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Abstract

We study a finite-horizon restless multi-armed bandit prob-
lem with multiple actions, dubbed as R(MA)2B. The state
of each arm evolves according to a controlled Markov deci-
sion process (MDP), and the reward of pulling an arm de-
pends on both the current state and action of the correspond-
ing MDP. Since finding the optimal policy is typically in-
tractable, we propose a computationally appealing index pol-
icy entitled Occupancy-Measured-Reward Index Policy for
the finite-horizon R(MA)2B. Our index policy is well-defined
without the requirement of indexability condition and is prov-
ably asymptotically optimal. We then adopt a learning per-
spective where the system parameters are unknown, and pro-
pose R(MA)2B-UCB, a generative model based reinforce-
ment learning augmented algorithm that can fully exploit
the structure of Occupancy-Measured-Reward Index Policy.
Compared to existing algorithms, R(MA)2B-UCB performs
close to offline optimum, as well as achieves a sub-linear re-
gret and a low computational complexity all at once. Experi-
mental results show that R(MA)2B-UCB outperforms exist-
ing algorithms in both regret and running time.

Introduction
We study the restless multi-armed, multi-action bandit prob-
lem, dubbed as R(MA)2B with a finite horizon. A restless
multi-armed bandit (RMAB) problem (Whittle 1988) in-
volves activating a fixed number of competing “arms” se-
quentially over time. Each arm is endowed with a state that
evolves independently according to a controlled Markov de-
cision process (MDP). In its original form (i.e., MAB), only
the states of activated arms evolve, and rewards are gener-
ated upon the state evolution. The goal is to decide which
arms need be activated at each decision epoch to maximize
the total expected reward. A celebrated Gittins index pol-
icy (Gittins 1974) was proposed for MAB, where each arm
is assigned with an index as a function of its current state
and then activates the arm(s) with the largest indices. How-
ever, this policy only optimizes the infinite-horizon expected
reward when only one arm can be activated at each deci-
sion epoch. Whittle (Whittle 1988) generalized the MAB to
also allow the evolution of non-activated arms (dubbed as “a
changing world setting”), giving rise to the RMAB problem.
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The RMAB problem is a general model for a variety
of sequential decision making problems ranging from job
allocation (Niño-Mora 2007; Jacko 2010; Bertsimas and
Niño-Mora 2000), wireless communication (Dai et al. 2011;
Sheng, Liu, and Saigal 2014), sensor management (Maha-
jan and Teneketzis 2008; Ahmad et al. 2009) and health-
care (Deo et al. 2013; Lee, Lavieri, and Volk 2019; Mate,
Perrault, and Tambe 2021; Killian, Perrault, and Tambe
2021). However, the RMAB is notoriously intractable (Pa-
padimitriou and Tsitsiklis 1994) and the optimal policy for
an RMAB is rarely an index policy. To that end, Whit-
tle proposed a heuristic called the Whittle index for the
infinite-horizon RMAB. However, the Whittle index is well-
defined only when the so-called indexability condition is sat-
isfied. Furthermore, even when an arm is indexable, find-
ing its Whittle index can still be intractable, especially when
the corresponding controlled Markov process is convoluted
(Niño-Mora 2007). Finally, Whittle index policy is only
guaranteed to be asymptotically optimal (Weber and Weiss
1990) under a difficult-to-verify condition that the fluid ap-
proximation has a globally asymptotically stable attractor.

Inspired by Whittle, many studies focus on finding the in-
dex policy for restless bandit problems, e.g., (Nino-Mora
2001; Verloop 2016; Hu and Frazier 2017; Zayas-Cabán,
Jasin, and Wang 2019; Brown and Smith 2020). This line
of works is primarily under the assumption that the system
parameters are all already known. Since the true parame-
ters are typically unavailable and possibly time-varying in
many cases, it becomes important to examine RMAB from
a learning perspective, e.g., (Dai et al. 2011; Liu, Liu, and
Zhao 2011; Tekin and Liu 2011; Liu, Liu, and Zhao 2012;
Tekin and Liu 2012; Ortner et al. 2012; Jung and Tewari
2019; Jung, Abeille, and Tewari 2019; Wang, Huang, and
Lui 2020; Xiong, Singh, and Li 2021). However, analyz-
ing a learning algorithm in RMAB is in general hard due to
the learner’s additional uncertainty, and there are still many
open challenges for RMAB from both the policy design per-
spective and the learning perspective.

