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Abstract

Neural sequence models trained with maximum likelihood
estimation have led to breakthroughs in many tasks, where
success is defined by the gap between training and test per-
formance. However, their ability to achieve stronger forms of
generalization remains unclear. We consider the problem of
symbolic mathematical integration, as it requires generaliz-
ing systematically beyond the test set. We develop a method-
ology for evaluating generalization that takes advantage of
the problem domain’s structure and access to a verifier.
Despite promising in-distribution performance of sequence-
to-sequence models in this domain, we demonstrate chal-
lenges in achieving robustness, compositionality, and out-
of-distribution generalization, through both carefully con-
structed manual test suites and a genetic algorithm that au-
tomatically finds large collections of failures in a controllable
manner. Our investigation highlights the difficulty of gener-
alizing well with the predominant modeling and learning ap-
proach, and the importance of evaluating beyond the test set,
across different aspects of generalization.

1 Introduction
Despite their success, recent studies reveal undesirable prop-
erties of conventional neural sequence models, such as as-
signing high-probabilities to unrealistic sequences (Holtz-
man et al. 2020; Welleck et al. 2020), susceptibility to adver-
sarial attacks (Wallace et al. 2019), and limited generaliza-
tion on symbolic tasks (Saxton et al. 2019; Nogueira, Jiang,
and Li 2021), even with very large models and datasets
(Henighan et al. 2020). Despite these drawbacks, Lample
and Charton (2019) recently demonstrated that a standard
sequence-to-sequence model, which we call a neural se-
quence integrator, performs surprisingly well at symbolic in-
tegration, solving problems that are beyond traditional sym-
bolic solvers and achieving near perfect test accuracy.

Recent studies suggest that achieving strong and sys-
tematic generalization is difficult with vanilla sequence-to-
sequence methods, as they latch onto regularities in the train-
ing data, learning dataset-specific solutions that do not gen-
eralize beyond the training distribution (e.g. Agrawal, Ba-
tra, and Parikh (2016); Lake and Baroni (2018); Bahdanau
et al. (2019); Hupkes et al. (2020)). Symbolic integration

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Input Integral Prediction

30 cos(39x) 10
13

sin(39x) 10
13

sin(39x) ✓

17 cos(83x) 17
83

sin(83x) 1
17

sin(83x) ✗

34 cos(77x) 34
77

sin(77x) sin(77x) ✗

x209 1
210

x210 1
210

x210 ✓

x764 1
765

x765 1
765

x765 ✓

x209 + x764 1
210

x210 + 1
765

x765 1
205

x205 ✗

−241 −241x −239x− 14400 ✗

123x 123x

log(123)
123x

1+log(123)
✗

4x + x465 + 1 x466

466
+ x+ 4x

log(4)
x466

466
+ x+ ex ✗

Table 1: Despite its impressive ability to integrate equations
that are out of reach for traditional symbolic solvers, the neu-
ral sequence integrator shows deficiences in robustness (top)
and compositionality (middle), and fails on adversarial prob-
lems discovered by SAGGA (bottom).

– finding the integral of a mathematical function – specifi-
cally requires these forms of generalization, as it involves an
underlying structure that extends beyond this fixed training
distribution. For instance, the rule

∫
k = kx + C applies to

all constants k, and the sum rule
∫
f1 +

∫
f2 =

∫
(f1 + f2)

means that integrating two functions correctly should imply
integrating their sum correctly. Symbolic integration also of-
fers a structured problem domain and a verifier for evalu-
ating whether a proposed solution is correct, making it an
effective setting for evaluating generalization. As the neural
sequence integrator relies on a common recipe– a large-scale
transformer trained to maximize the likelihood of a training
set of input-output sequences – it is especially interesting to
study whether it generalizes systematically.

In this paper, we find a discrepancy between the tradi-
tional notion of generalization captured by test set accu-
racy and the generalization needed in symbolic mathemat-
ics. While the model’s test accuracy is nearly perfect, we
find this breaks down when testing its robustness, compo-
sitionality, and out-of-distribution generalization (e.g. Ta-
ble 1). We describe a methodology for evaluating these as-
pects, by constructing problem sets and developing a genetic
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✓2x42

✗3x42

Robustness

x2 cos(x)2 sin(x)2

x2 sin(x)2+ ