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Abstract

We study the problem of safe offline reinforcement learning
(RL), the goal is to learn a policy that maximizes long-term re-
ward while satisfying safety constraints given only offline data,
without further interaction with the environment. This problem
is more appealing for real world RL applications, in which
data collection is costly or dangerous. Enforcing constraint
satisfaction is non-trivial, especially in offline settings, as there
is a potential large discrepancy between the policy distribution
and the data distribution, causing errors in estimating the value
of safety constraints. We show that naïve approaches that com-
bine techniques from safe RL and offline RL can only learn
sub-optimal solutions. We thus develop a simple yet effective
algorithm, Constraints Penalized Q-Learning (CPQ), to solve
the problem. Our method admits the use of data generated by
mixed behavior policies. We present a theoretical analysis and
demonstrate empirically that our approach can learn robustly
across a variety of benchmark control tasks, outperforming
several baselines.

Introduction
Reinforcement Learning (RL) has achieved great success in
solving complex tasks, including games (Mnih et al. 2013;
Silver et al. 2017), and robotics (Levine et al. 2016). However,
most RL algorithms learn good policies only after millions
of trials and errors in simulation environments. Consider
real-world scenarios (e.g. self-driving cars, industrial control
systems), where we only have a batch of pre-collected data
(non-optimal), including some unsafe attempts (e.g. high-
speed collisions in self-driving cars), no further active online
data collection is allowed. The question then arises: how can
we derive an effective policy from these offline data while
satisfying safety constraints?

Safe RL is usually modeled as a Constrained Markov De-
cision Process (CMDP) (Altman 1999). There are typically
two kinds of constraints: hard constraints and soft constraints.
Hard constraints require no constraints violation at each time
step of the trajectory, while soft constraints require the policy
to satisfy constraints in expectation throughout the whole tra-
jectory. In this work, we focus on the soft constraints. There
is a branch of related work for safe RL, with the main focus
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on safe exploration (Chow et al. 2017; Achiam et al. 2017;
Tessler, Mankowitz, and Mannor 2018). However, none of
these algorithms are off-policy and cannot be used in offline
settings. Although one recent study aims towards batch policy
learning under constraints (Le, Voloshin, and Yue 2019), this
method assumes sufficient exploration of the data collection
policy. This requirement usually does not hold in real-world
scenarios, especially in high-dimensional continuous control
tasks.

The key challenge is how to evaluate constraint viola-
tions accurately while maximizing reward effectively. Typ-
ically, this needs to roll out the policy in the environment
and evaluate constraint values by on-policy samples (Tessler,
Mankowitz, and Mannor 2018). However, it is impossible
in the offline setting, as we only have access to samples in
the offline dataset. Evaluating constraint values from offline
data is non-trivial, it will encounter serious issues when the
evaluated policy lies outside of the dataset distribution. In
value-based RL approaches, this may introduce errors in
the Q-function backup and it is impossible to collect online
data to correct such errors. The problem will be further ex-
acerbated when the offline dataset is generated by multiple
conflicting behavior policies, as the policy may be biased to
be unsafe or sub-optimal.

