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Abstract

We propose a computationally-friendly adaptive learning rate
schedule, “AdaLoss”, which directly uses the information of
the loss function to adjust the stepsize in gradient descent
methods. We prove that this schedule enjoys linear conver-
gence in linear regression. Moreover, we provide a linear
convergence guarantee over the non-convex regime, in the
context of two-layer over-parameterized neural networks. If
the width of the first-hidden layer in the two-layer networks
is sufficiently large (polynomially), then AdaLoss converges
robustly to the global minimum in polynomial time. We nu-
merically verify the theoretical results and extend the scope
of the numerical experiments by considering applications in
LSTM models for text clarification and policy gradients for
control problems.

1 Introduction
Gradient-based methods are widely used in optimizing neu-
ral networks. One crucial component in gradient methods
is the learning rate (a.k.a. step size) hyper-parameter, which
determines the convergence speed of the optimization proce-
dure. An optimal learning rate can speed up the convergence
but only up to a certain threshold value; once it exceeds this
threshold value, the optimization algorithm may no longer
converge. This is by now well-understood for convex prob-
lems; excellent works on this topic include (Nash and No-
cedal 1991), (Nesterov 2005), (Haykin et al. 2005), (Bubeck
et al. 2015), and the recent review for large-scale stochastic
optimization (Bottou, Curtis, and Nocedal 2018).

While determining the optimal step size is theoretically im-
portant for identifying the optimal convergence rate, the opti-
mal learning rate often depends on certain unknown parame-
ters of the problem. For example, for a convex and L-smooth
objective function, the optimal learning rate is O(1/L) where
L is often unknown to practitioners. To solve this problem,
adaptive methods (Duchi, Hazan, and Singer 2011; McMa-
han and Streeter 2010) are proposed since they can change
the learning rate on-the-fly according to gradient informa-
tion received along the way. Though these methods often
introduce additional hyper-parameters compared to gradient
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descent (GD) methods with well-tuned stepsizes, the adap-
tive methods are provably robust to their hyper-parameters
in the sense that they still converge at suboptimal parameter
specifications, but modulo (slightly) slower convergence rate
(Levy, Yurtsever, and Cevher 2018a; Ward, Wu, and Bottou
2020). Hence, adaptive gradient methods are widely used
by practitioners to save a large amount of human effort and
computer power in manually tuning the hyper-parameters.

Among many variants of adaptive gradient methods, one
that requires a minimal amount of hyper-parameter tuning is
AdaGrad-Norm (Ward, Wu, and Bottou 2020), which has the
following update

wj+1 = wj − η∇fξ(wj)/bj+1 (1)

with b2j+1 = b2j + ∥∇fξ(wj)∥2; (2)

above, wj is the target solution to the problem of minimizing
the finite-sum objective function F (w) :=

∑n
i=1 fi(w), and

∇fξ(wj) is the stochastic (sub)-gradient that depends on the
random index ξ ∼ Unif{1, 2, . . . } satisfying the conditional
equality Eξ[∇fξ(wj)|wj ] = ∇F (wj). However, comput-
ing the norm of the (sub)-gradient ∇fξ(wj) ∈ Rd in high
dimensional space, particularly in settings which arise in
training deep neural networks, is not at all practical. Inspired
by a Lipschitz relationship between the objective function
F and its gradient for a certain class of objective functions
(see details in Section 2), we propose the following scheme
for bk which is significantly more computationally tractable
compared to computing the norm of the gradient1:

AdaLoss b2j+1 = b2j + α|fξ(wj)− c|
where α > 0 and c are the tuning parameters. With this
update, we theoretically show that AdaLoss converges with
an upper bound that is tighter than AdaGrad-Norm under
certain conditions.

Theoretical investigations into adaptive gradient methods
for optimizing neural networks are scarce. Existing analyses
only deal with general (non)-convex and smooth functions,
and thus, only concern convergence to first-order stationary
points (Li and Orabona 2018; Chen et al. 2019). However, it
is sensible to instead target global convergence guarantees for
adaptive gradient methods in this setting in light of a series of
recent breakthrough papers showing that (stochastic) GD can

1Code is available at github.com/willway1023yx/adaloss
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converge to the global minima of over-parameterized neural
networks (Du et al. 2019, 2018; Li and Liang 2018; Allen-
Zhu, Li, and Song 2018; Zou et al. 2018a). By adapting their
analysis, we are able to answer the following open question:

What is the iteration complexity of adaptive gradient
methods in over-parameterized networks?

In addition, we note that these papers require the step size
to be sufficiently small to guarantee global convergence. In
practice, these optimization algorithms can use a much larger
learning rate while still converging to the global minimum.
Thus, we make an effort to answer the question:

What is the optimal stepsize in optimizing neural networks?

Contributions. First, we study AdaGrad-Norm (Ward, Wu,
and Bottou 2020) in the linear regression setting and signif-
icantly improve the constants in the convergence bounds—
O
(
L2/ϵ

)
(Ward, Wu, and Bottou 2020; Xie, Wu, and Ward

2020)2 in the deterministic gradient descent setting—to a
near-constant dependence O (log(L/ϵ)) (Theorem 1).

