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Abstract

Obtaining a good similarity matrix is extremely important
in subspace clustering. Current state-of-the-art methods learn
the similarity matrix through self-expressive strategy. How-
ever, these methods directly adopt original samples as a set
of basis to represent itself linearly. It is difficult to accurately
describe the linear relation between samples in the real-world
applications, and thus is hard to find an ideal similarity ma-
trix. To better represent the linear relation of samples, we
present a subspace clustering model, Linearity-Aware Sub-
space Clustering (LASC), which can consciously learn the
similarity matrix by employing a linearity-aware metric. This
is a new subspace clustering method that combines metric
learning and subspace clustering into a joint learning frame-
work. In our model, we first utilize the self-expressive strat-
egy to obtain an initial subspace structure and discover a
low-dimensional representation of the original data. Subse-
quently, we use the proposed metric to learn an intrinsic sim-
ilarity matrix with linearity-aware on the obtained subspace.
Based on such a learned similarity matrix, the inter-cluster
distance becomes larger than the intra-cluster distances, and
thus successfully obtaining a good subspace cluster result.
In addition, to enrich the similarity matrix with more con-
sistent knowledge, we adopt a collaborative learning strategy
for self-expressive subspace learning and linearity-aware sub-
space learning. Moreover, we provide detailed mathematical
analysis to show that the metric can properly characterize the
linear correlation between samples.

Introduction
Subspace clustering has emerged as a powerful technique for
a variety of computer vision applications, including image
processing (Li et al. 2020a; Zhou et al. 2020; Lu 2021), mo-
tion segmentation (Liu et al. 2013), face clustering (Zhang
et al. 2020b,a; Peng et al. 2021), and gene expression anal-
ysis (McWilliams and Montana 2014), etc. Generally, sub-
space clustering models are based on the assumption that the
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whole samples are drawn from a union of multi-subspace,
and its purpose is to find these subspaces and arrange each
sample into its corresponding subspace.

In the past several years, several subspace clustering al-
gorithms have been developed (Nie et al. 2020; Kang et al.
2020b; Li et al. 2021). Among them, the spectral-based
method has achieved promising performance in the real-
world (Zhang et al. 2021; Lv et al. 2021). Especially, it is
well known that the Sparse Subspace Clustering (SSC) (El-
hamifar and Vidal 2013; Li, Kong, and Fu 2017) and Low-
Rank Representation (LRR) (Liu et al. 2013; Li et al. 2016)
are the state-of-the-art approaches and have the theoretical
guarantee, which belongs to the spectral-based method. In
addition, the spectral-based method is consists of two steps.
Firstly, learning a similarity matrix to represent the simi-
larity between samples by utilizing the original data. Then,
the spectral clustering algorithm is employed to segment the
learned similarity matrix and obtain the final clustering re-
sult. Moreover, it is worth noting that the success of sub-
space clustering generally relies on the learned similarity
matrix.

For the spectral-based method, SSC exploits the ℓ1-norm
to find a sparse representation from the original samples.
LRR adopts the nuclear norm to regularize the similarity
matrix for capturing the correlation structure of the original
data. Least Squares Regression (LSR) employs the Frobe-
nius norm to learn the similarity matrix. Its purpose is to en-
courage the grouping effect, which can group highly corre-
lated samples together (Lu et al. 2012). Block Diagonal Rep-
resentation (BDR) utilizes the k-block diagonal regularizer
to directly pursue a similarity matrix with a block-diagonal
structure (Lu et al. 2018).

In summary, all the above mentioned methods utilize
the self-expressive property of linear subspaces to gener-
ate the similarity matrix, that is, let the original n samples
X = [x1,x2, · · · ,xn] as a set of basis, the similarity ma-
trix C = [c1, c2, · · · , cn] can be learned by exploiting the
basis {x1,x2, · · · ,xn} to represent itself linearly. Mathe-
matically, the self-expressive is expressed as xi ≈ Xci for
i-th sample (You et al. 2020; Kang et al. 2020a; Peng et al.
2021). Moreover, different methods use various regulariza-
tions on C, their purpose is to make each sample to be rep-
resented only by samples in its own subspace. In many prac-
tical application scenarios, considering that real-world sam-
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Representation coefficient: ci

[ 0.388,    0,    0.332, 0.230, 0.074, -0.015, 0.006, 0.094, 0.014, -0.018, 0.059, 0.043, 0.015, 0.029, -0.073, -0.037, 0.010, -0.100, -0.013, 0.031 ] 

[0.172, 0.138, 0.164, 0.147, 0.155, 0.086,  0.069, 0.043, 0.017,  0.009,     0,         0,       0,        0,         0,         0,         0,         0,         0,        0     ]