One can use an extra cost critic (like the reward critic)
to learn the constraint values, and use a divergence penalty
to control the deviation between the learned policy and the
dataset distribution. However, we show that this naïve method
is too conservative and will lead to a sub-optimal solution.
Our primary contribution is presenting a new algorithm, Con-
straints Penalized Q-Learning (CPQ), to address the above
challenges. The intuition is that besides those original unsafe
actions, we additionally make those actions that are out of the
data distribution unsafe. To accomplish this, we modify the
Bellman update of reward critic to penalize those state action
pairs that are unsafe. CPQ does not use an explicit policy
constraint and will not be restricted by the density of the
dataset distribution, it admits the use of datasets generated by
mixed behavior policies. We also provide a theoretical error
bound analysis of CPQ under mild assumptions. Through
systematic experiments, we show that our algorithm can learn
robustly to maximize rewards while successfully satisfying
safety constraints, outperform all baselines in benchmark
continuous control tasks.
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Related Work
Safe Reinforcement Learning
Safe RL can be defined as the process of learning policies
that maximizes long-term rewards while ensuring safety con-
straints. When Markov transition probability is known, a
straightforward approach is based on linear programming
(Altman 1999). In model-free settings, Lagrangian-based
methods (Chow et al. 2017; Tessler, Mankowitz, and Man-
nor 2018) augment the standard expected reward objective
with a penalty of constraint violation and solve the resulting
problem with a learnable Lagrangian multiplier. However,
Lagrangian-based policy can only asymptotically satisfy the
constraint and makes no safety guarantee during the training
process when interaction with the real-world environment is
required1. Constrained policy optimization (CPO) (Achiam
et al. 2017) extends trust-region optimization (Schulman et al.
2015), which can satisfy constraints during training, but the
computational expense dramatically increases with multi-
ple constraints. There are some other approaches designed
for convex constraints (Miryoosefi et al. 2019) or hard con-
straints (Dalal et al. 2018; Satija, Amortila, and Pineau 2020).
However, all of these algorithms are on-policy, thus cannot
be applied to the offline setting. Constrained Batch Policy
Learning (CBPL) (Le, Voloshin, and Yue 2019) considers
safe policy learning offline, it uses Fitted Q Evaluation (FQE)
to evaluate the safe constraints and learn the policy by Fitted
Q Iteration (FQI), through a game-theoretic framework.

Offline Reinforcement Learning
Offline RL (also known as batch RL (Lange, Gabel, and Ried-
miller 2012) or fully off-policy RL) considers the problem of
learning policies from offline data without interaction with
the environment. One major challenge of offline RL is the
distributional shift problem (Levine et al. 2020), which in-
curs when the policy distribution deviates largely from the
data distribution. Although off-policy RL methods (Mnih
et al. 2013; Lillicrap et al. 2016) are naturally designed for
tackling this problem, they typically fail to learn solely from
fixed offline data and often require a growing batch of on-
line samples for good performance. Most recent methods
attempted to solve this problem by constraining the learned
policy to be “close” to the behavior policy. BCQ (Fujimoto,
Meger, and Precup 2019) learns a generative model for the be-
havior policy and adds small perturbations to it to stay close
to the data distribution while maximizing the reward. Some
other works use divergence penalties (such as KL divergence
in BRAC (Wu, Tucker, and Nachum 2019) or maximum
mean discrepancy (MMD) in BEAR (Kumar et al. 2019))
instead of perturbing actions. CQL (Kumar et al. 2020) uses
an implicit Q-value constraint between the learned policy
and dataset samples, which avoids estimating the behavior
policy. The distributional shift problem can also be solved
by model-based RL through a pessimistic MDP framework
(Yu et al. 2020; Kidambi et al. 2020; Zhan et al. 2021) or
by constrained offline model-based control (Argenson and
Dulac-Arnold 2021; Zhan, Zhu, and Xu 2021).

1This property does not impact offline RL settings, as the training
process does not involve online environment interaction.

Preliminary
Background
A Constrained Markov Decision Process (CMDP) is repre-
sented by a tuple (S,A, r, c, P, γ, η), where S ⊂ Rn is the
closed and bounded state space and A ⊂ Rm is the action
space. Let r : S × A 7→ [0, R] and c : S × A 7→ [0, C] de-
note the reward and cost function, bounded by R and C. Let
P : S×A×S 7→ [0, 1] denote the (unknown) transition prob-
ability function that maps state-action pairs to a distribution
over the next state. Let η denote the initial state distribution.
And finally, let γ ∈ [0, 1) denote the discount factor for fu-
ture reward and cost. A policy π : S 7→ P(A) correspounds
to a map from states to a probability distribution over ac-
tions. Specifically, π(a|s) denotes the probability of taking
action a in state s. In this work, we consider parametrized
policies (e.g. neural networks), we may use πθ to emphasize
its dependence on parameter θ. The cumulative reward un-
der policy π is denoted as R(π) = Eτ∼π[

∑∞
t=0 γ

tr(st, at)],
where τ = (s0, a0, s1, a1, ...) is a trajectory and τ ∼ π
means the distribution over trajectories is induced by pol-
icy π. Similarly, the cumulative cost takes the form as
C(π) = Eτ∼π[

