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Abstract

Unsupervised domain adaptation has recently emerged as an
effective paradigm for generalizing deep neural networks to
new target domains. However, there is still enormous poten-
tial to be tapped to reach the fully supervised performance.
In this paper, we present a novel active learning strategy to
assist knowledge transfer in the target domain, dubbed ac-
tive domain adaptation. We start from an observation that
energy-based models exhibit free energy biases when train-
ing (source) and test (target) data come from different dis-
tributions. Inspired by this inherent mechanism, we empir-
ically reveal that a simple yet efficient energy-based sam-
pling strategy sheds light on selecting the most valuable tar-
get samples than existing approaches requiring particular ar-
chitectures or computation of the distances. Our algorithm,
Energy-based Active Domain Adaptation (EADA), queries
groups of target data that incorporate both domain charac-
teristic and instance uncertainty into every selection round.
Meanwhile, by aligning the free energy of target data compact
around the source domain via a regularization term, domain
gap can be implicitly diminished. Through extensive experi-
ments, we show that EADA surpasses state-of-the-art meth-
ods on well-known challenging benchmarks with substantial
improvements, making it a useful option in the open world.
Code is available at https://github.com/BIT-DA/EADA.

Introduction

In recent years, we have witnessed great strides in diverse
machine learning problems with the success of deep neu-
ral networks (Krizhevsky, Sutskever, and Hinton 2012a).
At the moment, however, these leaps in performance come
only when labeled data is abundant. This limits their usage
in many practical applications, such as autonomous driv-
ing with massive unlabeled data (Yogamani et al. 2019) and
medical diagnosis with high labeling cost (Ronneberger, Fis-
cher, and Brox 2015). Moreover, even labeling all available
data is not an excellent solution, as it’s impossible to fully
capture the way the world looks in a single dataset, let alone
the fact that the test data rarely matches the data seen during
training. Recognizing these challenges, domain adaptation
(DA) has been studied extensively, which transfers models
trained on a labeled source domain to an unlabeled target
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domain (Pan and Yang 2010; Tzeng et al. 2015, 2017; Ganin
and Lempitsky 2015; Long et al. 2018; Bousmalis et al.
2017; Li et al. 2021a,c; Saito et al. 2018). The performance
of DA, in spite of great success, often falls far behind that of
supervised learning. In practice, it is feasible to obtain extra
annotations for target data, but to save cost, it is better to se-
lect the most informative subset via active learning (Prince
2004; Hanneke 2014; Bickel, Briickner, and Scheffer 2009).

While previous active learning studies drastically lower
human annotation costs, they are impractical when test data
are collected from out-of-distribution. How can we design
an efficient and practical sampling strategy for domain adap-
tation? For one thing, it is essential to determine which target
samples will, once labeled, boost the accuracy and general-
ization considerably. For another, it remains the boundary to
explore how to effectively utilize limited labeled data from
the target domain to perform adaptation. Aware of this need,
researchers have developed an array of active domain adap-
tation (Active DA) methods (Chattopadhyay et al. 2013; Rai
et al. 2010; Su et al. 2020; Fu et al. 2021; Prabhu et al. 2021;
Chan and Ng 2007). Prior works mainly focus on assess-
ing how private each target data is according to the output
of a domain discriminator or calculating its distance to the
cluster centroids. However, these additional procedures ei-
ther select target samples that are originally well aligned
with the source domain or increase the computational over-
head, which limits their capability. Therefore, a simple yet
efficient solution is urgently desired.