First, existing confidence bound based algorithms (Liu,
Liu, and Zhao 2011; Tekin and Liu 2011, 2012; Liu, Liu,
and Zhao 2012) may not perform close to the offline opti-
mum. This is because the baseline policy is often heuristic
without performance guarantee, e.g., only pulling one arm or
a fixed set of arms. This is known to be weak in the RMAB
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setting, which makes the regret O(log T ) less meaningful.
Second, the aforementioned learning algorithms with a theo-
retical guarantee of an Õ(

√
T ) regret are often computation-

ally expensive. For example, colored-UCRL2 (Ortner et al.
2012) suffers from an exponential computation complexity,
and the regret bound is exponential in the number of states
and arms. This is because it needs to solve a set of Bellman
equations with an exponentially large space set. Third, exist-
ing low-complexity policies such as (Wang, Huang, and Lui
2020; Xiong, Singh, and Li 2021) are often achieved with
no guarantee of an Õ(

√
T ) regret, and also restricted to a

specific Markov model, which is hard to be generalized. In
a different line of works, the Thompson sampling based al-
gorithms (Jung and Tewari 2019; Jung, Abeille, and Tewari
2019) that provide a theoretical guarantee in the Bayesian
setting often suffers from a computationally expensive up-
date method when the likelihood functions are complex. To
the best of our knowledge, there are no provably optimal
policies for RMAB problems (let alone the R(MA)2B in
consideration) with an efficient learning algorithm that per-
forms close to the offline optimum and achieves a sub-linear
regret and a low computation complexity all at once.

In this paper, we address above challenges for R(MA)2B
problems with finite horizon. In contrast to most of the ex-
isting literature aforementioned, each arm can take multiple
actions. The rationality is that many applications are not lim-
ited to binary actions as in RMAB. For example, videos can
be delivered through wireless channels at different levels of
power (i.e., actions), which leads to different quality of ex-
periences to users. However, the analysis of restless bandits
with multiple actions largely remains elusive for general set-
tings in the literature. We make progress toward R(MA)2B
problems by devising and analyzing two correlated algo-
rithms. Our main contributions are as follows:
• Asymptotically optimal index policy. We propose an in-
dex policy for the general finite-horizon R(MA)2B problem,
entitled Occupancy-Measured-Reward Index Policy, in that
the system parameters are known. We show that it is asymp-
totically optimal in the same limit considered by Whittle.
Unlike Whittle index based policies, our index policy does
not require the indexability condition to hold, and is well-
defined for both indexable and nonindexable R(MA)2B
problems. This property is significantly appealing since the
indexability condition is hard to verify or may not hold true
in general, and the non-indexable settings have so far re-
ceived little attention but arise in many practical problems.
• Reinforcement learning augmented index policy. We
present one of the first generative model based reinforce-
ment learning augmented algorithm toward an index pol-
icy in the context of finite-horizon R(MA)2B problems, and
we call it R(MA)2B-UCB. Different from the state-of-the-
art colored-UCRL2 that has a complexity exponential in the
number of arms, our R(MA)2B-UCB contains a novel op-
timistic planning step by obtaining an estimated model via
sampling state-action pairs in an offline manner and solving
a so-called extended linear programming problem in occu-
pancy measures, with which the complexity is only linear in
the number of arms. Furthermore, R(MA)2B-UCB achieves

an Õ(
√
T ) regret and performs close to the offline optimum

since it contains a novel exploitation step by fully leveraging
our Occupancy-Measured-Reward Index Policy, which sig-
nificantly outperforms existing methods that often rely on
a heuristic policy. Moreover, the multiplicative “pre-factor”
that goes with the time-horizon dependent function in the re-
gret is quite low due to the novel exploitation step, which is
exponentially better than that of the colored-UCRL2. Our
simulation results also show that R(MA)2B-UCB outper-
forms existing algorithms in both regret and running time.
Notation. We denote the set of natural and real numbers by
N and R, respectively. We let T be the finite number of total
decision epoch (time). We denote the cardinality of a finite
set A by A := |A|. We also use [N ] to represent the set of
integers {1, · · · , N} for N ∈ N.

System Model
Consider a finite-horizon R(MA)2B problem with N
arms. Each arm n is associated with a specific unichain
Markov decision process (MDP) (Kallenberg 2003)
(Sn,An, Pn, rn, s1, T ), where Sn is the finite state space,
An denotes the set of finite actions, Pn : Sn×An×Sn 7→ R
is the transition kernel and rn : Sn ×An 7→ R is the reward
function. For the ease of readability, we assume that all
arms share the same state and action spaces, and denote as
S and A, respectively. Our results and analysis will still
apply to different state and action spaces at the cost of
complicated notations. In particular, we denote the action
set A = {0, 1, · · · , A} with A < ∞. Using the standard
terminology from the RMAB literature, we call an arm
passive when action a = 0 is applied to it, and active
otherwise. An activation cost is incurred each time action
a is applied to arm n. For the abuse of notation, we denote
the activation cost to be a units by taking action a. The
total activation cost associated with active arms at each time
t is constrained by K units, which we call the activation
budget. The initial state is chosen according to the initial
distribution s1 and T <∞ is the horizon.