Second, we develop an adaptive gradient method called
AdaLoss that can be viewed as a variant of the “norm” version
of AdaGrad but with better computational efficiency and
easier implementation. We provide theoretical evidence that
AdaLoss converges at the same rate as AdaGrad-Norm but
with a better convergence constant in the setting of linear
regression (Corollary 1).

Third, for an overparameterized two-layer neural network,
we show the learning rate of GD can be improved to the rate
of O(1/∥H∞∥) (Theorem 2) where H∞ is a Gram matrix
which only depends on the data.3 We further prove AdaLoss
converges to the global minimum in polynomial time and
does so robustly, in the sense that for any choice of hyper-
parameters used, our method is guaranteed to converge to
the global minimum in polynomial time (Theorem 3). The
choice of hyper-parameters only affects the rate but not the
convergence. In particular, we provide explicit expressions
for the polynomial dependencies in the parameters required
to achieve global convergence.4

We numerically verify our theorems in linear regression
and a two-layer neural network. To demonstrate the easy
implementation and extension of our algorithm for practical
purposes, we perform experiments in a text classification ex-
ample using LSTM models, as well as for a control problem
using policy gradient methods (Section 5).

Related Work. Closely related work to ours can be divided
into two categories as follows.

2The rate is for Case (2) of Theorem 3 in (Xie, Wu, and Ward
2020) and of Theorem 2.2 in (Ward, Wu, and Bottou 2020). L is λ̄1

in Theorem 1.
3Note that this upper bound is independent of the number of

parameters. As a result, using this stepsize, we show GD enjoys a
faster convergence rate. This choice of stepsize directly leads to an
improved convergence rate compared to (Du et al. 2019).

4Note that this section has greatly subsumes (Wu, Du, and Ward
2019). However, Theorem 3 is a much improved version compared
to Theorem 4.1 in (Wu, Du, and Ward 2019). This is due to our new
inspiration from Theorem 1.

Adaptive Gradient Methods. Adaptive Gradient (AdaGrad)
Methods, introduced independently by Duchi, Hazan, and
Singer (2011) and McMahan and Streeter (2010), are now
widely used in practice for online learning due in part to
their robustness to the choice of stepsize. The first conver-
gence guarantees proved in (Duchi, Hazan, and Singer 2011)
were for the setting of online convex optimization, where the
loss function may change from iteration to iteration. Later
convergence results for variants of AdaGrad were proved in
(Levy, Yurtsever, and Cevher 2018a) and (Mukkamala and
Hein 2017) for offline convex and strongly convex settings.
In the non-convex and smooth setting, Ward, Wu, and Bot-
tou (2020) and Li and Orabona (2018) prove that the “norm”
version of AdaGrad converges to a stationary point at rate
O
(
1/ε2

)
for stochastic GD and at rate O (1/ε) for batch

GD. Many modifications to AdaGrad have been proposed,
namely, AdaDelta (Zeiler 2012), Adam (Kingma and Ba
2014), AdaFTRL(Orabona and Pál 2015), SGD-BB(Tan et al.
2016), AcceleGrad (Levy, Yurtsever, and Cevher 2018b),
Yogi (Zaheer et al. 2018a), Padam (Chen and Gu 2018), to
name a few. More recently, accelerated adaptive gradient
methods have also been proven to converge to stationary
points (Barakat and Bianchi 2018; Chen et al. 2019; Zaheer
et al. 2018b; Zhou et al. 2018; Zou et al. 2018b).

Global Convergence for Neural Networks. A series of
papers showed that gradient-based methods provably re-
duce to zero training error for over-parameterized neural net-
works (Du et al. 2019, 2018; Li and Liang 2018; Allen-Zhu,
Li, and Song 2018; Zou et al. 2018a). In this paper, we study
the setting considered in (Du et al. 2019), which showed
that for learning rate η = O(λmin(H

∞)/n2), GD finds an ε-
suboptimal global minimum in O (log(1/ϵ)) /(ηλmin(H

∞))
iterations for the two-layer over-parameterized ReLU-
activated neural network. As a by-product of the analysis
in this paper, we show that the learning rate can be improved
to η = O(1/∥H∞∥) which results in faster convergence. We
believe the proof techniques developed in this paper can be
extended to deep networks, following recent works (Du et al.
2018; Allen-Zhu, Li, and Song 2018; Zou et al. 2018a).

Notation Throughout, ∥ · ∥ denotes the Euclidean norm
if it applies to a vector and the maximum eigenvalue if it
applies to a matrix. We use N(0, I) to denote a standard
Gaussian distribution, where I denotes the identity matrix
and U(S) denotes the uniform distribution over a set S. We
use [n] := {0, 1, . . . , n}, and we write [x]i to denote the
entry of the i-th dimension of the vector x.