In this paper, we advocate the use of energy-based mod-
els (EBMs) (LeCun et al. 2006) to help realize the poten-
tial of active learning under domain shift. For any given
z (e.g., an image), an EBM approach gives the lowest en-
ergy to the correct answer y (e.g., a label). Grathwohl et al.
(2020) and Liu et al. (2020) have demonstrated that energy-
based training improves calibration and better distinguishes
in- and out-of-distribution samples than the standard dis-
criminative classifier. At this point, we begin with investi-
gating the distributions of free energy on source and target
domains using diverse methods and make several observa-
tions from Fig. 1. First, a model trained only on labeled
source data will cause the free energy distribution of the su-
pervised source data to be lower than that of the unlabeled
target data, that is, free energy biases between the two do-
mains (Fig. 1(a)). Then, an interesting finding is that these
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Figure 1: (a & b) Free energy distribution biases between source and target domains on VisDA-2017 from “Source Only”. We
then contrast the distributions from (c) a native baseline of random selection and (d) our energy-based selection strategy. EADA
exhibits better-aligned distribution than “Random” and is similar to “Full Supervised” i.e., all source and target data are labeled.

two distributions tend to be consistent using “Full Super-
vised” (Fig. 1(b)). Next, the biases eliminate slightly when
a few unlabeled target data are randomly annotated in the
training process (Fig. 1(c)). Lastly, using our algorithm to
identify limited target instances for labeling, surprisingly, it
well matches two distributions as same as the situation of
“Full Supervised” (Fig. 1(d)). We conjecture that there exist
redundant or trivial data in the target domain itself that do
little to help the learning objective.

Intuitively, we provide both mathematical insights and
empirical evidence that an energy-based active learning
scheme is desirable for active domain adaptation. A cen-
tral theme of this work is that we design an approach,
Energy-based Active Domain Adaptation (EADA), which
adequately ensures samples that are representative of the en-
tire target domain to be selected by considering both domain
characteristic and instance uncertainty. More precisely, as
mentioned above, the free energies of most labeled source
data are lower than that of unlabeled target data. Thus, we
can treat the intrinsic free energy of an unlabeled target sam-
ple as a surrogate metric to reflect the domain characteris-
tic. Naturally, the target samples with higher free energy are
more dissimilar to source data, and thus be typical for target
distribution. In addition, we assess the value of minimum en-
ergy versus second-minimum energy (MvSM) for each unla-
beled target data to quantify its uncertainty under the current
model. To this end, given the labeling budget in each round,
we first maintain a candidate set from unlabeled target data
with higher free energies and then select samples with sig-
nificant MvSM values from candidates. Furthermore, free
energy can also serve as a regularization signal in the form of
an alignment loss to implicitly diminish domain shift, which
is complementary to our active strategy.

In summary, our work makes the following contributions:

* We provide a new perspective to select a highly informa-
tive subset of unlabeled target data under domain shift via
exploiting free energy biases between the two domains.

* We complement empirical results with theoretical inves-
tigations in the method section and establish an intuitive
sufficient condition when it would help.

e Though simple, EADA attains excellent results with

quite limited labeling expenses. Extensive experiments
and in-depth analysis demonstrate its effectiveness.
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Related Work

Active learning (AL) has been studied for decades in both
theory and practice (Settles 2009; Dasgupta 2011; Bachman,
Sordoni, and Trischler 2017; Gal, Islam, and Ghahramani
2017). A case in point is to search informative data for la-
beling in order to learn a satisfactory model at a low anno-
tation cost. Most popular algorithms formulate and solve it
by uncertainty sampling. They select samples about which
the current model is uncertain (Schohn and Cohn 2000;
Joshi, Porikli, and Papanikolopoulos 2009; Wang and Shang
2014). Another line of work turns to representative sam-
pling (Sener and Savarese 2018; Sinha, Ebrahimi, and Dar-
rell 2019; Gissin and Shalev-Shwartz 2019), which picks a
set of typical samples via clustering or core-set selection.
Recently, several studies have leveraged a hybrid of the
above active sampling objectives to achieve promising re-
sults, such as Ash et al. (2020). However, these conventional
AL methods cannot deal with the domain shift issues for do-
main adaptation, whereas our method aims to overcome this
challenge by leveraging a simple energy-based strategy.