At time t ∈ [T ], each arm n is at a specific state sn(t) ∈ S
and evolves to sn(t + 1) independently as a controlled
Markov process with the controlled transition probabilities
Pn(sn(t), an(t), sn(t+ 1)) when action an(t) is taken. The
immediate reward earned from activating arm n at time t is
denoted by rn(t) := rn(sn(t), an(t)). Without loss of gen-
erality, we assume that rn ∈ [0, 1], ∀n with mean r̄n(s, a),
and let rn(s, 0) be 0 ∀s ∈ S , i.e., no reward is earned when
the arm is passive. Denote the total reward earned at time t
by R(t), i.e., R(t) :=

∑
n rn(t). Let Ft denote the opera-

tional history until t, i.e., the sigma-algebra (Shiryaev 2007)
generated by the random variables {sn(`) : n ∈ [N ], ` ∈
[t]}, {an(`) : n ∈ [N ], ` ∈ [t − 1]}. Our goal is to derive a
policy π : Ft 7→ AN that makes decisions regarding which
set of arms needs to be made active at each time t ∈ [T ] so
as to maximize the expected value of the cumulative rewards
subject to the activation budget, i.e.,

max
π

Eπ

(
N∑
n=1

T∑
t=1

rn(t)

)
s.t.

N∑
n=1

an(t) ≤ K, ∀t ∈ [T ], (1)
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where the subscript indicates that the expectation is taken
with respect to the measure induced by the policy π. We
refer to the problem (1) as the “original problem”, which
suffers from the “curse of dimensionality” (Bellman 2010;
Bertsekas 1995), and hence is computationally intractable.
We overcome this difficulty by developing a computation-
ally feasible and provably optimal index-based policy.

Asymptotically Optimal Index Policy
In this section, we focus on the scenario that the transition
probabilities and reward functions are known. We will pro-
pose a powerful framework to design an asymptotically op-
timal index policy for finite-horizon R(MA)2Bs. We begin
by introducing the “relaxed problem”, which can be posed
as a linear programming (LP) in occupancy measures (Alt-
man 1999). This forms a building block of our proposed
lightweight index-based policy, which we show is asymp-
totically optimal with respect to the original problem.

The Relaxed Problem
We consider the following relaxed problem by relaxing the
“hard” constraint in (1) to the “relaxed” constraint, i.e., the
activation cost at time t ∈ [T ] is limited by K on average

max
π

Eπ

(
N∑
n=1

T∑
t=1

rn(t)

)
s.t. Eπ

{
N∑
n=1

an(t)

}
≤K, ∀t. (2)

It is clear that the relaxed problem (2) achieves an upper
bound of the optimal value of (1). Note that the optimal pol-
icy to (2) may be randomized (Altman 1999), i.e., an opti-
mal deterministic policy may not exist for a finite-horizon
MDP. Furthermore, we cannot use the conventional back-
ward induction to find the optimal policy since the Bellman
optimality equations no longer hold given the constraint in
(2). It is well known (Altman 1999) that the relaxed prob-
lem (2) can be reduced to a LP in which the decision vari-
ables are the occupancy measures of the controlled process.
More specifically, the occupancy measure µ of a policy π in
a finite-horizon MDP is defined as the expected number of
visits to a state-action pair (s, a) at each time t. Formally,

µ = {µn(s, a; t) = P(sn(t) = s, an(t) = a) : ∀n, t} .
Using this definition, the relaxed problem (2) can be refor-
mulated as the following LP (Altman 1999):

max
µ

N∑
n=1

T∑
t=1

∑
(s,a)

µn(s, a; t)r̄n(s, a) (3)

s.t.
N∑
n=1

∑
(s,a)

aµn(s, a; t) ≤ K, (4)

∑
a

µn(s, a; t)=
∑

(s′,a′)

µn(s′, a′; t−1)Pn(s′, a′, s), (5)

∑
a

µn(s, a; 1) = s1(s), (6)

where (4) is a restatement of the constraint in (2) for ∀t ∈
[T ], which indicates the activation budget; (5) represents the

transition of the occupancy measure from time t− 1 to time
t, ∀n ∈ [N ] and ∀t ∈ [T ]; and (6) indicates the initial condi-
tion for occupancy measure at time 1, ∀s ∈ S . From the con-
straints (5)-(6), it can be easily checked that the occupancy
measure satisfies

∑
s,a µn(s, a, t) = 1, ∀t ∈ [T ]. Thus, the

occupancy measure µn, ∀n ∈ [N ] is a probability measure.
The optimal solutions of the LP define an optimal Markov

policy of the relaxed problem through the occupancy mea-
sure (Altman 1999). Specifically, denote the solution to the
above LP as µ? = {µ?n(s, a; t) : n ∈ [N ], t ∈ [T ]}. Then a
Markovian non-stationary randomized policy χ? = {χ?n(t) :
n ∈ [N ], t ∈ [T ]} can be constructed as follows: if the state
sn(t) is s at time t, then χ?n(t) chooses an action a with a
probability equaling to

χ?n(s, a; t) :=
µ?n(s, a; t)∑

a′∈A
µ?n(s, a′; t)

. (7)

If the denominator of (7) equals zero, i.e., state s for arm n
is not reachable at time t, arm n can be simply made passive,
i.e., χ?n(s, 0; t) = 1 and χ?n(s, a; t) = 0, ∀a ∈ A \ {0}.

The Occupancy-Measured-Reward Index Policy
The solutions to the above LP and the constructed Markov
policy χ? form the building block of our index policy for the
original problem (1). Note that the optimal policy (7) is not
always feasible for the original problem since in the latter at
most K units of activation costs can be consumed at a time.
To this end, our index policy assigns an index to each arm
based on its current state and current time. We denote the
index ψn(sn(t); t) associated with arm n at time t as

ψn(sn(t); t) :=
∑

a∈A\{0}

χ?n(sn(t), a; t)r̄n(sn(t), a), (8)

where χ?n(sn(t), a; t) is defined in (7). We call this the
occupancy-measured-reward index (OMR index) since it is
merely based on the optimal occupancy measures solved
from the LP in (3)-(6) and the mean reward, representing the
expected obtained reward for arm n at state sn(t) of time t.
Let ψ(t) := {ψn(sn(t); t) : n ∈ [N ]} be the OMR in-
dices associated with the N arms at time t. Denote the ac-
tion for arm n at state sn(t) of time t as a?n(sn(t); t) and
the set of active arms at time t as B(t). Our index policy
then activates arms with OMR indices in a decreasing or-
der. The activation process is terminated until the constraint∑
n∈B(t) a

?
n(sn(t); t) ≤ K is violated. The remaining arms

[N ] \ B(t) are passive at time t. Specifically, for each acti-
vated arm, its action is randomly selected according to the
probability χ?n(sn(t), a; t) in (7). When multiple arms shar-
ing the same OMR indices, we randomly activate one arm
and allocate the remaining activation costs across all possi-
ble actions according to the probability χ?n(sn(t), a; t). If all
indices are zero, then all remaining arms are made passive.
We call this an Occupancy-Measured-Reward Index Policy
(OMR Index Policy), and denote it as π? = {π?n, n ∈ [N ]},
which is summarized in the supplementary material due to
space constraints.
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Remark 1 Our index policy is computationally appealing
since it is only based on the “relaxed problem” by solv-
ing a LP. Furthermore, if all arms share the same MDP, the
LP can be decomposed across arms as in (Whittle 1988),
and hence the computational complexity does not scale with
the number of arms. More importantly, our index policy is
well-defined without the requirement of indexability condi-
tion (Whittle 1988). This is in contrast to most of the exist-
ing Whittle index-based policies that are only well defined in
the case that the system is indexable, which is hard to ver-
ify and may not hold in general. Closest to our work is the
parallel work on restless bandits (Zhang and Frazier 2021)
with known transition probabilities and reward functions. In
particular, (Zhang and Frazier 2021) explores index policies
similar to ours, but under the assumption of homogeneous
MDPs across arms in the binary action settings, and mainly
focus on characterizing the asymptotic optimality gap. Our
index policy in this section can be seen as the complement to
it with the general heterogeneous MDPs across arms in the
multiple action settings. Our design of reinforcement learn-
ing augmented index policy and the regret analysis in next
section also distinguishes our work.

Asymptotic Optimality
For the abuse of notation, we let the number of arms be ρN
and the value of activation constraint be ρK in the limit with
ρ → ∞. In other words, it represents the scenarios where
there are N different classes of arms and each class con-
tains ρ arms. Our OMR Index Policy achieves asymptotic
optimality when the number of arms ρN and the activation
constraint ρK go to infinity while holding α = K/N con-
stant1. Let R(π, ρK, ρN) denote the expected reward of the
original problem (1) obtained by an arbitrary policy π in this
limit. Denote the optimal policy of the original problem (1)
as πopt.

Theorem 1 The OMR Index Policy achieves the asymptotic
optimality as follows

lim
ρ→∞

1

ρ

(
R(π?, ρK, ρN)−R(πopt, ρK, ρN)

)
= 0.

Remark 2 Theorem 1 indicates that as the number of per-
class arms (i.e., ρ) goes to infinity, the gap between the per-
formance achieved by OMR Index Policy and the optimal
policy πopt is bounded, and thus per arm gap tends to be
zero. The proof is available at (Xiong, Li, and Singh 2021).

Reinforcement Learning for the Index Policy
The computation of the OMR Index Policy requires the
knowledge about the transition probabilities and reward
functions associated with the MDPs for each arm. However,
these quantities are typically unavailable in practice. Hence,
we now adopt a learning perspective where the parame-
ters are unknown. We propose a generative model based
reinforcement learning (RL) augmented algorithm entitled

1We consider the asymptotic optimality in the same limit as by
Whittle (Whittle 1988) and others (Weber and Weiss 1990; Verloop
2016; Hu and Frazier 2017; Zayas-Cabán, Jasin, and Wang 2019).