2 AdaLoss Stepsize
Let {Z1, . . . , Zn} be empirical samples drawn uniformly
from an unknown underlying distribution S . Define fi(w) =
f(w, Zi) : Rd → R, i = 1, 2, . . . , n. Consider minimizing
the empirical risk defined as finite sum of fi(w) over i ∈ [n].
The standard algorithm is stochastic gradient descent (SGD)
with an appropriate step-size (Bottou, Curtis, and Nocedal
2018). Stepsize tuning for optimization problems, including
training neural networks, is generally challenging because the
convergence of the algorithm is very sensitive to the stepsize:
too small values of the stepsize mean slow progress while
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Algorithm 1: AdaLoss Algorithm

1: Input: Initialize w0 ∈ Rd, b0 > 0, c > 0, j ← 0, and
the total iterations T .

2: for j = 1, 2, 3, . . . T do
3: Generate a random index ξj
4: b2j+1 ← b2j + α|fξj (wj)− c|
5: wj+1 ← wj − η

bj+1
∇fξj (wj)

6: end for

too large values lead to the divergence of the algorithm.
To find a suitable learning rate schedule, one could use

the information on past and present gradient norms as de-
scribed in equation (2), and the convergence rate for SGD is
O
(
1/ε2

)
, the same order as for well-tuned stepsize (Levy,

Yurtsever, and Cevher 2018a; Li and Orabona 2018; Ward,
Wu, and Bottou 2020). However, in high dimensional statis-
tics, particularly in the widespread application of deep neu-
ral networks, computing the norm of the (sub)-gradient
∇fi(wj) ∈ Rd for i ∈ [n] at every iteration j is imprac-
tical. To tackle the problem, we recall the popular setting of
linear regression and two-layer network regression (Du et al.
2018), which assumes at optimal w∗, ∇f∗

i = 0, then

∥∇fi(w)∥2 = ∥∇fi(w)−∇f∗
i ∥2 ≤ C|fi(w)− f∗

i |.
The norm of the gradient is bounded by the difference be-
tween fi(wj) and f∗

i . The optimal value f∗
i is a fixed number,

which could possibly be known as prior or estimated under
some conditions. For instance, for an over-determined linear
regression problem or over-parameterized neural networks,
we know that f∗

i = 0. For the sake of the generality of our
proposed algorithm, we replace f∗ with a constant c. Based
on the observation, we propose the update in Algorithm 1.

Our focus is bk+1, a parameter that is changing at every it-
eration according to the loss value of previous computational
outputs. There are four positive hyper-parameters, b0, η, α, c,
in the algorithm. η is for ensuring homogeneity and that the
units match. b0 is the initialization of a monotonically in-
creasing sequence {bk}∞k=1. The parameter α is to control
the rate of updating {bk}∞k=1 and the constant c is a surrogate
for the ground truth value f∗ (c = 0 if f∗ = 0).

The algorithm makes a significant improvement in
computational efficiency by using the direct feedback of
the value of (stochastic) loss. For the above algorithm,
ξj ∼ Unif{1, 2, . . . , n} satisfies the conditional equality
Eξj [∇fξj (wj)|wj ] = ∇F (wj). As a nod to the use of the
information of the stochastic loss for the stepsize schedule,
we call this method adaptive loss (AdaLoss); we focus on
analysis of this algorithm on linear regression and two-layer
over-parameterized neural networks.

3 AdaLoss in Linear Regression
Consider the linear regression:

min
w∈Rd

1

2
∥Xw − y∥2, y ∈ Rn and X ∈ Rn×d (3)

Suppose the Gram matrix X⊤X is a positive definite ma-
trix with the smallest singular value λ̄0 > 0, and the largest

singular value λ̄1 > 0. Denote V the unitary matrix from
the singular value decomposition of X⊤X = VΣVT . Sup-
pose we have the optimal solution Xw∗ = y. The recent
work (Xie, Wu, and Ward 2020) implies that the convergence
rate using the adaptive stepsize update in (2) enjoys linear
convergence. However, the linear convergence is under the
condition that the effective learning rate 2η/b0 is less than
the critical threshold 1/λ̄1 (i.e.,b0 ≥ η̄λ1/2). If we initial-
ize the effective learning rate larger than the threshold, the
algorithm falls back to a sub-linear convergence rate with
an order O

(
λ̄1/ε

)
. Suspecting that this might be due to an

artifact of the proof, we here tighten the bound that admits a
linear convergence O (log (1/ε)) for any b0 (Theorem 1).
Theorem 1. (Improved AdaGrad-Norm Convergence) Con-
sider the problem (3) and

wt+1 = wt − (η/bt+1)X
T (Xwt − y) (4)

with b2t+1 = b2t + ∥XT (Xwt − y) ∥2 (5)

We have ∥wT −w∗∥2 ≤ ϵ for 5

T =Õ
((

max{ b0
λ̄1

, η}+ ∆X

ηλ̄1

+
η

s20
T1

)
λ̄1 log (1/ϵ)

ηλ̄0

)
. (6)

where ∆X = ∥X(w0 −w∗)∥2 s0 := [V⊤w0 −V⊤w∗]1;

T1 = log

(
(ηλ̄1)

2−4(b0)
2

η2λ̄2
1

)
I{2b0≤ηλ̄1} and . Here [·]1 corre-

sponds to the dimension scaled by the largest singular value
of X⊤X (see eq (23) in the appendix), i.e. λ̄1.