Existing
situation

Ideal
situation

Sample: xi Original data: XSelf-expressive
xi=Xci

xi

X

class 1

class 1 class 2

Figure 1: Example on a subset with 2 classes and 20 samples
of the Extended Yale B dataset. For a given sample xi and an
original data X, xi can be approximately expressed as a lin-
ear representation of all original data X by self-expressive-
based subspace clustering methods. The representation coef-
ficient ci is obtained by SSC in the existing situation. We can
observe that the obtained coefficient is difficult to achieve
the ideal situation in reality (see red dashed box). Moreover,
the obtained representation does not accurately describe the
similarity between samples (see black dashed box).

ples may contain noise corruption, it is difficult to satisfy
such a purpose in practice (Peng et al. 2018; Xu et al. 2020).
In addition, self-expressive-based subspace clustering meth-
ods have largely ignored the precise description of the simi-
larity between samples, which will directly affect the quality
of the learned similarity matrix (see Fig. 1).

Towards addressing the above-mentioned problem,
metric-based subspace clustering methods have been pro-
posed to obtain a “good” similarity matrix (Yang et al.
2020; Wang et al. 2019; Liang et al. 2019). However, the
self-expressive-based strategy explores the degree of linear
correlation between samples to acquire the similarity ma-
trix. The existing metric-based subspace clustering methods
have not established an essential connection between self-
expressive and metric for subspace clustering, which can-
not well uncover the subspace structure of data (Zhang et al.
2018).

To avoid the loss of the connection between self-
expressive and metric, and to prevent the establishment of
the similarity matrix directly on the original data, in this
paper, we propose a new subspace clustering method (i.e.,
LASC) composed of a novel distance definition and a simi-
larity matrix learning. In particular, the proposed metric can
effectively measure the degree of linear correlation between
samples, and we also provide theoretical guarantees of the
property. To sufficiently discover subspace structure for
complex real-world data, the self-expressive is adopted to
discover an initial subspace (i.e., representation coefficient).
Linear correlation distance metric is then integrated into the
framework to guide and enhance the learning of similarity
matrix with linearity-aware on the learned representation co-
efficient. Especially, to enhance the learned similarity ma-
trix, self-expressive subspace learning and linearity-aware
subspace learning are combined for collaborative learning.
The overall flowchart of our model is shown in Fig. 2. The
main contributions of this paper are summarized as follows.

Figure 2: Overview of our LASC approach. Our model
first adopts the original data to learn an initial subspace,
which can find subspace structure for complex real-world
data. Second, we utilize the learned initial subspace to
guide the linearity-aware subspace learning. Third, we em-
ploy the learned linearity-aware subspace to guide the self-
expressive subspace learning, and it enhances the struc-
ture for learned subspace. Finally, self-expressive subspace
learning and linearity-aware subspace learning are used for
collaborative learning, and it captures an ideal similarity ma-
trix with more consistent information.

• A novel linearity-aware metric is proposed to measure
the degree of linear correlation between samples, and we
provide the theoretical analysis.

• We utilize a self-expressive strategy to learn an ini-
tial subspace structure, and further adopt the proposed
linearity-aware metric to guide and enhance the learned
subspace structure.

• We utilize a collaborative learning strategy to pursue the
similarity matrix, which can enrich the learned similarity
matrix with consistent information, and is conducive to
subsequent clustering tasks.

Linearity-Aware Subspace Clustering
We start this section by defining a linearity-aware metric,
and then giving the details of our objective function. More-
over, we present an optimization algorithm for the objective
function, and the complexity analysis is described.

Linearity-Aware Metric
As we all know, metrics have been widely used to accurately
obtain the similarity between samples for various data dis-
tribution, which can effectively adapt to complex real-world
data (Chen et al. 2018, 2021a). To accurately describe the
linear relationship between samples, we attempt to employ
metrics to guide the learning of the similarity matrix. Mo-
tivated by the fact that the Pearson correlation coefficient
can predict the linear correlation between variables (Benesty
et al. 2009). To effectively gain the degree of linear correla-
tion between samples, we first introduce the linearity-aware
metric by the following definition and then analyze its ad-
vantages.
Definition 1. (Linearity-Aware Metric) For a given data
matrix X ∈ Rm×n, where m is the dimension of the data,
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Figure 3: The comparison of Euclidean distance and our
proposed linearity-aware metric. For two classes of samples
(i.e., ai and bi), the distance between a5 and the same class
samples (i.e., a1, a2, a3 and a4) is d1 + d2 for Euclidean
distance. However, the distance between a5 and the differ-
ent class samples (i.e., b1, b2, b3 and b4) is d1 for Euclidean
distance. Thus, Euclidean distance is fail to measure the dis-
tance between samples. In contrast, linearity-aware metric
is defined in Eq. (1), which is an effective kernel function.
It can effectively measure the linearity-aware distance be-
tween samples.