Algorithm 1: R(MA)2B-UCB Policy
Input: Learning horizon T , and learning counts Λ(T ) <
T .

1: for n = 1, 2, ..., N and (s, a) ∈ S ×A do
2: Sample pairs (s, a) of arm n for Λ(T ) times.
3: end for
4: Construct Pn(s, a) andRn(s, a) according to (9);
5: Compute the optimal solution of the extended LP (10);
6: Establish the corresponding OMR Index Policy π?;
7: Execute π? for the rest of the game.

R(MA)2B-UCB, which obtains samples initially and can en-
sure almost the same performance as OMR Index Policy.
R(MA)2B-UCB is also computationally efficient since it can
fully exploit the structure of the OMR Index Policy.

The Learning Problem
We consider the setting aforementioned, where the learning
agent repeatedly interacts with a finite-horizon R(MA)2B
in which each arm is associated with a controlled MDP
(S,A, Pn, rn, s1, T ). However, the learning agent does not
know the transition probability Pn nor the reward function
rn, ∀n ∈ [N ], and it relies on the samples observed to
make decisions. The performance of the learning agent is
measured by the regret. More precisely, the regret is de-
fined as the expected gap between the offline optimum,
i.e., the best policy under which both the transition prob-
abilities and reward functions are known, and the cumu-
lative reward of the arm selecting algorithm. Specifically,
denote the cumulative reward under an arbitrary policy π

as R(π, s1, T ) :=
∑T
t=1 r(t), which is a random variable.

Then the expected average reward under policy π satis-
fies ξ(π, s1) := limT→∞

1
T E[R(π, s1, T )], and the opti-

mal average reward is ξopt := supπ ξ(π, s1), which is in-
dependent of the initial state for MDPs with finite diameter
(Puterman 1994). Then the regret of policy π is defined as
∆(π, s1, T ) := Tξopt − Eπ[R(π, s1, T )].

A Generative Model Based Learning Algorithm
We consider an adaptation of the upper confidence bound
(UCB) (Auer, Cesa-Bianchi, and Fischer 2002) to the setting
of R(MA)2B problem with the generative model (Kearns,
Mansour, and Ng 2002), which we call the R(MA)2B-UCB
policy, as presented in Algorithm 1.

More precisely, there are two phases in R(MA)2B-UCB:
a planning phase and a policy execution phase. The planning
phase (lines 1-6 in Algorithm 1) leverages a novel construc-
tion of a set of plausible transition models (i.e., MDPs) based
on the number of visits to state-action pairs (s, a) and tran-
sitions tuples (s, a, s′) as accurate as possible. Specifically,
we explore a generative approach with a single step simu-
lator that can generate samples of the next state and reward
given any state and action (Kearns, Mansour, and Ng 2002;
HasanzadeZonuzy, Kalathil, and Shakkottai 2021). By solv-
ing an optimistic planning problem, which is expressed as an
LP problem in occupancy measures, we can define the corre-
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sponding OMR Index Policy. The planning problem, referred
to as an extended LP in Algorithm 1 is detailed below. Our
key contribution here is to choose the right value of Λ(T )
to balance the accuracy and complexity, which contributes
to the properties of sub-linear regret and low-complexity of
R(MA)2B-UCB.

At the policy execution phase (line 7 in Algorithm 1), the
derived OMR Index Policy is executed. Our key contribu-
tion here is to leverage our proposed OMR Index Policy,
rather than using heuristic ones as in existing algorithms.
This guarantees that R(MA)2B-UCB performs close to the
offline optimum since our proposed index policy is near-
optimal. Moreover, this contributes to the low multiplicative
“pre-factor” that goes with the time-horizon dependent func-
tion in the regret, which is exponentially better than that of
the state-of-the-art colored-UCRL2 (Ortner et al. 2012).
Optimistic planning. We sample each state-action pair of
arm n for Λ(T ) (the value of Λ(T ) will be specified later)
number of times uniformly across all state-action pairs.
We denote the number of times that a transition tuple
(s, a, s′) was observed within Λ(T ) as Tn(s, a, s′), satis-
fying Tn(s, a, s′) =

∑Λ(T )
h=1 111(sn(h+ 1) = s′|sn(h) =

s, an(h) = a), ∀(s, a, s′) ∈ S × A × S, where sn(h) rep-
resents the state for arm n at time h and an(h) is the cor-
responding action. Then R(MA)2B-UCB estimates the true
transition probability ∀(s, a, s′) ∈ S × A × S and the true
reward ∀(s, a) ∈ S × A by the corresponding empirical
averages as P̂n(s′|s, a) = Tn(s, a, s′)/Λ(T ), r̂n(s, a) =

1
Λ(T )

∑Λ(T )
h=1 rn(s, a;h)111(sn(h) = s, an(h) = a).