In the appendix (arXiv version), we state the explicit com-
plexity T in Theorem 4 and the proof is in Section A. Our
theorem significantly improves the sub-linear convergence
rate when b0 ≤ η̄λ1/2 compared to (Xie, Wu, and Ward
2020) and (Ward, Wu, and Bottou 2020). The bottleneck in
their theorems for small b0 is that they assume the dynam-
ics bt updated by the gradient ∥XT (Xwt − y) ∥2 ≈ ε for
all j = 0, 1, . . . , which results in taking as many iterations
as N ≈ ((ηλ̄1)

2 − 4b20)/ϵ in order to get bN ≥ η̄λ1/2. In-
stead, we explicitly characterize {bt}t≥0. That is, for each
dimension i ∈ [d],

s
(i)
t+1 :=

(
[V⊤wt+1]i − [V⊤w∗]i

)2
=

(
1− ηλ̄i/bt+1

)2
([V⊤wt]i − [V⊤w∗]i)

2. (7)

If b0 ≤ ηλ̄i/2, each i-th sequence {s(i)t }kt=0 is monotone
increasing up to bk ≤ ηλ̄i

2 , thereby taking significantly fewer
iterations, independent of the prescribed accuracy ε, for bt to
reach the critical value ηλ̄1/2 shown in the following lemma.
Lemma 1. (Exponential Increase for 2b0 < ηλ̄1) Consider
the same setting as Theorem 1. Suppose we start with small
initialization: 0 < b0 < λ̄1/2. For the update of AdaGrad-
Norm in (4), there exists the first index N such that bN+1 ≥
λ̄1/2 and bN < λ̄1/2, and N satisfies

(AdaGrad-Norm) N ≤
log

(
1 +

(ηλ̄1)
2−4(b0)

2

η2λ̄2
1

)
log

(
1 + 4

η2 ([VTw0]1 − [VTw∗]1)
2
) + 1

5Õ hide logarithmic terms.
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For AdaLoss with b2t+1 = b2t + ∥Xwt − y∥2, N satisfies

(AdaLoss) N ≤
log

(
1 +

(ηλ̄1)
2−4b20

η2λ̄1

)
log

(
1 + 4

η2λ̄1
([VTw0]1 − [VTw∗]1)

2
) + 1

Suppose λ̄1 > 1. For AdaLoss, we see that when the ini-
tialization 2b0 ≤ ηλ̄1, bt updated by AdaLoss is more likely
to take more iterations than AdaGrad-Norm to reach a value
greater than ηλ̄1 (see the red part in Lemma 1). Furthermore,
a more interesting finding is that AdaLoss’s upper bound
is smaller than AdaGrad-Norm’s if ∥X (wt −w∗) ∥2 ≥
∥wt − w∗∥2 (Lemma 3 in the appendix). Thus, the upper
bound of AdaLoss could be potentially tighter than AdaGrad-
Norm when 2b0 ≥ ηλ̄1, but possibly looser than AdaGrad-
Norm when 2b0 ≤ ηλ̄1. To see this, we follow the same pro-
cess and have the convergence of AdaLoss stated in Corollary
1.
Corollary 1. (AdaLoss Convergence) Consider the same
setting as Theorem 1 but with the bt updated by: b2t+1 =
b2t + ∥Xwt − y∥2. We have ∥wT −w∗∥2 ≤ ϵ for

T = Õ
((

max{ b0
λ̄1

, η}+ ∆

ηλ̄1

+
η

s20
T̃1

)
λ̄1 log (1/ϵ)

ηλ̄0

)
, (8)

where T̃1 = log

(
(ηλ̄1)

2−4(b0)
2

η2λ̄1

)
I{2b0≤ηλ̄1} and ∆ =

∥w0 −w∗∥2.
For the explicit form of T , see Corollary 2 in the appendix.