∑∞
t=0 γ

tc(st, at]].
Off-policy RL algorithms based on dynamic program-

ming maintain a parametric Q-function Qφ(s, a). Q-learning
methods (Watkins and Dayan 1992) train the Q-function
by iteratively applying the Bellman optimality operator
T ∗Q(s, a) := r(s, a) + γEs′ [maxa′ Q(s′, a′)]. In an actor-
critic algorithm, the Q-function (critic) is trained by iterat-
ing the Bellman evaluation operator T πQ = r + γPπQ,
where Pπ is the transition matrix coupled with the policy:
PπQ(s, a) = Es′∼T (s′|s,a),a′∼π(a′|s′) [Q (s′, a′)], and a sep-
arate policy is trained to maximize the expected Q-value.
Since the replay buffer typically does not contain all possible
transitions (s, a, s′), the policy evaluation step actually uses
an empirical Bellman operator that only backs up a single
sample s′. Notice that π is trained to maximize Q-values,
it may be biased towards out-of-distribution (OOD) actions
with erroneously high Q-values. In standard (online) RL, such
errors can be corrected by interacting with the environment
and observing its actual value.

In our problem, we assume no interaction with the en-
vironment and only have a batch, offline dataset B =
(s, a, s′, r(s, a), c(s, a)), generated by following unknown
arbitrary behavior policies. Note that these behavior poli-
cies may generate trajectories that violate safety constraints.
We use πβ to represent the empirical behavior policy of the

dataset, formally, πβ(a0|s0) :=
∑

s,a∈B 1[s=s0,a=a0]∑
s∈B 1[s=s0] , for all

state s0 ∈ B. We use µβ(s) to represent the discounted
marginal state-distribution of πβ(a|s), thus the dataset B is
sampled from µβ(s)πβ(a|s). The goal of safe offline learning
is to learn a policy π from B that maximizes the cumulative
reward while satisfying the cumulative cost constraint, de-
noted as

max
π

R(π)

s.t. C(π) ≤ l
where l is the safe constraint limit (a known constant).
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An Naïve Approach
An naïve approach to solve safe offline RL is combining tech-
niques from safe RL and offline RL. For example, we could
train an additional cost critic Q-network (to get the value
of cumulative cost like in (Liang, Que, and Modiano 2018;
Ha et al. 2020)), along with a divergence constraint to pre-
vent large distributional shift from πβ . Formally, we update
both the reward and cost critic Q-network by the empirical
Bellman evaluation operator T π for (s, a, s′, r, c) ∼ B:

Qr(s, a) = r + γEa′∼π(·|s′) [Qr(s
′, a′)]

Qc(s, a) = c+ γEa′∼π(·|s′) [Qc(s
′, a′)]

and then the policy can be derived by solving the following
optimization problem:

πθ := max
π∈∆|S|

Es∼B,a∼π(·|s) [Qr(s, a)]

s.t. Es∼B,a∼π(·|s) [Qc(s, a)] ≤ l (Constraint 1)

D (π, πβ) ≤ ξ (Constraint 2)

D can be any off-the-shelf divergence metrics (e.g., KL diver-
gence or MMD distance) and ξ is an approximately chosen
small value. We can convert the constrained optimization
problem to an unconstrained form by using the Lagrangian
relaxation procedure, and solve it by dual gradient descent.

However, we argue that in this approach, Constraint 1 and
Constraint 2 may not be satisfied simultaneously. Suppose
B consists of transitions from both safe and unsafe policies.
When the policy π satisfies Constraint 2, it will match the
density of the behavior policy distribution, when the behavior
policy distribution contains some unsafe actions, the result-
ing policy may violate Constraint 1. One may consider to
subtract transitions of the safe policy from B to construct a
new "safe dataset", and only use it for training. Although in
this case, Constraint 1 and Constraint 2 can be both satisfied,
however, the missing of high-reward transitions will make the
resulting policy sub-optimal. In principle, by carefully "stitch-
ing" together transitions from both safe and unsafe policies,
the policies ought to produce trajectories with maximized
cumulative reward while still satisfying safety constraints.