R(MA)2B-UCB further defines confidence intervals for
the transition probabilities (resp. the rewards), such that the
true transition probabilities (resp. true rewards) lie in them
with high probability. Formally, for ∀(s, a) ∈ S × A, we
define

Pn(s, a) := {P̃n(s′|s, a), ∀s′ ∈ S :

|P̃n(s′|s, a)− P̂n(s′|s, a)| ≤ δn(s, a)},
Rn(s, a) :={r̃n(s, a) : r̃n(s, a)= r̂n(s, a)+δn(s, a)}, (9)

where the size of the confidence intervals δn(s, a) is built
using the empirical Hoeffding inequality (Maurer and Pontil
2009). For any (s, a, s′) ∈ S × A × S , and η ∈ (0, 1), it is
defined as δn(s, a) =

√
1

2Λ(T ) log
(
SANΛ(T )/η

)
.

The set of plausible MDPs associated with the confidence
intervals is M = {Mn = (S,A, P̃n, r̃n) : P̃n(·|s, a) ∈
Pn(s, a), r̃n(s, a) ∈ Rn(s, a), ∀n}. Then R(MA)2B-UCB
computes a policy by performing optimistic planning. Given
the set of plausible MDPs, it selects an optimistic transition
(resp. reward) function and an optimistic policy by solving
a “modified LP”, which is similar to the LP defined in (3)-
(6), but with the transition and reward functions replaced by
P̃ (·|·, ·) and r̃(·, ·) in the confidence balls (9) since the cor-
responding true values are not available.
The extended LP problem. The modified LP can be fur-
ther expressed as an extended LP by leveraging the state-
action-state occupancy measure zn(s, a, s′, t) defined as
zn(s, a, s′, t) = Pn(s′|s, a)µn(s, a; t) to express the confi-

dence intervals of the transition probabilities. The extended
LP over z is as follows:

max
N∑
n=1

T∑
t=1

∑
(s,a,s′)

z(s, a, s′; t)r̃n(s, a)

s.t.
N∑
n=1

∑
(s,a,s′)

zn(s, a, s′; t)a ≤ K, ∀t,

∑
a,s′

zn(s, a, s′; t) =
∑
s′,a′

zn(s′, a′, s, t− 1), ∀t,

∑
a,s′

zn(s, a, s′; 1) = s1(s), ∀s,

zn(s, a, s′; t)∑
y zn(s, a, y; t)

−(P̂n(s′|s, a)+δn(s, a))≤0,

− zn(s, a, s′; t)∑
y zn(s, a, y; t)

+(P̂n(s′|s, a)−δn(s, a))≤0, (10)

where the last two constraints indicate that the transi-
tion probabilities lie in the desired confidence interval for
∀(s, a, s′, t) ∈ S × A × S × [T ]. Such an approach was
also used in (Jin et al. 2019; Rosenberg and Mansour 2019)
in the context of adversarial MDPs and (Efroni, Mannor,
and Pirotta 2020; Kalagarla, Jain, and Nuzzo 2021; Hasan-
zadeZonuzy, Kalathil, and Shakkottai 2021) in constrained
MDPs. Once we compute z, the policy is recovered from
the computed occupancy measures as

χn(s, a; t) =

∑
s′ zn(s, a, s′; t)∑
b,s′ zn(s, b, s′; t)

. (11)

Finally, we compute the OMR index as in (8) using (11),
from which we construct the OMR Index Policy, and execute
this policy to the end.
Remark 3 Although R(MA)2B-UCB has a similar form as
an “explore-then-commit” policy, e.g., (Ortner et al. 2012),
one key novelty of R(MA)2B-UCB lies in leveraging the ap-
proach of optimism-in-the-face-of-uncertainty (Jaksch, Ort-
ner, and Auer 2010) to balance exploration and exploitation
in a non-episodic offline manner. As a result, there is no need
for R(MA)2B-UCB to search for a better MDP instance as in
(Ortner et al. 2012; Wang, Huang, and Lui 2020), which is
computationally expensive (i.e., exponential in the number
of arms). The second key novelty is that R(MA)2B-UCB only
relies on samples initially obtained by a generative model
to construct a upper-confidence ball, from which a policy
can be derived by solving an extend LP for only once with
a complexity of O(NSAT ) (which is O(SAT ) if all arms
are identical). However, existing algorithms, e.g., colored
UCRL2 is computationally expensive as it relies on a com-
plex recursive Bellman equation to derive the policy. The
last key novelty is that R(MA)2B-UCB further leverages the
structure of our proposed near-optimal index policy in the
policy execution phase rather than using a heuristic one as
in existing algorithms e.g., (Liu, Liu, and Zhao 2011; Tekin
and Liu 2011, 2012; Liu, Liu, and Zhao 2012). These key
novelties jointly guarantee that R(MA)2B-UCB achieves al-
most the same performance as the offline optimum, a sub-
linear regret and a low computation complexity all at once.
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Regret Bound
We present our main theoretical results in this section.