Suppose the first term in the bounds of (6) and (8) takes
the lead and λ1 > 1, AdaLoss has a tighter upper bound
than AdaGrad-Norm, unless λ̄1 ≤ 1. Hence, our proposed
computationally-efficient method AdaLoss is a preferable
choice in practice since λ̄1 is usually not available.6

For general functions, stochastic GD (SGD) is often lim-
ited to a sub-linear convergence rate (Levy, Yurtsever, and
Cevher 2018a; Zou et al. 2018a; Ward, Wu, and Bottou
2020). However, when there is no noise at the solution
(∇fi(x∗) = 0 for all i), we prove that the limit of bt is
bounded, limt→∞ bt <∞, which ensures the linear conver-
gence. Observe the update:

wt+1 = wt−
η

bt+1

(
x⊤
ξtwt − yξt

)
xξt with b2t+1 = b2t +Rt

Here, Rt is defined for AdaGrad-Norm and AdaLoss as

(AdaGrad-Norm) Rt = ∥xξt

(
x⊤
ξtwt − yξt

)
∥2 (9)

(AdaLoss) Rt =
(
x⊤
ξtwt − yξt

)2
. (10)

We show the linear convergence for AdaGrad-Norm by
replacing general strongly convex functions (Xie, Wu, and
Ward 2020) with linear regression (Theorem 7). For AdaLoss,
we follow the same process of their proof and derive the con-
vergence in Theorem 8. Due to page limit, we put them
in the appendix. The main discovery in this process is the

6Although one cannot argue that an algorithm is better than
another by comparing their worse-case upper bounds, it might give
some implication of the overall performance of the two algorithms
considering the derivation of their upper bounds is the same.

crucial step—inequality (63)— that improves the bound
using AdaLoss. The intuition is that the add-on value of
AdaLoss, (x⊤

ξt
wt − yξt)

2, is smaller than that of AdaGrad-
Norm (∥xξt(x

⊤
ξt
wt − yξt)∥2).

In Proposition 1, we compare the upper bounds of The-
orem 7 and Theorem 8. The proposition shows that using
AdaLoss in the stochastic setting achieves a tighter conver-
gence bound than AdaGrad-Norm when 2b0 ≥ ηλ̄1.

Proposition 1. (Stochastic AdaLoss v.s. Stochastic
AdaGrad-Norm) Consider the problem (3) where λ̄1 > 1
and the stochastic gradient method in (10) with 2b0 ≥
η supi ∥xi∥. AdaLoss improves the constant in the con-
vergence rate of AdaGrad-Norm up to an additive factor:
(λ̄1 − 1)∥w0 −w∗∥2.

Numerical Experiments. To verify the convergence re-
sults in linear regression, we compare four algorithms: (a)
AdaLoss with 1/bt, (b) AdaGrad-Norm with 1/bt (c) SGD-
Constant with 1/b0, (d) SGD-DecaySqrt with 1/(b0 + cs

√
t)

(cs is a constant). See Appendix D for experimental details.
Figure 1 implies that stochastic AdaLoss and AdaGrad-

Norm are robust to a wide range of initialization of b0. Com-
paring AdaLoss with AdaGrad-Norm, we find that when
b0 ≤ 1, AdaLoss is not better than AdaGrad-Norm at the
beginning (at least before 1000 iterations, see the first two fig-
ures at the top row), albeit the effective learning rate is much
larger than AdaGrad-Norm. However, after 5000 iterations
(3rd figure, 1st row), AdaLoss outperforms AdaGrad-Norm
in general.

4 AdaLoss in Two-Layer Networks
We consider the same setup as in (Du et al. 2019) where they
assume that the data points, {xi, yi}ni=1, satisfy

Assumption 1. For i ∈ [n], ∥xi∥ = 1 and |yi| = O(1).

The assumption on the input is only for the ease of pre-
sentation and analysis. The second assumption on labels is
satisfied in most real-world datasets. We predict labels using
a two-layer neural network

f(W,a,x) =
1√
m

m∑
r=1

arσ(⟨wr,x⟩) (11)

where x ∈ Rd is the input, for any r ∈ [m], wr ∈ Rd is
the weight vector of the first layer, ar ∈ R is the output
weight, and σ(·) is ReLU activation function. For r ∈ [m],
we initialize the first layer vector with wr(0) ∼ N(0, I) and
output weight with ar ∼ U({−1,+1}). We fix the second
layer and train the first layer with the quadratic loss. Define
ui = f(W,a,xi) as the prediction of the i-th example and
u = [u1, . . . , un]

⊤ ∈ Rn. Let y = [y1, . . . , yn]
⊤ ∈ Rn and

L(W) =
1

2
∥u− y∥2 or L(W) =

n∑
i=1

1

2
(f(W,a,xi)− yi)

2

We use k for indexing since u(k) is induced by W(k). Ac-
cording to (Du et al. 2019), the matrix below determines the
convergence rate of GD.

8694



10 3 10 1 101 103 105

10 12

10 9

10 6

10 3

100

103

Lo
ss

Iteration at 200

AdaLoss
AdaGrad_Norm

SGD_Constant
SGD_DecaySqrt

10 3 10 1 101 103 105

10 12

10 9

10 6

10 3

100

103

Iteration at 1000

10 3 10 1 101 103 105

10 12

10 9

10 6

10 3

100

103

Iteration at 5000

10 310 1101 103 105

b0

10 5

10 4

10 3

10 2

10 1

100

101

Ef
fe

ct
iv

e 
LR

10 310 1101 103 105

b0

10 5

10 4

10 3

10 2

10 1

100

101

10 310 1101 103 105

b0

10 5

10 4

10 3

10 2

10 1

100

101

Figure 1: Linear regression in the stochastic setting. The top (bottom) 3 figures plot the average of loss (effective stepsize 1/bt)
w.r.t. b0, for iterations t in [101, 200], [991, 1000] and [4901, 5000] respectively.