Constraints Penalized Q-Learning
In this section, we introduce our method, Constraints Pe-
nalized Q-Learning (CPQ), a simple yet effective algorithm
for safe offline RL. The key idea is to make OOD actions
"unsafe" and update the reward critic using only state-action
pairs that are "safe". CPQ avoids explicit policy constraints,
it involves the following three steps:
Step 1: We first make Qc-values of OOD actions larger than
the safe constraint limit, we accomplish this by adding an ad-
ditional term to the original objective of Bellman evaluation
error, yielding a new objective:

min
Qc

Es,a,s′∼B
[
(Qc − T πQc)2

]
− αEs∼B,a∼ν [Qc(s, a)]

(1)
Aside from the standard Bellman evaluation error term, Equa-
tion (1) also maximizes the Qc-values at all states in the
dataset B, for those actions induced from the distribution ν.

Intuitively, if we choose ν to be a distribution that generates
OOD actions, those OOD actions’ Qc-values will be pushed
up. Note that the Qc-values of in-distribution actions would
be pushed down to obey the Bellman backup by the standard
Bellman error term. Therefore, with an appropriate weight α,
we will only overestimate Qc-values of OOD actions, while
keep them unchanged for in-distribution actions.

The remaining question is how to get the distribution ν
that generates OOD actions. We avoid this hard problem by
performing the OOD detection (Ren et al. 2019; Liu et al.
2020). As the policy π is trained to maximize the reward
critic, we only need to ensure that actions sampled by π are
not OOD. To do so, we pretrain the Conditional Variational
Autoencoder (CVAE) to model the behavior policy of the
dataset and utilize the latent space to do OOD detection.
More specifically, we train the state-conditional VAE based
on the following evidence lower bound (ELBO) objective on
the log-likelihood of the dataset:

max
ω1,ω2

Ez∼qω2
[log pω1(a|s, z)]− βDKL [qω2(z|s, a)‖pω1(z)]

(2)
The first term represents the reconstruction loss and the sec-
ond term is the KL-divergence between the encoder output
and the prior of z. Note that action a at state s will have a
high probability under the behavior data distribution if the
value of z ∼ qω2(s, a) has a high probability under the prior
p(z). Since p(z) is set to be N (0, 1), we can let ν(s) = a
if DKL[qω2(z|s, a)||N (0, 1)] ≥ d, by introducing a hyperpa-
rameter d to control the threshold. Previous works (Fujimoto,
Meger, and Precup 2019; Kumar et al. 2019) also use CVAE,
but they use it to sample actions and compute the value of
divergence metrics, which is different from our usage.
Step 2: In Step 1, the cost critic learned by CPQ is some-
what "distorted", i.e., Qc-values of OOD actions are likely
to be larger than their true values and extrapolate to actions
near the boundary of in-distribution actions. In preliminary
experiments, we found it did not work well when using the
distorted cost critic to update the policy by dual gradient de-
scent (i.e., maxπ Q

π
r − λQπc ). Fortunately, Qr-values in Step

1 remain unchanged, so we can update the policy by only
maximizing Qr-values. We modify the reward critic’s Bell-
man update to only backup from state action pairs that are
both constraint safe and in-distribution safe, this is accom-
plished by multiplying Qr(s′, a′) by an indicator. We define
the empirical Constraints Penalized Bellman operator T πP
for (s, a, s′, r, c) ∼ B, as

T πP Qr(s, a) = r + γEa′∼π [1 (Qc(s
′, a′) ≤ l)Qr(s′, a′)]

where 1 is the indicator function. It can be shown that T πP
reduces the update from those unsafe state action pairs by
using a pessimistic estimate of 0 to those pairs. Given the
offline dataset B, we update the reward critic by minimizing
the mean-square error (MSE) as

min
Qr

Es,a,s′∼B
[
(Qr(s, a)− T πP Qr(s, a))

2
]

(3)

Step 3: Finally, in the policy improvement step, to ensure the
final policy is safe, CPQ applies the indicator to the computed
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state-action values before performing maximization:

πθ := max
π∈∆|S|

Es∼BEa∼π(·|s) [1 (Qc(s, a) ≤ l)Qr(s, a)]