and n is the number of the data points. For two arbitrary
sample xi, xj ∈ X, and xi − xi,xj − xj ̸= 0, where xi =

1
m

m∑
k=1

xk
i is the average value of i-th sample. The linearity-

aware metric between them is defined as:

D(xi,xj) = 1− (xi − xi)
⊤(xj − xj)

∥xi − xi∥2∥xj − xj∥2
. (1)

In the following, we are ready to theoretically analyze the
properties of the defined metric in Eq. (1), which can charac-
terize the degree of linear correlation between two samples.
We first give the following Theorem 1 regarding the bound-
edness of Eq. (1).

Theorem 1. (Boundedness of the Metric) For a given data
matrix X, it holds for all xi,xj ∈ X simultaneously that:

0 ≤ D(xi,xj) ≤ 2. (2)

The complete proof of the above theorem is presented in
the supplementary materials. To evaluate the degree of linear
correlation between samples, we state the linear relationship
for Definition 1 in the following theorem.

Theorem 2. (Linear Dependence of the Metric) For any
two samples xi and xj , when they satisfy:

D(xi,xj) ∈ {0, 2}, (3)
if and only if there is a linear relationship between xi and
xj , that is, existing u(u ̸= 0) and v such that xj = uxi + v
(or xi = uxj + v). Among them, when D(xi,xj) = 0, we
have u > 0. When D(xi,xj) = 2, we have u < 0.

The detailed proof is provided in the supplementary ma-
terials.

Remark 1: Theorem 2 shows that the metric we defined
can describe the strength of the linear relationship between
two samples. There are several explanations for this theo-
rem:

• When D(xi,xj) = 0, it is said that xi and xj are com-
pletely positive correlated. When D(xi,xj) = 2, xi and
xj are completely negative correlated.

• When D(xi,xj) = 1, that is, xi and xj are not corre-
lated.

• When 0 < D(xi,xj) < 1, it is said that xi and xj

have a “certain degree” of positive linear relationship, if
D(xi,xj) tends to 0, the degree of positive linear cor-
relation is higher. If D(xi,xj) tends to 1, the degree of
positive linear correlation is lower.

• When 1 < D(xi,xj) < 2, it is said that xi and xj

have a “certain degree” of negative linear relationship,
if D(xi,xj) tends to 2, the degree of negative linear cor-
relation is higher. If D(xi,xj) tends to 1, the degree of
negative linear correlation is lower.

According to the above Theorem 2, the results illustrate
that the linearity-aware metric D(xi,xj) can precisely char-
acterize the linear relationship between xi and xj . Com-
pared to the other metrics (e.g., ℓ1-norm, nuclear norm and
Frobenius norm), our proposed metric is essentially con-
nected to self-expressive, i.e., they are both to characterize
the linear correlation between samples. Therefore, we intro-
duce the linearity-aware metric into the subspace learning
framework to enhance and guide the subspace structure.

Remark 2: The similarity matrix is constructed by em-
ploying the self-expressive, which is a linear assumption
strategy, it makes the learned similarity matrix may not ac-
curately describe the degree of linear correlation between
samples. However, the linearity-aware metric can obtain the
degree of the linear correlation between samples well, it can
be illustrated in Fig. 3. Moreover, we naturally gain a “good”
subspace structure by using our proposed metric.

Problem Formulation
It is well known that the purpose of subspace clustering is
to discover underlying subspaces of the original data (You
et al. 2020; Kang et al. 2021; Fan 2021). Remarkably, the
self-expressive is generally conducted to represent itself to
gain representation coefficient (Kang et al. 2020b; Xiao et al.
2021; Wen et al. 2021). Its usual model can be formulated
as follows:
min
C

L1(X;C)︸ ︷︷ ︸
Initial Subspace Learning

= min
C

∥X−XC∥2F+λ1Φ(C), (4)

where λ1 is the tunable parameter. Φ(C) is a certain regular-
ization. For simplicity, we here choose the Frobenius norm
as a regularization (i.e., Φ(C) = ∥C∥2F ), which can preserve
the grouping effect and avoid the trivial solution.