Definition 1. The matrix H∞ ∈ Rn×n is defined as follows.
For (i, j) ∈ [n]× [n].

H∞
ij = Ew∼N(0,I)

[
x⊤
i xjI

{
w⊤xi ≥ 0,w⊤xj ≥ 0

}]
= x⊤

i xj(π − arccos
(
x⊤
i xj

)
)/(2π)

This matrix represents the kernel matrix induced by Gaus-
sian initialization and ReLU activation function. We make
the following assumption on H∞.
Assumption 2. The matrix H∞ ∈ Rn×n in Definition 1
satisfies λmin(H

∞) ≜ λ0 > 0.
(Du et al. 2019) showed that this condition holds as long

as the training data is not degenerate. We also define the
following empirical version of this Gram matrix, which
is used in our analysis. For (i, j) ∈ [n] × [n]: Hij =
1
m

∑m
r=1 x

⊤
i xjI

{
w⊤

r xi ≥ 0,w⊤
r xj ≥ 0

}
.

We first consider GD with a constant learning rate (η)
W(k + 1) = W(k)− η ∂L(W(k))

∂W . (Du et al. 2019) showed
gradient descent achieves zero training loss with learning
rate η = O(λ0/n

2). Based on the approach of eigenvalue de-
composition in (Arora et al. 2019) (c.f. Lemma 10), we show
that the maximum allowable learning rate can be improved
from O(λ0/n

2) to O(1/∥H∞∥).
Theorem 2. (Gradient Descent with Improved Learning
Rate) Under Assumptions 1 and 2, if the number of hid-
den nodes m = Ω

(
n8

λ4
0δ

3

)
and we set the stepsize η =

Θ
(

1
∥H∞∥

)
, then with probability at least 1 − δ over the

random initialization, we have L(W(T )) ≤ ε for 7

T = Õ ((∥H∞∥/λ0) log (1/ε))

7Õ and Ω̃ hide log(n), log(1/λ0), log(1/δ) terms.

Note that since ∥H∞∥ ≤ n, Theorem 2 gives an O(λ0/n)
improvement. The improved learning rate also gives a tighter
iteration complexity bound O ((∥H∞∥/λ0) log (n/ε)), com-
pared to the O

(
(n2/λ2

0) log (n/ε)
)

bound in (Du et al. 2019).
Empirically, we find that if the data matrix is approximately
orthogonal, then ∥H∞∥ = O (1) (see Figure 5 in Appendix
C). Therefore, we show that the iteration complexity of gra-
dient descent is nearly independent of n.

We surprisingly found that there is a strong connection be-
tween over-parameterized neutral networks and linear regres-
sion. We observe that H∞ in the over-parameterized setup
and X⊤X in linear regression share a strikingly similar role
in the convergence. Based on this observation, we combine
the induction proof of Theorem 2 with the convergence analy-
sis of Theorem 1. An important observation is that one needs
the overparameterization level m to be sufficiently large so
that the adaptive learning rate can still have enough “burn
in” time to reach the critical value for small initialization b0,
while ensuring that the iterates ∥W(t) −W(0)∥F remain
sufficiently small and the positiveness of the Gram matrix.
Theorem 3 characterizes the convergence rate of AdaLoss.

Theorem 3. (Two-layer networks) Consider Assump-
tions 1 and 2, and suppose the width satisfies m =

Ω
(

n8

λ4
0δ

3 + η2n6

λ2
0δ

2α2

(
λ0

α2
√
nε

+ 1
α2ε

)
Ib0<η(C(λ0+∥H∞∥))/2

)
.

Then, the AdaLoss update using b2k+1 = b2k + α2
√
n∥y −

u(k)∥2 admits the following convergence results.
(a) If b0 ≥ ηC(λ0 + ∥H∞∥)/2, then with probability
1 − δ with respect to the random initialization, we have
mint∈[T ] ∥y − u(t)∥2 ≤ ε after

T = Õ

((
b0
ηλ0

+
α2n3/2

η2λ2
0δ

)
log

(
1

ε

))
.
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(b) If 0 < b0 ≤ ηC(λ0 + ∥H∞∥)/2, then with probability
1 − δ with respect to the random initialization, we have
mint∈[T ] ∥y − u(t)∥2 ≤ ε after

T = Õ

(
λ0 +

√
n

α2
√
nε

+

(
α2n3/2

η2λ2
0δ

+
∥H∞∥2

λ2
0

)
log

(
1

ε

))
.