(4)
Connections to CQL CQL adds two penalty terms to the
standard Bellman error term, the first term is minimizing
Qr-values of actions from the learned policy, the second term
is maximizing Qr-values of actions from the dataset. CQL
makes the Qr-value landscape to have higher values in the
area of data distribution than in the area of the policy distri-
bution, since CQL only considers reward maximization, it
gets rid of the bad impact of OOD actions. In our problem,
the policy is trained to both maximize the reward and satisfy
safety constraints. We cannot simply follow CQL by maxi-
mizing Qc-values of actions from the policy and minimizing
Qc-values of actions from the dataset. Maximizing Qc-values
of actions from the policy will deteriorate the performance
when the policy outputs in-distribution actions. Hence, we de-
tect the actions output by the policy and only make Qc-values
of those OOD actions large.
Practical Considerations To reduce the number of hyper-
parameters, we can automatically tune α as shown below:

min
Qc

max
α≥0

Es,a,s′∼B
[
(Qc − T πQc)2

]
−α (Es∼B,a∼ν [Qc(s, a)]− lc)

(5)

Equation (5) implies that α will stop increasing if Qc-values
of OOD actions are larger than lc. The parameter lc should
be chosen to be larger than the constraint threshold l, in
practice, we use lc = 1.5× l across all tasks. We use β-VAE
(Higgins et al. 2017) to learn better disentangled latent space
representations compared to the original VAE framework
(can be seen as a special case of β-VAE with β = 1). We
sample n actions from the policy and choose ν to be all the
actions that violate the latent space threshold d. If none of
the n actions violates, Equation (1) is reduced to the original
Bellman evaluation error objective. We also adopt the double-
Q technique (Fujimoto, Hoof, and Meger 2018) to penalize
the uncertainty in value estimations, we select the minimal
value of two reward critics when computing the target Qr-
values. This trick is not applied to the cost critic, as it will
tend to underestimate the Qc-values. Implementation details
and hyperparameter choices can be found in Appendix B.
The pseudo-code of CPQ is presented in Algorithm 1.

Analysis
In this section, we give a theoretical analysis of CPQ, specif-
ically, we proof that we can learn a safe and high-reward
policy given only the offline dataset. We first give the nota-
tion used for the proof and define what is Out-of-distribution
Action Set, then we proof that CPQ can make Qc-values of
out-of-distribution actions greater than l with specific α. Fi-
nally we give the error bound of the difference between the
Qr-value obtained by iterating Constraints Penalized Bellman
operator and the Qr-value of the optimal safe policy π∗ that
can be learned from the offline dataset.
Notation Let Qk denotes the true tabular Q-function at itera-
tion k in the MDP, without any correction. In an iteration, the

Algorithm 1: Constraints Penalized Q-Learning (CPQ)

Require: B, constraint limit l, threshold d.
1: Initialize encoder Eω1

and decoder Dω2
.

2: // VAE Training
3: for t = 0, 1, ...,M do
4: Sample mini-batch of state-action pairs (s, a) ∼ B
5: Update encoder and decoder by Eq.(2)
6: end for
7: // Policy Training
8: Initialize reward critics {Qri(s, a|φri)}2i=1, cost critic
Qc(s, a|φc), actor πθ, Lagrange multiplier α, target net-
works {Q′ri}

2
i=1 and Q′c, with φ′ri ← φri and φ′c ← φc

9: for t = 0, 1, ..., N do
10: Sample mini-batch of transitions (s, a, r, c, s′) ∼ B
11: Sample n actions {ai ∼ πθ(a|s)}ni=1, get latent mean

and std {µi, σi = Eω1
(s, ai)}ni=1 and extractm (m ≥

0) actions {aj |DKL(N (µj , σj)‖N (0, 1)) ≥ d}mj=1
from them.

12: Let Qc(s, ν(s)) = 1
m

∑
j Qc(s, aj) if m > 0 other-

wise 0.
13: Update cost critic by Eq.(1) and reward critics by

Eq.(3).
14: Update actor by Eq.(4) using policy gradient.
15: Update target cost critic: φ′c ← τφc + (1− τ)φ′c
16: Update target reward critics: φ′ri ← τφri+(1−τ)φ′ri
17: end for

current tabular Q-function, Qk+1 is related to the previous
tabular Q-function iterate Qk as: Qk+1 = T πQk. Let Q̂k de-
note the k-th Q-function iterate obtained from CPQ. Let V̂ k

denote the value function as V̂ k := Ea∼π(a|s)

[
Q̂k(s,a)

]
.