The self-expressive-based subspace clustering method
has shown its superior performance in machine learning and
computer vision (Lu et al. 2018; Li et al. 2020a; Chen et al.
2021c), but there are two non-negligible drawbacks. One is
that it may fail to discover subspace structure sufficiently
when the original data is directly utilized to acquire the simi-
larity matrix (Liu and Yan 2011; Xu et al. 2021). The other is
that the self-expressive strategy is hard to describe the linear
relationship between samples for real-world data accurately,
it makes the learned similarity matrix may be inaccurate.
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To address the above-mentioned problems, we present a
novel LASC model in this paper. First, by exploiting the Eq.
(4) to learn a initial low-dimensional subspace C ∈ Rn×n.
Specifically, original data usually contains noisy or redun-
dant features (Li et al. 2020b; Zhang et al. 2020a; Pan et al.
2021), we use the representation coefficient C to represent
the original data X, thus alleviating the influence of redun-
dancy or noise (Zhou et al. 2019; Peng et al. 2019, 2020).
Then, motivated by the advance of adaptive neighbors learn-
ing (Nie, Wang, and Huang 2014; Wu et al. 2020), the i-th
sample ci can be connected to other samples with probabil-
ity sij , where sij is an element of similarity matrix S. If the
samples are close to each other, they have a higher similarity
score, and if they are far apart, they have a smaller similar-
ity score. To further boost the linear correlation of the self-
expressive strategy, the linearity-aware metric is utilized to
measure the representation coefficient, which can enhance
the learned subspace structure and performs well in practice.
Therefore, we have the following model:

min
S

L2(C;S)︸ ︷︷ ︸
Linearity-Aware Subspace Learning

=min
S

n∑
i=1

n∑
j=1

D2(ci, cj)sij + λ2Ψ(S),

s.t. s⊤i 1 = 1, 0 ≤ sij ≤ 1,

(5)

where λ2 is the parameter. For simplicity, the regularization
term Ψ(S) = ∥S∥2F is adopted to constrain the similarity
matrix S.

However, the nature data may contain different factors
(e.g.,occlusion, illumination and expression) (Yang et al.
2016). The single-step learning representation coefficient C
and similarity matrix S is not enough to eliminate the influ-
ence of those undesirable factors and obtain an ideal sim-
ilarity representation. Considering these reasons, we build
a collaborative learning framework to seek a ideal similar-
ity matrix with more consistent knowledge to promote the
subsequent clustering. Then, we utilize similarity matrix S
as the input of Eq. (4) to learn representation coefficient C.
Thus, we have:
min
C

L1(S;C)︸ ︷︷ ︸
Self-Expressive Subspace Learning

= min
C

∥S−SC∥2F+λ1Φ(C).

(6)
Finally, we present a greedy process to alternate multi-

ple times learn the similarity matrix, inspired by the recur-
sive thoughts, the single-layer mode can only discover the
“shallow” features, which cannot discover deep hidden fea-
tures and hierarchical information. We adopt a collaborative
learning strategy to obtain the final ideal similarity matrix by
Eq. (5) and Eq. (6), which can make a good input more con-
ductive to obtaining a good result, and a stable solution can
be acquired by alternating multiple times. Thus, we propose
Linearity-Aware Subspace Clustering (LASC) model:

min
C,S

L2(C;S)︸ ︷︷ ︸
Linearity-Aware Subspace Learning

+ L1(S;C)︸ ︷︷ ︸
Self-Expressive Subspace Learning

,

s.t. s⊤i 1 = 1, 0 ≤ sij ≤ 1, (7)

Algorithm 1: Subspace Segmentation via LASC
Input: The data matrix X, parameters λ1, λ2, the number of
subspaces k and maximal iteration number T .
Initialize: C0 = S0 = 0 and ε1 = 10−4, ε2 = 10−5.
Obtain the initial subspace: Learning the initial subspace C
of X by adopting Eq. (9).
While not converge (t = 0, 1, · · · , T ) do

1). Obtain the linearity-aware subspace: Learning the
linearity-aware subspace St+1 of Ct by adopting Eq. (16).

2). Obtain the self-expressive subspace: Learning the
subspace Ct+1 of St+1 by adopting Eq. (20).

3). Check convergence: If
max{

∑n
i=1

∑n
j=1 D2(ct+1

i , ct+1
j )st+1

ij /∥X∥F ,
∥St+1 − St+1Ct+1∥2F /∥X∥2F } < ε1
and max{∥St+1 − St∥F , ∥Ct+1 −Ct∥F } < ε2,
then break.

End while
Obtain the affinity matrix by |S⋆|+ |(S⋆)⊤|.
Apply the spectral clustering algorithm (Ng, Jordan, and
Weiss 2002) to segment the data into k subspaces.
Output: The final clustering result.