Domain adaptation (DA) studies the task of transferring
knowledge gained from a labeled source domain to a target
domain where annotations are scarce (Ganin and Lempitsky
2015; Long et al. 2017, 2019; Xu et al. 2019; Li et al. 2018,
2020, 2021b; Hoffman et al. 2018; Zou, Yang, and Wu 2021;
Gong et al. 2012). A series of works minimizes the domain
gap at the uppermost layer of deep networks using maximum
mean discrepancy (Gretton et al. 2007) or adversarial train-
ing (Goodfellow et al. 2014). Recently, some methods allow
a few target data labeled, e.g., semi-supervised DA (Saito
et al. 2019) and few-shot DA (Teshima, Sato, and Sugiyama
2020). Though impressive, they randomly select a few data
to annotate, neglecting which target samples should be la-
beled given a fixed labeling budget. Consequently, some se-
lected samples are originally well predicted by the current
model. In contrast, our work differentiates itself by allowing
the model to acquire labels for valuable target samples via
an oracle. As such, it would have the best potential perfor-
mance gain compared with randomly picking labels.

Active domain adaptation (Active DA). The seminal
work (Rai et al. 2010) has demonstrated the synergy be-
tween AL and DA, which facilitates AL in a domain of in-
terest with the aid of the knowledge from a related domain.



Recently, Su et al. (2020) and Fu et al. (2021) incorporate
Active DA with advanced tools, such as adversarial training,
both of which identify domainness via a learned domain dis-
criminator. However, it may give identically high scores to
most target data, thus not adequately ensuring that selected
samples are representative of the entire target distribution. A
parallel line of work instead proposes to select active sam-
ples via clustering. For example, Prabhu et al. (2021) cluster
deep embeddings of target data weighted by the uncertainty
and select nearest neighbors to the inferred cluster centroids
for labeling. However, clustering-based strategies have some
drawbacks in nature. First, they encounter a computational
burden and could hardly be applied on large data sets. Sec-
ond, the clustering is sensitive to noise and easy to collapse.

Originating from energy-based models, our method
adapts the concept of energy to identify limited target sam-
ples that are most unique to the target distribution and mean-
while complementary to labeled source data. It yields a new
sampling protocol that accounts for domain characteristic
and instance uncertainty together. Also, it has no extra pa-
rameters that need to be optimized and learning is efficient.

Method

In Active DA, we have access to a labeled source domain
S = {(xs, ys)} and an unlabeled target domain 7 = {z;}
from different distributions. Following the standard Active
DA setting (Fu et al. 2021; Prabhu et al. 2021), B active
samples that are much smaller than the amount of T are se-
lected for annotating. Thus, the entire target domain con-
sists of a labeled pool 7; and an unlabeled pool 7, i.e.,
T = T, U T,. The goal is to learn a neural network with
parameter 6 that brings good generalization on the target do-
main. In this work, we introduce an energy-based strategy to
select the most valuable target data to assist the adaptation.

Energy-based Models Revisit

The essence of machine learning is to encode dependencies
between variables. Let us consider an energy-based model
(EBM) with two sets of variables x (a high-dimensional
variable) and y (a discrete variable). Training this model
consists in finding an energy function i.e., E(x, y) that gives
the lowest energy to correct answer and higher energy to all
other (incorrect) answers'. Precisely, the model must pro-
duce the value y* for which F(z,y) is the smallest:

ey

Generally, the size of set ) is small for classification, hence
the inference procedure can simply compute F(z,y) for all
possible values of y € ) and pick the smallest.

With the energy function, the joint probability of input x
and label y can be estimated through the Gibbs distribution:

p($7y) = exp (—E(.T,y))/Z ) 2

where Z = 37 5 >, cyexp (—E(z,y)) is called the par-
tition function that marginalizes over x and y. It should be
noted that the above transformation of energy into probabil-
ity is only possible if Z converges. By marginalizing out y,

y* = arg min, .y, B (7, y) .

'See (LeCun et al. 2006) for a comprehensive tutorial.
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we obtain the probability density for x as well,

Zyeyp(m7y) = Zyey eXp(—E(x7y))/Z )

Intuitively, in Active DA, to select the most representa-
tive target samples, one can directly estimate the probability
of occurrence for each target sample from Eq. (3) and then
those samples with lower probabilities should be selected.

Unfortunately, one cannot compute or even reliably es-
timate Z. Therefore, we turns to free energy i.e., F(x), a
function hidden in EBMs that serves as the “rationality” of
the occurrence of the variable x. Mathematically, the proba-
bility density for = can also be expressed as

exp (~Flx)
vex XP(=F (7))
This formulation indicates that F(z) could be substituted

for p(z) to select the target samples that have lower proba-
bilities. By connecting Eq. (3) and Eq. (4), we have

F(z) = —log Z exp (—E(z,y)) .

yeY

p(z)

p(z) = 5 “

(&)

Energy-based Active Domain Adaptation

We take advantage of a new perspective of EBMs to gain
the benefits for active domain adaptation, where free energy
biases between source and target data allow effective selec-
tion and adaptation. In the following, we first describe how
to train an EBM with several loss functions. Then we show
how to query and annotate the most informative unlabeled
target data via an energy-based sampling strategy. At last,
we provide an intuitive sufficient condition when it helps.

Training process Given a set of labeled source samples
S = {(xs,ys)}, we want to train a well-behaved EBM that
gives the lowest energy to the correct answer and higher en-
ergy to all other (incorrect) answers. To this end, we uti-
lize a commonly used loss in EBMs, i.e., the negative log-
likelihood loss that comes from probabilistic modeling to
train a model for classification, and it can be formulated as

1
E(mvyv 9) + ; log Z exp (_TE(Q:7 (& 9)) )

cey
(6)
where 7 (7 > 0) is the reverse temperature and a low value
corresponds to smooth partition of energy over the space ).
For simplicity, we fix 7=1, and then we have

Lou(z,y;0) = E(x,y;0) — F(x;0). @)

The second term in Eq. (7) will cause the energies of all
answers to be pulled up. The energy of the correct answer is
also pulled up, but not as hard as it is pushed down by the
first term. An analysis of gradient is presented in Appendix?.

However, we observe that the values of free energy on
target samples are considerably higher than those on source
ones, called free energy biases. Naturally, one can treat it as
a surrogate to reflect the domain divergence. By designing
a simple regularization term, these biases can be reduced,
which to some extent aligns the distribution across domains.
And the free energy alignment loss L., is defined as:

Lfea(x;0) = max (0, F(z;0) — A),

Lnu(z,y;6)

®)
% Appendix can be found at https://arxiv.org/abs/2112.01406.
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Figure 2: Overview of the EADA. Left (training process): we utilize the standard negative log-likelihood loss in conjunction
with the proposed free energy alignment loss to train the network; Right (selection process): to iteratively build a labeled target
set, 1% of target samples are quired to annotate in each selection round. We first select a set of «v; % candidates with the highest
free energy (domain characteristic). Then we sample a2 % points from candidates with biggest MvSM (instance uncertainty).

where A = E,.sF(z;0) is the average value of the free
energy over source data. During training, A is estimated via
exponential moving average: A; = AA;_; + (1 — A\)A},
where A; is the estimation of average value in all ¢ mini-
batches and A/ is the average value in #** mini-batch and
A is a weight sampled from the uniform distribution, A ~
U(0,1). Additionally, we experimentally found that such
way is comparable with calculating average value over the
whole source domain data while improving the efficiency.
Overall, the full learning objective is given by:

l’l’lgil’l E(z,y)~8u7—l ‘Cn” (%7 Y; 0) + ’Y]EINTu [«fea(x; 6)7 (9)

where 7y is a loss weight hyperparameter.

Selection process The goal in Active DA is to identify
more valuable target samples that, once labeled and used for
training, improve the model’s accuracy and generalization
performance significantly. In practice, we suggest a two-step
sampling strategy to adequately ensure such samples by in-
corporating domain characteristic and instance uncertainty.
To be clear, we summarize the training and selection pro-
cesses based on the above discussion as Algorithm 1.

Step one: we observe that biases of free energy distribu-
tion between source and target domains exhibit. Thus, we
can utilize this intrinsic free energy of an unlabeled target
sample as a surrogate metric to reflect the domain charac-
teristic. Certainly, the target samples with higher free energy
are unique to the target distribution and meanwhile comple-
mentary to the labeled source data.

Step two: to measure instance uncertainty, existing meth-
ods rely primarily on the entropy score (Su et al. 2020;
Prabhu et al. 2021). In contrast, we consider the difference
between the energy values of the two answers with the low-
est estimated energy value as a measure of uncertainty. Since
it is a comparison of the minimum answer and the second
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Algorithm 1: EADA algorithm

1: Input: Labeled source data S, unlabeled target data 7T,
and labeled target set 7; = (), maximum epoch M, se-
lection rounds R, selection ratios « , g

2: form =1to M do

3:  Update model 6,,, via Eq. (9)

4: if min R then

5: Vz € T,, compute free energy F(z) (Eq. (5)) to
serve as measure of domain characteristic

6: T," < select oy % of F with the highest values

7: Vx € T, compute MvSM U(x) (Eq. (10)) to

serve as measure of instance uncertainty
8: T," « select ax% of U with the highest values as
active samples for annotating, getting 7, = T;U7,”
9: endif
10: end for
11: Output: Final model parameters 6,

minimum answer, we refer to it as the Min-versus-Second-
Min (MvSM) strategy and it can be formulated as

U(x) :E(CL’,y*,Q)—E(l‘,y/,G), (10)

where y* = argmin,cy E(z,y;6) is the lowest energy
output and y' = arg minyey (y+y E(x,y;0) is the second-
lowest energy output. Such a measure is a more direct way of
estimating confusion about class membership from a classi-
fication standpoint. Using the MvSM measure, the instances
around the decision boundaries in Fig. 2 during the selection
procedure will be selected to query an oracle.

Theoretical Analysis

This section contains our preliminary study of why free en-
ergy biases exhibit between two different domains. For an



energy-based model, we prove that positive gradient inner
product between the negative log-likelihood loss function
and free energy leads to a lower value of free energy on la-
beled source samples during the training process. Limited
by space, all the proofs are left for the Appendix.

Before stating our main theoretical result, we first illus-
trate the general intuition with a toy problem. Considering a
simple energy-based model on the classification task, where
the network is a one layer linear network parameterized by

W = (w; wc)T € RE*N 1 e RN denotes a source
sample, y € {1, ..., C'} denotes the label, we have

E(z,j; W) = w;—m, i=1,..,0C,
C
Flx; W) = —logZexp(—w;rx), (11
c=1

Lon(z,y; W) = E(z,y; W) — F(x; W).

Now we update the the weight matrix W by one step of
gradient descent on L,,;; as follows:

W' =W —nVLau(z,y; W),

where 7 is the learning rate and W' is the updated matrix.
Then we have two lemmas to show that the inner product
between the gradients of negative log-likelihood loss func-
tion and free energy is positive, and the value of the free
energy of a labeled source sample is descending with a step
of gradient descent on negative log-likelihood loss function.

12)

Lemma 1. Assume that a toy model correctly predicts a la-
beled source sample (x,y), we have

<V£nll(x7y7w)7v~7:(maw)> > 0’

where (-, -) denotes the inner product of gradients.

(13)

Lemma 2. Assume that a toy model correctly predicts a la-
beled source sample (x,y) with learning rate n) > 0 we have

F(z; W) > F(z; W'). (14)

To summarize, if the positive gradient inner product between
the negative log-likelihood loss function and free energy,
free energy biases are exhibited. Our main theoretical results
extend this to general deep neural networks.

Theorem 1. Let L, (x,y;0) denote the negative log-
likelihood loss on source domain (x,y) with parameters of
deep network 0 and F (x; 0) denote the free energy of x. As-
sume that ¥(x,y), Lau(x,y;0) is differentiable, 3-smooth
in@andVvo ,||VLu(x,y,0)|| <G, ||VF(z;0)|| < G. With
learning rate n € (0, %) and for every (x,y) such that

(VLuu(z,y;0), VF(x;0)) > ¢, (15)
where ¢ > 0, we have
Flx;0) > F(x;0), (16)

where 8/ = 0 — nV L,y (x,y;0) ie., supervised training
with one step of gradient descent, and (-, -) denotes the inner
product of gradients.

The proof uses standard techniques in optimization (?).
Theorem 1 reveals gradient correlation as a determining fac-
tor of the success of our algorithm.
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Experiments

We evaluate EADA against prior arts on various scenar-
ios including a toy example, three popular image classi-
fication datasets: VisDA-2017 (Peng et al. 2017), Office-
Home (Venkateswara et al. 2017) and Office-31 (Saenko
et al. 2010), as well as a challenging semantic segmentation
task, i.e., GTAV (Richter et al. 2016) to Cityscapes (Cordts
et al. 2016). All methods are implemented based on Py-
Torch, employing ResNet (He et al. 2016) models pre-
trained on ImageNet (Krizhevsky, Sutskever, and Hinton
2012b). We follow the standard protocols as (Su et al.
2020; Fu et al. 2021). Meanwhile, the various compared ac-
tive learning, active domain adaptation and domain adap-
tation algorithms are Source Only (ResNet), Random (ran-
domly label some target data), BvSB  (Joshi, Porikli,
and Papanikolopoulos 2009), Entropy (Wang and Shang
2014), CoreSet (Sener and Savarese 2018), WAAL (Shui
et al. 2020), BADGE (Ash et al. 2020), AADA (Su et al.
2020), DBAL (mathelin et al. 2022), TQS (Fu et al. 2021),
CLUE (Prabhu et al. 2021), AdaptSegNet (Tsai et al. 2018),
and PLCA (Kang et al. 2020). Notably, we carry out all ex-
periments with five trials and report the average accuracy.
More details are presented in Appendix.
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Figure 3: Comparison results of varying the percentage of
labeled target samples on VisDA-2017 with ResNet-18/50.

Main Results

VisDA-2017. The experimental results of different meth-
ods with 5% labeling budget on VisDA-2017 are shown in
the first column in Table 1, proving that EADA is superior
to all the baselines. Randomly selecting samples achieves
better performance than ResNet, which implies that active
learning is a promising and complementary solution for DA.

In addition, to further validate the effectiveness of EADA,
we vary the target labeling budget from 0% to 20% with dif-
ferent backbones ResNet-18/50 and report the performance
after each round in Fig. 3. We can observe that EADA
consistently outperforms alternative methods across rounds.
For instance, with shallower ResNet-18, we improve upon
the state-of-the-art method, i.e., TQS by 2-6% over rounds,
and obtain comparable results against other methods us-
ing deeper ResNet-50 at some rounds. This demonstrates
that EADA can indeed select more representative and infor-
mative target data using our novel energy-based criterion.



X Office-Home
Method VisDA-2017| 5\ C1 Ar—Pr Ar—Rw ClAr Cl—Pr Cl—Rw ProAr Pr—Cl Pr—Rw Rw—Ar Rw—Cl Rw—sPr Mean
Source Only| 44.7 £ 0.1 | 42.1 663 733 507 59.0 626 519 379 712 652 426 766 533
Random 78.1+06 | 525 743 774 563 697 689 577 509 758 700 546 813 658
BvSB 813+04 | 563 786 793 581 740 709 595 526 772 712 564 845 682
Entropy 827+03 | 580 784 791 605 730 726 604 542 779 713 580 836 689
CoreSet 819+03 | 51.8 726 759 583 685 701 588 488 752  69.0 527 800 65.1
WAAL 839+04 | 557 771 793  61.1 747 726 601 521 781  70.1 566 825 683
BADGE 843403 | 582 797 799 615 746 129 615 560 783 714 609 842 699
AADA 808 L04 | 566 781 790 585 737 710 601 531 770 706 570 845 683
DBAL 826+03 | 587 773 792 617 738 733 626 545 781 724 599 843 696
TQS 83.14+04 | 586 81.1 815 61.1 761 733 612 547 797 734 589 861 705
CLUE 852404 | 580 793 809 688 775 767 663 579 814 756 608 863 725
EADA 8831 0.1 | 63.6 844 835 707 837 805 730 635 852 784 654 88.6 767

Table 1: Comparison results on VisDA-2017 and Office-Home with 5% target samples as the labeling budget.