We begin with the definition of Out-of-distribution Action
Set:
Definition 1 (Out-of-distribution Action Set). Given a
dataset B, its empirical behavior policy πβ and ε ∈ (0, 1), we
call a set of actions Aε (generated by the policy ν) as the out-
of-distribution action set, if ∀s ∈ B, ∀a ∈ Aε, πβ(a|s)

ν(a|s) ≤ ε.
Intuitively, for those out-of-distribution actions (i.e., un-

like to be in the data distribution), ν(a|s) will be large
while πβ(a|s) will be small. In contrast to out-of-distribution
actions, in-distribution actions refer to those actions a ∼
πβ(a|s), i.e., have good support in the data distribution. No-
tice that here we do not care about out-of-distribution states
as states used for training are sampled from B. After intro-
ducing the out-of-distribution action set, we now show that
we can make Qc-values of Aε greater than l with appropriate
α when updating the cost critic by Equation (1).
Theorem 1. For any ν(a|s) with supp ν ⊂ suppπβ , ∀s ∈
B,a ∈ Aε, Q̂πc (the Q-function obtained by iterating Equa-
tion (1)) satisfies:

Q̂πc (s,a) = Qπc (s,a) +
α

2
·
[
(I − γPπ)−1 ν(s|a)

πβ(s|a)

]
(s,a)

and we can get Q̂πc (s,a) ≥ l, ∀s ∈ B,a ∈ Aε if we choose
α ≥ max{2εmaxs,a (l −Qπc (s,a)) (I − γPπ) (s,a), 0}.
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Proof. By setting the derivative of Equation (1) to 0, we
obtain the following expression for Q̂k+1

c in terms of Q̂kc ,

∀k, Q̂k+1
c (s,a) = T πQ̂kc (s,a) +

α

2
· ν(a|s)
πβ(a|s)

(6)

Since ν(a|s) > 0, α > 0, πβ(a|s) > 0, we observe that
at each iteration we enlarge the next Qc-value, i.e. Q̂k+1

c ≥
T πQ̂kc . Now let’s examine the fixed point of Equation (6) as,

Q̂πc (s,a) = T πQ̂πc (s,a) +
α

2
· ν(a|s)
πβ(a|s)

= c+ γPπQ̂πc (s,a) +
α

2
· ν(a|s)
πβ(a|s)

= Qπc (s,a)(I − γPπ) + γPπQ̂πc (s,a) +
α

2
· ν(a|s)
πβ(a|s)

= Qπc (s,a) + γPπ
[
Q̂πc (s,a)−Qπc (s,a)

]
+
α

2
· ν(a|s)
πβ(a|s)

So we can get the relationship between Q̂πc and the true
Qc-value Qπc as,

Q̂πc (s,a) = Qπc (s,a) +
α

2
(I − γPπ)−1

[
ν(a|s)
πβ(a|s)

]
(s,a)

If Qπc (s,a) ≥ l, i.e., the true Qc-value of this state-action
pair is greater than the constraint threshold, we don’t need
to enlarge the Qc-value, set α = 0 works. Otherwise, if
Qπc (s,a) ≤ l, the choice of α that guarantee Q̂πc (s,a) ≥ l
for a ∈ Aε, is then given by:

α ≥ 2 (l −Qπc (s,a)) (I − γPπ)
[
π̂β(a|s)
µ(a|s)

]
(s,a)

=⇒α ≥ 2ε ·max
s,a

(l −Qπc (s,a)) (I − γPπ) (s,a) (7)

Note that (I − γPπ) is a matrix (the inverse of the state
occupancy matrix (Sutton, Barto et al. 1998)) with all
non-negative entries, and (7) holds because of the def-
inition of out-of-distribution action set. In all, choose
α ≥ max{2εmaxs,a (l −Qπc (s,a)) (I − γPπ) (s,a), 0}
will satisfy ∀s ∈ B,a ∈ Aε, Q̂πc (s,a) ≥ l.