Optimization
Once given the proper values of parameters λ1 and λ2, we
first compute the representation coefficient C by utilizing
Eq. (4). Then, we can adopt iteratively strategies to optimize
the problems (5) and (6).

Step 1: The variable C of problem (4) can be solved by
the following problem:

C0 = argmin
C

∥X−XC∥2F + λ1∥C∥2F , (8)

the above problem is the well-known ridge regression(Yang
et al. 2016; Chen et al. 2021b). We take the derivative of the
Eq. (8) w.r.t. Z, and setting the derivative to zero. It has a
closed-form solution:

C0 = (X⊤X+ λ1I)
−1X⊤X. (9)

Step 2: The variable S of the problem (5) can be opti-
mized by solving the following optimization problem:

St+1 =argmin
S

n∑
i=1

n∑
j=1

D2(cti, c
t
j)sij + λ2∥S∥2F ,

s.t. s⊤i 1 = 1, 0 ≤ sij ≤ 1.

(10)

By defining dtij = D2(cti, c
t
j) for the convenience of nota-

tion, the above problem can be further rewritten as following
independent problem:

st+1
i =argmin

si

∥si +
1

2λ2
dt
i∥22,

s.t. s⊤i 1 = 1, 0 ≤ sij ≤ 1.

(11)

To solve the Eq. (11), the Lagrangian function of Eq. (11)
is shown below:

f(si, µ, ν) =
1

2
∥si+

1

2λ2
di∥22−µ(s⊤i 1−1)−ν⊤si, (12)

where µ and ν are Lagrangian multipliers. When the La-
grange multipliers are µ⋆ and ν⋆, suppose the optimal solu-
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Datasets # of Classes Samples per Class # of Features

MNIST 10 1000 784
USPS 10 500 256

COIL100 100 72 1024
CIFAR10 10 800 2048
ExYaleB 38 64 1024

Table 1: Description of datasets

tion of the Eq. (12) is s⋆i . Based on the Karush-Kuhn-Tucker
(KKT) conditions, for ∀j, we can obtain:

s⋆ij +
1

2λ2
dij − µ⋆ − ν⋆j = 0,

s⋆ij ≥ 0,

ν⋆j ≥ 0,

s⋆ijν
⋆
j = 0.

(13)

Due to 1⊤s⋆i = 1 and s⋆i + 1
2λ2

di − µ⋆1 − ν⋆ = 0, we

obtain µ⋆ =
1+

1⊤di
2λ2

−1⊤ν

n . Therefore, we gain the optimal
solution:

s⋆i = (− 1

2λ2
di +

1

n
1+

1⊤di

2nλ2
1− 1⊤ν

n
1) + ν. (14)

For the convenience of notation, we denote d̂i =

− 1
2λ2

di +
1
n1 + 1⊤di

2nλ2
1 and ν̂ = 1⊤ν

n 1. Then, the Eq. (14)
can be rewrite as below:

s⋆i = d̂i − ν̂⋆ + ν⋆. (15)
Obviously, for ∀j, we get:

s⋆ij = d̂ij − ν̂⋆ + ν⋆j = max(d̂ij − ν̂⋆, 0). (16)

Then, we obtain s⋆j = max(d̂j − ν̂⋆, 0). Similarly, we
have ν⋆j = max(ν̂⋆ − d̂j , 0). To obtain the solution ν̂⋆, we
define a function as below:

g(ν̂) =
1

n

n∑
j=1

max(ν̂ − d̂j , 0)− ν̂. (17)

According to ν⋆ ≥ 0, g′(ν̂) ≤ 0 and g′(ν̂) is a convex
function and piecewise linear function, the Newton method
is utilized to acquire the root ν̂⋆ of g(ν̂) = 0, which means:

ν̂t+1 = ν̂t − g(ν̂)t

g′(ν̂)t
, (18)

where t is the number of iteration.
Step 3: The variable C of problem (6) can be updated by:
Ct+1 = argmin

C
∥St+1 − St+1C∥2F + λ1∥C∥2F , (19)

Calculating the derivative of the above Eq. (19) w.r.t. C and
setting it to zero, we obtain:

Ct+1 =
[
(St+1)⊤St+1 + λ1I

]−1

(St+1)⊤St+1. (20)

Overall, we summarize the whole optimization procedure
in Algorithm 1.

Complexity Analysis
We assess the computational complexity of Algorithm 1.
The major computational burden depends on the optimiza-

tion of C and S. Specifically, step 1 contains matrix multi-
plication and matrix inversion operations for obtaining ma-
trix C, and its complexity is O(mn2 + n3), where m and
n are the dimension of the data and the number of the
data points, respectively. We need O(mn + n2) for updat-
ing matrix S of step 2. The step 3 can be solved by Eq.
(20), whose computational complexity is O(n3). To sum-
marize, the overall computational complexity of Algorithm
1 is O(mn2 + n3 + t(mn + n3)), here t is the number of
collaborations.