Method A—D A—W D—A D—-W W—A W—D Mean
Source Only| 81.5 75.0 63.1 952 657 994 80.0
Random 87.1 84.1 755 98.1 758 99.6 86.7
BvSB 89.8 879 782 99.0 78.6 100.0 88.9
Entropy 91.0 89.2 76.1 99.7 777 100.0 88.9
CoreSet 825 81.1 703 965 724 99.6 83.7
WAAL 884 89.6 764 100.0 76.0 100.0 88.4
BADGE 90.8 89.1 79.8 99.6 79.6 100.0 89.8
AADA 89.2 87.3 782 99.5 787 100.0 88.8
DBAL 88.2 889 752 994 77.0 100.0 88.1
TQS 92.8 922 80.6 100.0 80.4 100.0 91.1
CLUE 92.0 873 790 992 79.6 99.8 89.5
EADA 97.7 96.6 82.1 100.0 82.8 100.0 93.2
Table 2: Comparison results on Office-31 with 5% target

samples as the labeling budget.

Additional comparison results with standard active learning
methods are shown in Appendix.

Office-Home & Office-31. The results on Office-Home
and Office-31 are reported in Table 1 & 2, respectively,
showing the best performance across all tasks. Most Active
DA methods generally outperform the traditional AL meth-
ods since the latter does not take the domain shift into ac-
count. EADA performs much better than all the baselines
with a large margin, especially for hard tasks e.g., Ar—Cl,
Pr—Cl, D—A and W—A, which emphasizes the benefit of
jointly capturing domain characteristic and instance uncer-
tainty for sampling along with free energy regularization.

GTAYV — Cityscapes. While prior works restrict their task
to image classification, it is important to also study Ac-
tive DA in the context of related tasks. Here we focus on
semantic segmentation adapting from GTAV to Cityscapes
and use the same setting as (Tsai et al. 2018), which adopts
DeepLab-v2 (Chen et al. 2018) with ResNet-101 as back-
bone. We select 5% target images to query for pixel-level la-
bels of the whole image. The results are shown in Fig. 4(a).
There is a large performance gap between UDA methods and
the “Full Supervised”, such as AdaptSegNet, a popular ad-
versarial approach, lags behind 25.2% mloU. Surprisingly,
EADA brings a significant boost and shows performance
comparable to that of fully supervised at the final round.
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Figure 4: (a) Experimental results on GTAV —Cityscapes.(b)
Mean accuracy of EADA and its variants on Office-Home.

Insight Analysis

Ablation study. To investigate the efficacy of key compo-
nents of the proposed EADA, we conduct a thorough ab-
lation study with the following variants on all 12 tasks of
Office-Home: (i) EADA w/o F: removing the free energy
sampling from selection process; (ii) EADA w/o U: remov-
ing the instance uncertainty sampling from the selection pro-
cess; (iii) EADA w/o L f.q: removing L f., from Eq. (9).

The results are shown in Fig. 4(b), it is clear that the full
method outperforms other variants and achieves large im-
provements. We also observe that EADA surpasses EADA
(w/o F and w/o U), manifesting that domain characteristic
sampling and instance uncertain sampling are both neces-
sary to select representative and informative data. Further,
the consistent and notable increases from EADA w/o L.,
to EADA justify our decision to use a regularization term to
align free energy distributions between both domains, which
is beneficial to reducing the domain shift implicitly.

Toy example. To better explain why the energy-based la-
bel acquisition strategy works well and what kind of sam-
ple is more representative and informative, we perform a toy
example, a binary classification task with domain shift. As
shown in Fig. 5, from the left to the right: Source Only, Ran-
dom, BADGE, and our EADA are shown one by one and the
target errors are 52.0%, 8.5%, 4.2%, 1.0%, respectively.