Now we show the error bound of the difference between
the value obtained by CPQ and the value of the optimal safe
policy π∗ on the dataset.

Theorem 2. Let ‖Q̂kr −T πP Q̂k−1
r ‖µβ be the squared approx-

imation error of the Constraints Penalized Bellman operator
T πP at iteration k. Let ‖Qkr − T πQk−1

r ‖µβ be the squared
approximation error of the Bellman evaluation operator T π
at iteration k. If these two errors are bounded by δ, then
∀s ∈ B, we have:

1) lim
k→∞

V̂ kc ≤ l ; 2) lim
k→∞

∣∣∣V ∗r − V̂ kr ∣∣∣ ≤ 4γ

(1− γ)3
G(ε)
√
δ

where G(ε) =
√
(1− γ)/γ +

√
ε/g(ε) and define g(ε) :=

minµπ(s)>0[µ
β(s)], g(ε) captures the minimum discounted

visitation probability of states under behaviour policy.

Proof. For 1), it can be easily derived from (4) that when
k → ∞, ∀s ∈ B, we have V̂c(s) = Ea∼π(·|s)

[
Q̂c(s,a)

]
≤

l. For 2), we give a proof sketch here, detailed proof can
be found in Appendix A. The proof sketch goes as follow,
we first convert the performance difference between π∗ and
πt to a value function gap that is filtered by the indicator
1
(
Q̂c(s

′,a′) ≤ l
)

(for simplicity, we denote it as Pc below):

V ∗r − V̂ kr ≤
1

γ
Es,a∼ν

[∣∣∣Pc(s,a)(Q∗r(s,a)− Q̂kr (s,a))∣∣∣]
where ν is any distribution over state-action space S×A. We
then prove

∣∣∣Pc(Q∗r − Q̂kr )∣∣∣
ν
= Eν

∣∣∣Pc(Q∗r − Q̂kr )∣∣∣ can be

bounded by C

(∣∣∣Q̂kr − T πP Q̂k−1
r

∣∣∣
µβ

+ |Q∗r − T πQ∗r |µβ
)

.

|Q∗r − T πQ∗r |µβ is the additional sub-optimality error term,
it comes from the fact that the optimal policy may not satisfy
πβ/π

∗ ≥ ε. The filter Pc allows the change of measure from
ν to µβ by bounding the concentration constant C, which
captures the maximum density ratio between marginal distri-
bution ν(s) and µβ(s). Then the main theorem is proved by
combining all those steps.

Summary We show that we can enlarge Qc-values of
OOD actions to be greater than l by adjusting α in Theorem
1. We also show the performance guarantee in Theorem 2.
Note that we can vary ε to make G(ε) as small as possible
by adjusting the parameter d in Algorithm 1, which is the
only hyperparameter that needs to be tuned. This result guar-
antees that, upon the termination of Algorithm 1, the true
performance of the main objective can be close to that of the
optimal safe policy. At the same time, the safe constraint will
be satisfied, assuming sufficiently large k.

Experiments
Settings
We conducted experiments on three Mujoco tasks:
Hopper-v2, HalfCheetah-v2 and Walker2d-v2.
These tasks imitate scenarios encountered by robots in real
life. The robot is composed of multiple joints, at each step the
agent selects the amount of torque to apply to each joint. In
the experiments, we aim to prolong the motor life of different
robots, while still enabling them to perform tasks. To do so,
the motors of robots need to be constrained from using high
torque values. This is accomplished by defining the constraint
C as the discounted cumulative torque that the agent has ap-
plied to each joint, and per-state penalty c(s, a) is the amount
of torque the agent decides to apply at each step.