Experimental Results
Experimental Settings
Datasets: In our experiments, five benchmark datasets are
selected, including two handwritten digits datasets MNIST1

and USPS2, two object recognition datasets COIL1003

and CIFAR104, and an face image dataset Extended Yale
B(ExYaleB)5.

In addition, to achieve better performance on the CI-
FAR10 dataset, we extract features from the CIFAR10
dataset following the same setting in (Xu et al. 2020). In
this paper, we randomly selected 1000, 500, and 800 sam-
ples for each class from the MNIST, USPS and CIFAR10
datasets, respectively. Table 1 introduces the information
of these benchmark datasets, which are used in our exper-
iments.

Compared Methods: We compare our proposed LASC al-
gorithm against the following four spectral-based subspace
clustering methods, including SSC (Elhamifar and Vidal
2013), LSR (Lu et al. 2012), LRR (Liu et al. 2013) and EnSC
(You et al. 2016). Three metric-based subspace clustering
strategies are also adopted, including FGNSC (Yang et al.
2020), OSC (Wang et al. 2019) and autoSC (Liang et al.
2019).

For all above mentioned algorithms, the parameters are
tuned by the cross validation technique to guarantee their
possibly optimal performance 6.

Evaluation Measures: To evaluate the performance of
different subspace clustering methods, we employ two popu-
lar metrics to evaluate clustering performance, each of which
favors different properties of clustering, including Accuracy
(ACC) and Normalized Mutual Information (NMI), the de-
tailed definitions of ACC and NMI can be seen in (Xu et al.
2021). The above two metrics both lie in the range of [0, 1],
and the higher value indicates better clustering performance.
Note that for fair comparisons, we report the mean values
and standard derivations of 10 independent trials.

1http://yann.lecun.com/exdb/mnist/
2https://paperswithcode.com/dataset/usps
3https://www1.cs.columbia.edu/CAVE/software/softlib/coil-

100.php
4https://www.cs.toronto.edu/ kriz/cifar.html
5http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html
6The following parameters should be tuned: SSC (γ and δ),

LSR (λ), LRR (λ), EnSC (λ and γ), FGNSC (η, γ and µ), OSC
(α, β and δ), and autoSC (m and K̂).
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Classes Metrics & Para. SSC LSR LRR EnSC FGNSC OSC autoSC LASC

6
ACC 0.565±0.014 0.642±0.008 0.664±0.015 0.655±0.023 0.679±0.026 0.685±0.024 0.694±0.022 0.727±0.021
NMI 0.498±0.035 0.532±0.011 0.596±0.009 0.648±0.017 0.653±0.021 0.656±0.019 0.673±0.026 0.703±0.015
Para. 0.001, 0.1 0.3 0.05 0.05, 0.1 20, 8, 1 0.2, 0.01, 0.002 8, 10 0.5, 1000

8
ACC 0.563±0.009 0.623±0.011 0.637±0.021 0.558±0.028 0.658±0.027 0.652±0.027 0.679±0.028 0.693±0.025
NMI 0.594±0.007 0.568±0.015 0.588±0.017 0.616±0.022 0.622±0.020 0.630±0.019 0.651±0.026 0.678±0.020
Para. 0.002, 0.05 0.6 0.02 0.1, 0.001 20, 8, 1 0.5, 0.04, 0.002 8, 15 1, 5000

10
ACC 0.465±0.012 0.486±0.016 0.524±0.009 0.563±0.025 0.554±0.015 0.548±0.012 0.560±0.016 0.581±0.011
NMI 0.527±0.021 0.445±0.014 0.509±0.006 0.572±0.009 0.547±0.018 0.535±0.017 0.559±0.012 0.594±0.016
Para. 0.8, 0.01 0.7 0.1 0.5, 0.02 20, 8, 1 0.2, 0.04, 0.002 8, 20 0.1, 1000

6 ACC 0.804±0.003 0.722±0.006 0.721±0.002 0.742±0.008 0.824±0.012 0.842±0.005 0.872±0.008 0.861±0.009
NMI 0.791±0.002 0.763±0.003 0.778±0.003 0.813±0.009 0.805±0.017 0.810±0.007 0.855±0.012 0.842±0.006
Para. 1, 10 1 0.05 0.9, 0.001 25, 10, 1 0.3, 0.03, 0.002 15, 10 0.5, 1000