To our knowledge, this is the first global convergence guar-
antee of any adaptive gradient method for neural networks
robust to initialization of b0. It improves the results in (Ward,
Wu, and Bottou 2020), where AdaGrad-Norm is shown only
to converge to a stationary point. Besides the robustness to
the hyper-parameter, two key implications in Thm 4.2: (1)
Adaptive gradient methods can converge linearly in certain
two-layer networks using our new technique developed for
linear regression (Theorem 1); (2) But that linear conver-
gence and robustness comes with a cost: the width of the
hidden layer has to be much wider than n8. That is, when the
initialization b0 satisfying Case (b), the leading rate for m is
its second term, i.e., (η2n6)/(α4ϵ), which is larger than n8

if ϵ is sufficiently small.
We remark that Theorem 3 is different from Theorem 3 in

(Xie, Wu, and Ward 2020) which achieves convergence by as-
suming a PL inequality for the loss function. The condition—
PL inequality—is not guaranteed in general. The PL inequal-
ity is satisfied in our two-layer network problem when the
Gram matrix H∞ is strictly positive (see Proposition 2). That
is, in order to satisfy PL-inequality, we use induction to show
that the model has to be sufficiently overparameterized, i.e.,
m = O

(
(poly(n8, α, η, λ0, δ, ε)

)
.

Theorem 3 applies to two cases. In the first case, the effec-
tive learning rate at the beginning (η/b0) is smaller than the
threshold 2/(C(λ0+∥H∞∥)) that guarantees the global con-
vergence of gradient descent (c.f. Theorem 2). In this case,
the convergence has two terms, and the first term b0

ηλ0
log

(
1
ϵ

)
is the standard gradient descent rate if we use η/b0 as the
learning rate. Note this term is the same as Theorem 2 if
η/b0 = Θ(1/∥H∞∥). The second term comes from the
upper bound of bT in the effective learning rate η/bT (c.f.
Lemma 11). This case shows if α is sufficiently small that
the second term is smaller than the first term, then we have
the same rate as gradient descent.

In the second case, the initial effective learning rate, η/b0,
is greater than the threshold that guarantees the convergence
of gradient descent. Our algorithm guarantees either of the
followings happens after T iterations: (1) The loss is already
small, so we can stop training. This corresponds to the first
term (λ0 +

√
n)/(α2

√
nε). (2) The loss is still large, which

makes the effective stepsize, η/bk, decrease with a good rate,
i.e., if (2) keeps happening, the stepsize will decrease till
η/bk ≤ 2/(C(λ0 + ∥H∞∥)), and then it comes to the first
case. The second term here is the same as the second term
of the first case, but the third term, (∥H∞∥/λ0)

2
log (1/ϵ)

is slightly worse than the rate of the gradient descent. The
reason is that the loss may increase due to the large learning
rate at the beginning (c.f. Lemma 12).

When comparing AdaGrad-Norm, one could get the same
convergence rate as AdaLoss. The comparison between
AdaGrad-Norm and AdaLoss are almost the same as in linear
regression. The bounds of AdaGrad-Norm and AdaLoss are

similar, since our analysis for both algorithms is the worst-
case analysis. However, numerically, AdaLoss can behave
better than AdaGrad-Norm: Figure 6 (appendix) shows that
AdaLoss performs almost the same as or even better than
AdaGrad-Norm with SGD. As for extending Theorem 3 to
the stochastic setting, we leave this for future work. We de-
vote the rest of the space to real data experiments.

Fine-tuning in deeper networks. To see how AdaLoss
compared with AdaGrad-Norm and SGD with constant/decay
stepsize, we performed fine-tuning experiments on pretrained
DNNs, vision transformer (Steiner et al. 2021) ViT-S/16 to
compare (a) AdaLoss with η/bt, (b) AdaGrad-Norm with
η/bt

8 (c) SGD-Constant with η/b0, where η = 0.1, (d) SGD-
DecaySqrt η/

√
b20 + t. We fine-tune the pretrained model

(ViT-S/16) on CIFAR100 (with 45k training and 5k validation
images) over 10 epochs, and show test accuracy (with mean
and std over three independent runs) of the best model chosen
by validation data, on 10k test images. Table 1 shows that
AdaLoss is more robust to varying b0s. The results can be
reproducible through the code given in Footnote 1.

b0 AdaLoss AdaGrad-Norm SGD_Constant SGD_DecaySqrt
0.01 90.65± 0.09 68.34± 2.87 N/A 90.76± 0.04
0.1 90.64± 0.15 86.27± 0.43 N/A 90.50± 0.16
1 90.58± 0.12 89.33± 0.02 83.21± 0.81 90.52± 0.07
10 90.50± 0.17 90.83± 0.17 90.36± 0.11 90.44± 0.19
100 89.62± 0.12 89.99± 0.11 89.85± 0.14 89.58± 0.06

Table 1: CIFAR100 Accuracy for Vision Transformer

5 Apply AdaLoss to Adam
In this section, we consider the application of AdaLoss in
the practical domain. Adam (Kingma and Ba 2014) has been
successfully applied to many machine learning problems.
However, it still requires fine-tuning the stepsize η in Al-
gorithm 2. Although the default value is η = 0.001, one
might wonder if this is the optimal value. Therefore, we ap-
ply AdaLoss to make the value η robust to any initialization
(see the blue part in Algorithm 2) and name it AdamLoss. We
take two tasks to test the robustness of AdamLoss and com-
pare it with the default Adam as well as AdamSqrt, where
we literally let η = 1/

√
b0 + t. For simplicity, we set α = 1.