For each environment, we collect data using a safe policy
which has low rewards with safety constraints satisfied and
an unsafe policy which has high reward but violates safety
constraints. The unsafe policy was trained by PPO (Schulman
et al. 2017) until convergence to the returns mentioned in
Figure 1 and the safe policy was trained by CPO (Achiam
et al. 2017) using the constraint threshold l = 30. The dataset
is a mixture of 50% transitions collected by the safe policy
and 50% collected by the unsafe policy. Mixture datasets are
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Figure 1: We evaluate CPQ and different baselines according to the experiments of Section 6.1. The shaded area represents one
standard deviation around the mean. The dashed magenta line measures the performance of BC-Safe. The constraint threshold
l is indicated by the dashed black line. It can be seen that CPQ is robust to learn from different scenarios, outperforms other
baselines while still satisfying safe constraints.

of particular interest, as it covers many practical use-cases
where agents act safely in most cases but have some unsafe
attempts for more benefits. Each dataset contains 2e6 samples.
We used the same dataset for evaluating different algorithms
to maintain uniformity across results.

Each agent is trained for 0.5 million steps and evaluated on
10 evaluation episodes (which were separate from the train
distribution) after every 5000 iterations, we use the average
score and the variance for the plots.

Baselines
We compare CPQ with the following baselines:
CBPL: CBPL (Le, Voloshin, and Yue 2019), which learns
safe policies by applying FQE and FQI, was originally de-
signed for discrete control problems, we extend it to continu-
ous cases by using continuous FQI (Antos, Szepesvári, and
Munos 2008).
BCQ-Lagrangian: As BCQ (Fujimoto, Meger, and Precup
2019) was not designed for safe offline RL, we combine
BCQ with the Lagrangian approach, which uses adaptive
penalty coefficients to enforce constraints, to obtain BCQ-
Lagrangian.
BEAR-Lagrangian: Analogous to BCQ-Lagrangian, but to
use another state-of-the-art offline RL method BEAR (Kumar
et al. 2019).
BC-Safe: As mentioned in Section 3.2, we also include a
Behavior Cloning baseline, using only data generated from
the safe policy. This serves to measure whether each method
actually performs effective RL, or simply copies the data.

Comparative Evaluations
It is shown in Figure 1 that CPQ achieves higher reward while
still satisfying safety constraints, compared to two naïve ap-
proaches (BCQ-L and BEAR-L). Naïve approaches achieve
sub-optimal performance due to the reasons discussed in Sec-
tion 3.2. For example, BEAR-L has difficulty to learn the
balance between two Lagrangian multiplier, λ1 for the safety
constraint and λ2 for the divergence constraint, this two mul-
tiplier raise their value by turns to try to satisfy either of
the two constraints, making the effect of Qr diluted. BCQ-L
performs better than BEAR-L, but still suffers from zig-zag
learning curves due to the similar reason. CBPL diverges and
fails to learn good policies in all three environments, due
to large value estimation errors caused by OOD actions. It

Figure 2: Sensitivity to constraint limit l.

can also be observed that the constraint values of CPQ are
sometimes lower than the threshold, due to the reason that
ν sometimes falsely chooses in-distribution actions, making
the Qc-values of these actions erroneously large. This sug-
gests that the performance of CPQ may be further enhanced
by applying more advanced OOD detection techniques to
construct ν, we leave it for future work.

Sensitivity to Constraint Limit l
The results discussed in the previous section suggest that CPQ
outperforms other baselines on several challenging tasks.
We’re now interested in the sensitivity of CPQ to different
constraint limit l. It can be seen in Figure 2 that CPQ is
robust to different constraint limits. This means that we can
do counterfactual policy learning2 (Garcıa and Fernández
2015), i.e., adjust l post-hoc to derive policies with different
safety requirements. Note that imitation-based methods (e.g.
BC-Safe) can only satisfy the original constraint limit l.

Conclusions and Future Work
We present a novel safe offline RL algorithm, CPQ, the first
continuous control RL algorithm capable of learning from
mixed offline data under constraints. Through theoretical
analysis as well as systematic experimental results, we show
that CPQ achieves better performance across a variety of
tasks, comparing to several baselines. One future work is to
use more advanced OOD detection techniques (e.g., using

2In online RL under constraint, the agent needs to “re-sample-
and-learn” from scratch when the constraint limit is modified.
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energy scores (Liu et al. 2020)), to further enhance CPQ’s
performance. Another future work is developing new algo-
rithms to tackle offline RL under hard constraints. We hope
our work can shed light on safe offline RL, where one could
train RL algorithms offline, and provides reliable policies for
safe and high quality control in real-world tasks.
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