8
ACC 0.783±0.006 0.759±0.005 0.766±0.002 0.771±0.009 0.802±0.007 0.817±0.005 0.831±0.008 0.847±0.010
NMI 0.812±0.007 0.747±0.003 0.758±0.008 0.815±0.003 0.827±0.010 0.806±0.004 0.814±0.004 0.836±0.005
Para. 5, 0.1 0.1 0.0001 0.05, 0.001 25, 10, 1 0.1, 0.05, 0.002 15, 15 0.5, 500

10
ACC 0.776±0.006 0.721±0.002 0.727±0.004 0.769±0.006 0.784±0.021 0.785±0.013 0.796±0.012 0.821±0.012
NMI 0.796±0.003 0.699±0.011 0.703±0.007 0.791±0.008 0.812±0.018 0.798±0.013 0.802±0.008 0.822±0.009
Para. 0.1, 0.002 0.5 0.01 0.2, 1 25, 10, 1 0.2, 0.02, 0.002 15, 20 0.1, 500

80
ACC 0.395±0.056 0.384±0.036 0.397±0.044 0.430±0.047 0.452±0.042 0.445±0.047 0.438±0.051 0.505±0.046
NMI 0.689±0.053 0.605±0.042 0.665±0.058 0.717±0.033 0.735±0.048 0.716±0.057 0.733±0.058 0.787±0.052
Para. 0.002, 0.5 1 0.2 0.2, 2 20, 10, 1 0.4, 0.01, 0.002 20, 80 0.5, 10000

100
ACC 0.384±0.040 0.375±0.034 0.362±0.035 0.426±0.041 0.447±0.037 0.426±0.034 0.419±0.041 0.473±0.037
NMI 0.674±0.049 0.589±0.046 0.602±0.041 0.682±0.040 0.701±0.035 0.696±0.048 0.675±0.031 0.755±0.031
Para. 0.0001, 0.05 0.7 0.05 0.05, 0.01 25, 8, 1 0.5, 0.03, 0.002 20, 100 0.05, 50000

8
ACC 0.723±0.024 0.779±0.022 0.765±0.021 0.761±0.019 0.805±0.023 0.836±0.021 0.812±0.027 0.829±0.019
NMI 0.618±0.012 0.634±0.016 0.625±0.023 0.630±0.017 0.651±0.031 0.678±0.025 0.656±0.022 0.682±0.023
Para. 2, 0.002 0.4 0.2 0.8, 0.001 20, 8, 1 0.2, 0.04, 0.002 10, 15 1, 1000

10
ACC 0.745±0.014 0.783±0.017 0.779±0.022 0.773±0.014 0.792±0.018 0.804±0.026 0.803±0.021 0.814±0.018
NMI 0.663±0.024 0.659±0.011 0.657±0.027 0.669±0.025 0.673±0.031 0.685±0.024 0.693±0.027 0.712±0.026
Para. 5, 0.1 0.4 0.01 0.1, 0.5 25, 10, 1 0.2, 0.01, 0.002 10, 20 5, 500

30
ACC 0.658±0.014 0.642±0.027 0.639±0.029 0.662±0.018 0.676±0.018 0.685±0.028 0.703±0.024 0.735±0.032
NMI 0.652±0.031 0.663±0.026 0.649±0.033 0.648±0.024 0.681±0.035 0.702±0.037 0.721±0.029 0.758±0.035
Para. 0.001, 0.02 0.8 0.05 0.6, 0.005 20, 8, 1 0.4, 0.02, 0.002 8, 30 0.5, 1

38
ACC 0.627±0.021 0.665±0.004 0.624±0.028 0.672±0.028 0.686±0.025 0.699±0.027 0.715±0.019 0.742±0.024
NMI 0.632±0.016 0.625±0.007 0.636±0.021 0.653±0.011 0.684±0.027 0.715±0.039 0.746±0.022 0.768±0.019
Para. 0.01, 0.5 0.2 0.5 0.8, 0.1 20, 8, 1 0.3, 0.04, 0.002 8, 40 0.5, 0.5

Table 2: Performance comparison of all compared methods on the five benchmark datasets. From top to bottom, they are
MNIST, USPS, COIL100, CIFAR10 and ExYaleB, respectively.

Clustering Performance and Analysis

To sufficiently evaluate the performance of our proposed
method on the five benchmark datasets, for MNIST, USPS,
COIL100, CIFAR10 and ExYaleB datasets, k = 6, 8, 10,
k = 6, 8, 10, k = 80, 100, k = 8, 10, and k = 30, 38 classes
are randomly selected as the data matrix X, respectively. Ta-
ble 2 presents the clustering results and the tuned parameters
of all tested approaches.