Theorem 2 The regret of the R(MA)2B-UCB policy with
Λ(T ) = O(T 1/2) satisfies:

∆(π?, s1, T ) = O
(

(SAK + 2K(1 + η))
√
T
)
. (12)

Since there are two phases in R(MA)2B-UCB, we decom-
pose the regret as ∆(π?, s1, T ) = ∆(T1) + ∆(π?, s1, T2),
where ∆(T1) is the regret for the planning phase and
∆(π?, s1, T2) is the regret for the policy execution phase
with T2 = T − T1. The first term O(SAK

√
T ) in (12) is

the worst regret from Λ(T ) explorations of each state-action
pair under the generative model with O(SA

√
T ) time steps

for sampling and at most K arms being activated each time.
The second term O(2K(1 + η)

√
T ) comes from the policy

execution phase. Specifically, theO(2Kη
√
T ) regret occurs

when Λ(T ) explorations for each state-action pair construct
a set of plausible MDPs that do not contain the true MDPM
in line 4 of Algorithm 1, which is a rare event with probabil-
ity 2η/Λ(T ). The key then is to characterize the regret when
the event that the true MDP {(S,A, Pn, rn), ∀n} lies in the
set of plausible MDPM occurs. Based on the optimism of
plausible MDPs, the optimal average reward ξ̃ for the opti-
mistic MDP {(S,A, P̃n, r̃n), ∀n} is no less than ξopt. Thus
the expected regret is bounded by T2ξ̃−T2ξ

opt, which is di-
rectly related with the occupancy measure we defined. The
proof is available at (Xiong, Li, and Singh 2021).

Remark 4 Though R(MA)2B-UCB is an offline non-
episodic algorithm, it still achieves an Õ(

√
T ) regret no

worse than the episodic colored-UCRL2. Note that for
colored-UCRL2, the regret bound is instance-dependent
due to the online episodic manner such that the regret
bound tends to be logarithmic in the horizon as well. How-
ever, R(MA)2B-UCB adopts explore-then-commit mecha-
nism which uses generative model based sampling and con-
structs the plausible MDPs sets only once. This removes the
instance-dependent regret with order of log T . Though the
state-of-the-art Restless-UCB (Wang, Huang, and Lui 2020)
has a similar mechanism as ours in obtaining samples in
an offline manner, it lowers its implementation complexity
by sacrificing the regret performance to O(T 2/3) since it
heavily depends on the performance of an offline oracle ap-
proximator for policy execution. Instead, we leverage our
proposed provably optimal and computationally appealing
index policy for the policy execution phase. This also con-
tributes to the low multiplicative “pre-factor” in the regret.

Experiments
In this section, we present our experimental results to vali-
date our model and theoretical results, including the asymp-
totic optimality of the OMR Index Policy, and the sub-
linear regret of the R(MA)2B-UCB policy. Due to space
constraints, we relegate some experimental results including
case studies to (Xiong, Li, and Singh 2021).
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Figure 1: Evaluation of the OMR Index Policy.

Evaluation of the OMR Index Policy
Since most existing index policies are designed only for bi-
nary action settings, i.e., arms being active or passive, and
hard to be generalized to the multi-action setting studied in
this paper, we first consider that the states evolve as a spe-
cific birth-and-death process where state s can only transit
to s − 1 or s + 1. We compare with two state of the arts,
i.e., Whittle index policy (Whittle 1988), and Fluid-priority
policy (Zhang and Frazier 2021), a priority based policy as
defined in (Verloop 2016). Consider a setting with 10 classes
of arms, and a state space S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
The arrival rates are set as {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}
with a departure rate 20. When a class-i arm is activated, it
receives a random reward ri(s) which is a Bernoulli ran-
dom variable with a state dependent rate s · pi, i.e., ri(s) ∼
Ber(spi) with pi uniformly distributed in [0.01, 0.1]. Oth-
erwise, it receives a zero reward. The horizon is T = 100
and the activation ratio is α = K/N = 0.3. For ease of
exposition, the number of arms vary from 50 to 400.

The accumulated rewards achieved by these policies are
presented in Figure 1a. We observe that OMR Index Policy
performs slightly better than the Fluid-priority policy. We
conjecture that this is due to the fact that OMR Index Policy
prioritizes the arms directly based on their contributions to
the cumulative reward, while Fluid-priority policy does not
differentiate arms in the same priority category. More im-
portantly, both OMR Index Policy and Fluid-priority policy
significantly outperform the Whittle index policy.

We further validate the asymptotic optimality of OMR In-
dex Policy (see Theorem 1). In particular, we compare the re-
wards obtained by OMR Index Policy and the two baselines,
with that obtained from the theoretical upper bound achieved
by solving the LP in (3)-(6). The difference is called the op-
timality gap. The average optimality gap, i.e., the ratio be-
tween the optimality gap and the number of arms of different
policies is illustrated in Figure 1b. Again, we observe that
OMR Index Policy slightly outperforms the Fluid-priority in
terms of the vanishing speed of the average optimality gap
since OMR Index Policy achieves a higher accumulated re-
ward as shown in Figure 1a. Moreover, both OMR Index Pol-
icy and Fluid-priority significantly outperform the Whittle
index policy. This is due to the fact that the optimality gap
of the Fluid-priority index policy (i.e. a constantO(1)) does
not scale with the number of arms, while that of Whittle in-
dex policy does (Zhang and Frazier 2021).
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Figure 2: Evaluation of the R(MA)2B-UCB Policy.