More experiments are provided in the appendix.
The first task is two-class (Fake/True News) text classi-

fication using one-layer LSTM (see Section D for details).
Figure 4 implies that the training loss is very robust to any
initialization of the AdamLoss algorithm and subsequently
achieves relatively better test accuracy. In the arXiv version,
we include a detailed plot (e.g., Figure 4, right) that captures
the dynamics of 1/bt for the first 200 iterations at the be-
ginning of the training. We see that when b0 = 0.1 (red)
or b0 = 1 (blue), the stochastic loss (bottom right) is very
high such that after 25 iterations, it reaches 1/bt ≈ 0.01 and
then stabilizes. When b0 = 400, the stochastic loss shows a

8The real implementation of AdaGrad-Norm is not taking the
norm of whole gradient of the network, but adapts a stepsize for each
neuron or each convolution channel (see (Ward, Wu, and Bottou
2020)).

8696



10 2
10 1
100
101

Tr
ai

n 
Lo

ss

b0=0.1
Adam AdamLoss AdamSqrt

10 3

10 2
10 1

100 b0=1

10 3

10 2

10 1 b0=10

10 5

10 3

b0=400

0.1
0.2
0.3
0.4
0.5

Te
st

 A
cc

u
0.1
0.2
0.3
0.4
0.5

0.1
0.2
0.3
0.4
0.5

0.05
0.10
0.15
0.20

0 5 10 15
Epoch

0.00

0.02

0.04

t

0 5 10 15
Epoch

0.000

0.005

0.010

0 5 10 15
Epoch

0.00
0.01
0.02
0.03

0 5 10 15
Epoch

0.001

0.002

Figure 2: Text Classification—LSTM model. The top four plots are the training loss w.r.t. epoch; the middle ones are test
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Figure 3: Inverted Pendulum Swingup with Actor-critic Algorithm. The 4 plots are the rewards (scores) w.r.t. number of frames
10000 with roll-out length 2048. The red curve is for Adam and blue is for AdamLoss.

decreasing trend at the beginning, which means it is around
the critical threshold.

Algorithm 2: AdamLoss
1: Input: x1, β1 = 0.9, β2 = 0.99, and positive value η

α0 and b0. Set m0 = v0 = v̂0 = 0
2: for t = 1, 2, 3, . . . T do
3: (AdamLoss) bt = bt−1 + α|ft(xt)|
4: (AdamLoss) ηt = 1/

√
bt

5: gt = ∇ft(xt) (Get the gradient)
6: mt = β1mt−1 + (1− β1)gt
7: vt = β2vt−1 + (1− β2)g

2
t

8: m̂t = mt/(1− βt
1)

9: v̂t = vt/(1− βt
2)

10: (Adam) xt+1 = xt − ηm̂t/
√
v̂t + ϵ

11: (AdamLoss) xt+1 = xt − ηtm̂t/
√
v̂t + ϵ

12: end for

The second task is to solve the classical control problem:
inverted pendulum swing-up. One popular algorithm is the
actor-critic algorithm (Konda and Tsitsiklis 2000), where
the actor algorithm is optimized by proximal policy gradient
methods (Zoph et al. 2018), and the critic algorithm is opti-
mized by function approximation methods (Fujimoto, Hoof,
and Meger 2018). The actor-network and critic-network are
fully connected layers with different depths. We use Adam
and AdamLoss to optimize the actor-critic algorithm inde-

pendently for four times and average the rewards. The code
source is provided in the supplementary material. Figure
3 implies that AdaLoss is very robust to different initial-
ization, while the standard Adam is extremely sensitive to
η = 1

b0
. Interestingly, AdamLoss does better when starting

with η0 = 1
200 . Overall, AdamLoss is shown numerically

robust to any initialization b0 for the two-class text classifi-
cation and the inverted pendulum swing-up problems. See
appendix for more experiments.

Broader Impact
Our theoretical results make a step forward to explain the
linear convergence rate and zero training error using adaptive
gradient methods in neural networks. Our new technique for
“linear” convergence proof (Theorem 1 and Theorem 3) could
be used to improve the recent sublinear convergence results
of Adam-type methods (Kingma and Ba 2014; Chen et al.
2019; Zaheer et al. 2018b; Zhou et al. 2018; Zou et al. 2018b;
Défossez et al. 2020). Based on a theoretical understanding
of the complexity bound of adaptive gradient methods and
the relationship between loss and gradient, we proposed a
provably convergent adaptive gradient method (AdaLoss). It
is computationally-efficient and could potentially be a use-
ful optimization method for those large-scale data training.
Particularly, it can be applied to the domains where tuning
hyper-parameters are very expensive, thus making a poten-
tially positive impact on society.
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