From Table 2, we can draw the following conclusions.
Our LASC performs much better than the compared meth-
ods of almost all metrics on the five benchmark datasets,
validating the effectiveness and superiority of our pro-
posed LASC method. For example, on the COIL100 dataset
with 100 classes, LASC obtains about 0.47 ACC and 0.75
NMI, which are about 0.03 and 0.05 higher than those of
the second-best algorithm, respectively. Metric-based sub-
space clustering algorithms (i.e., FGNSC, OSC, auto-SC
and LASC) yield better clustering results in comparison with
spectral-based subspace clustering algorithms (i.e., SSC,
LSR, LRR and EnSC) in most cases, which shows the im-
portance of integrating metric learning into the subspace
clustering model. LASC achieves better than the advanced
metric-based subspace clustering methods FGNSC, OSC
and auto-SC in most cases. This demonstrates that LASC
is superior to existing metric-based methods for subspace
clustering.

In order to further provide an intuitive illustration of the

effectiveness of our models, we utilize t-distributed Stochas-
tic Neighbor Embedding (t-SNE) to show the distribution
of the similarity matrices learned by different algorithms
on the handwritten digits dataset USPS. From the experi-
mental results shown in Figure 5, we can observe that our
LASC model gains a more compact and accurate class clus-
ter than the other methods (i.e., SSC, LSR, LRR and OSC).
It demonstrates that the similarity matrix learned by our
model is more suitable for subsequent clustering tasks than
the other methods.

... ......
class 1 class 2 class 3

... ......
class 1 class 2 class 3

Figure 4: Visualization of the learned representation coeffi-
cients on the COIL100 dataset with 3 classes and 60 sam-
ples. From left to right, they are SSC and LASC methods,
respectively.
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Figure 5: Visualization of the learned similarity matrices of different methods on the USPS dataset via t-SNE. From left to right,
they are SSC, LSR, LRR, OSC and LASC, respectively.

Figure 6: Visualization of the learned similarity matrices by using the proposed LASC method on ExYaleB dataset with 10
classes. From left to right, t = 1, 5, 20 and 50, respectively.

The Analysis of Representation Coefficient
To further investigate the effectiveness of our LASC ap-
proach, we conduct experiments by showing the learned rep-
resentation coefficient on the COIL100 dataset. Here, the 3
classes are utilized in this example. We randomly select 20
samples from each class, and treat each sample as a column
to form original data X ∈ R1024×60. Then, the representa-
tion coefficients for a sample x2 are obtained by SSC and
LASC methods, and are illustrated in Figure 4. The x-axis
represents index value, and y-axis represents representation
coefficient. From the results, the large coefficient values do
not ideally concentrate on the first subpart (i.e., the sample
x2 is derived from class 1) as expected for SSC. However,
the coefficient values obtained by our method are very large
in class 1, which accurately reflects the similarity between
samples. It will contribute to the subsequent clustering tasks.

Influence of the Number of Collaboration
To analyze the benefit of collaborative learning the similar-
ity matrix S of our LASC, in this subsection, we visually
present some examples of the learned similarity matrix by
different numbers of collaborations t. Without loss of gen-
erality, we show the similarity matrix on ExYaleB dataset
with 10 classes, where we consider the cases of t = 1, 5, 20
and 50, respectively. Figure 6 shows these learned similarity
matrices. Obviously, we can observe that the collaborative
learning strategy can improve the clustering performance
because the performance increases with t. Hence, it well
demonstrates the effectiveness of the collaborative strategy.

Comparison of Running Time
Figure 7 illustrates the running time of different algorithms
on five benchmark datasets. We can find that the running
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Figure 7: Running time of different approaches on the five
benchmark datasets.

time of our LASC model is roughly at the same level as most
self-expressive-based algorithms (e.g., SSC and LRR) under
comparison. In addition, our LASC model is much faster
than metric-based methods on the five datasets. We can con-
clude that, compared with the state-of-the-art methods, our
model is able to greatly improve the clustering performance
without increasing the running time.

Conclusion
To enhance self-expressive to characterize the linear corre-
lation between samples in subspace clustering, this article
proposed a linearity-aware metric that overcomes the diffi-
culty mentioned above, and the proposed metric is integrated
into the subspace clustering model. In addition, we theo-
retically illustrated that the proposed linearity-aware metric
could measure the linear correlation between samples. Then,
we utilized collaboration strategy to learn the self-expressive
subspace and linearity-aware subspace, and discovered an
ideal similarity matrix, thereby leading to the superior per-
formance of the subsequent clustering results.
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