling
ability of each transformer block, we replace the FFN layer
with the MoE layer. Then, individual layer normalization
provides a more parameter-efficient way to transform se-
mantic representations across blocks. We show that WideNet
achieves the best performance by less trainable parameters
on both computer vision and natural language processing
backbones. In particular, on ImageNet-1K, our best model
achieves 80.1 Top-1 accuracy with only 63M parameters,
which outperforms ViT and ViT-MoE by a large margin. On
four natural language processing datasets, WideNet outper-
forms ALBERT by a large margin and surpass BERT with
less trainable parameters. Also, the investigation shows the
reason why MoE cannot scale well on smaller datasets. That
is, each expert requires enough tokens to train. Moreover, we
verified that individual normalization can transform hidden
representations to other domains for more diversified seman-
tics. In summary, we show that there is a great potential of
this framework to train more parameter-efficient models.
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