We can make several insightful findings: (i) Free energy



O + Sourcedata © + Targetdata

@ + First round
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o

Target error: 52.0%
(a) Source Only

Target error: 8.5%
(b) Random

Target error: 4.2%
(c) BADGE

Target error: 1.0%
(d) EADA

Figure 5: (Best viewed in color.) Illustrative comparison of sampling strategies on a toy example. Red points and green points
denote unlabeled target data and labeled source data, respectively. Source data are drawn from two different Gaussian distribu-
tions denoted as circle class and plus class and target data are generated by rotating source data directly. We train a single layer
fully-connected network and perform 3 rounds of active learning with a per-round budget is 2% of target samples. In (c) & (d),
we draw the decision boundary before each selection round with a dash line, and the final decision boundary with a solid line.

ay/oag (%) (10/1025/450/275/1.3(100/1 1/100
Office-31 919 92.6 932 915 | 90.8 904
Office-Home| 76.2 763 76.7 76.0 | 747 72.6
VisDA-2017| 87.2 87.6 88.3 87.1 | 86.6 85.7

Table 3: Effect of selection ratios.

biases: the values of free energy on target data are consid-
erably higher than those on source data in Fig. 5(a). To this
end, we design a free energy sampling as a surrogate mea-
sure to describe domain characteristic. (i1) Redundant/Triv-
ial selection: in Fig. 5(b), we can observe that a large por-
tion of samples selected by Source Only resides in an area
where the target data density is high, leading to many redun-
dant instances. BADGE (a state-of-the-art AL method) runs
a clustering scheme on “gradient embedding” to incorporate
both uncertainty and diversity, which slightly mitigates the
dilemma of redundancy. However, when we deeply study
the relationship between decision boundary and the selected
samples in each round, we find that BADGE still selects a
few well-aligned samples and the selected samples are not
the most uncertain samples of the current classifier. (iii) Free
energy versus decision boundary: the final decision bound-
ary is the area with the highest free energy. Accordingly, we
explore a MvSM metric to precisely quantify the uncertainty
of a target sample under the current model. The results in
Fig. 5(d) validate the effectiveness of our method. In short,
we define that a target sample with the highest free energy
and located around the decision boundary serves as the most
valuable, both representative and informative, sample.

Effect of selection ratios. In Table 3, we show the accu-
racy on three image classification benchmarks with vary-
ing a1 (a2). Our EADA can achieve consistent performance
within a wide range. It is worth noting that excluding any
step (a1 or aig = 100) will lead to a performance drop. We
leave it as future work to explore other more complex com-
binations like self-adaptive ai; and weighted calculation.
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AL Query Query Time
Strategy Complexity (Ar—Cl, VisDA-2017)

.. CoreSet O(DN?) (0.1s, 1.3m)

£ BADGE O(CDN?) (4.7s, 3.5m)

= DBAL O(DN(M + N)) (0.4s, 5.3m)
CLUE O(DN(N +TB)) (0.5s,2.9m)

. AADA O(NlogN) (0.03s, 2.25)

S TQS O(NlogN) (0.04s, 1.7s)

~ EADA O(NlogN) (0.02s, 0.9s)

Table 4: Comparison results on query complexity and query
time. C, M, N denote number of classes, source instances
and target instances respectively. D denotes feature dimen-
sion, B is labeling budget, T denotes clustering rounds.

Time complexity. Table 4 lists the query complexity and
query time for EADA and comparable baseline methods.
BADGE and CLUE achieve better mean accuracy (see Ta-
ble 1 and Table 2) but are slower due to a clustering step. Our
EADA obtains the best accuracy and is significantly more
efficient than the competitive baselines as well.

Conclusion

In this paper, we present Energy-based Active Domain
Adaptation (EADA), an algorithm to tackle performance
limitations of domain adaptation at minimal label cost. We
propose a novel energy-based sampling strategy into domain
adaptation, for the selection of limited target samples that
are representative and informative. On top of that, we fur-
ther explore a regularization term to implicitly diminish the
domain gap. In addition, theoretical results about when and
why EADA is expected to work are elaborated. Through
our experiments, we demonstrate its effectiveness in various
transfer scenarios. More generally, our work is but a small
step toward alleviating the intensive workload of annotation.
This offers encouraging evidence that there remains value to
be explored to go beyond the fully supervised method.
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