Evaluation of the R(MA)2B-UCB Policy
We compare with two state-of-the-art algorithms including
Restless-UCB (Wang, Huang, and Lui 2020) and a Thomp-
son sampling (TS) based policy (Jung and Tewari 2019)
for restless bandits. Note that Restless-UCB is also an of-
fline learning policy similar to ours while the TS-based pol-
icy is online with a sub-linear regret in the Bayesian set-
ting but suffers from a high computation complexity. Also
need to mention that there exists another popular algo-
rithm for RMAB problems named colored-UCRL2 (Ortner
et al. 2012). However, it is well known that the compu-
tation complexity of colored-UCRL2 grows exponentially
with the number of arms. Furthermore, it has been shown
that Restless-UCB outperforms colored-UCRL2 in (Wang,
Huang, and Lui 2020), hence we omit the comparison here.

We leverage the same settings as described above for in-
dex policy evaluation and consider the number of arms to
be N = 100. The results hold for larger number of arms.
For the TS-based policy, we set the prior distribution to
be uniform over a finite support {0, 0.1, 0.2, . . . , 0.9, 1.0}.
The regrets of these algorithms are shown in Figure 2a, in
which we use the Monte Carlo simulation with 1, 000 inde-
pendent trials. R(MA)2B-UCB achieves the lowest accumu-
lated regret. The reason explaining this phenomenon is that
Restless-UCB sacrifices the regret performance for a lower
computation complexity and thus performs worse compared
to the online TS-based policy. On the other hand, R(MA)2B-
UCB achieves the best performance, partly due to leverag-
ing our near-optimal index policy (see Remark 3). When the
number of samples are sufficiently large (i.e, T is large),
R(MA)2B-UCB achieves near optimal performance.

We further compare the average running time. In this ex-
periment, the horizon is T = 60, 000. The results are pre-
sented in Figure 2b, which are averaged over 100 Monte
Carlo runs of a single-threaded program on Intel Core i5-
6400 desktop with 16 GB RAM. It is clear that R(MA)2B-
UCB is more efficient in terms of running time. For exam-
ple, R(MA)2B-UCB reduces the running time by up to 52%
(resp. 70%) compared to Restless-UCB (resp. TS-based pol-
icy) when there are 10 arms, and reduces the correspond-
ing running time by up to 26% (resp. 48%) when there are
100 arms. The improvement over colored-UCRL2 is even
more significant with a larger number of arms since the time

complexity of colored-UCRL2 grows exponentially with the
number of arms. Hence we omit the comparison here. The
significant improvement comes from the intrinsic design of
our policy which only needs to solve an LP once, while the
Restless-UCB needs a computation-intensive numerical ap-
proximation of the Oracle (e.g., Whittle index policy) and
the TS-based policy is an online episodic algorithm which
solves a Bellman equation for every episode.

We further evaluate R(MA)2B-UCB under multi-action
settings by considering a more general Markov process in
which any two arbitrary states may communicate with each
other and the transition probability matrices are randomly
generated. The other settings remain the same as in the index
policy evaluation. For the ease of exposition, we consider the
number of actions to be 2, 3 and 5. Figure 2c shows the accu-
mulated regret vs. time for R(MA)2B-UCB under different
numbers of actions. Since the Restless-UCB and TS-based
policies are hard to be extended to the multi-action setting,
we do not consider them in this comparison. From Figure 2c,
we observe that R(MA)2B-UCB achieves

√
T regret under

multi-action settings, which validates our theoretical contri-
butions in the paper (see Theorem 2). Furthermore, when the
number of actions increases, it takes a larger number of time
steps for the accumulated regret to converge. In other words,
the planning phase in R(MA)2B-UCB (see Algorithm 1) will
take a longer time to learn the system parameters.

Conclusion
In this paper, we studied the restless multi-armed, multi-
action bandit problem (R(MA)2B) with a finite horizon.
Since the problem is typically intractable, we first proposed
an asymptotically optimal index policy entitled OMR In-
dex Policy, which is computationally feasible. Since the sys-
tem parameters are often unavailable in practice, we then
adopted a learning perspective toward the index policy. We
proposed a generative model based reinforcement learning
augmented algorithm named R(MA)2B-UCB, which can
fully exploit the structure of the proposed OMR Index Pol-
icy. We proved that R(MA)2B-UCB achieves a sub-linear
regret with a low computation complexity. Our experimen-
tal results further validated our theoretical results.
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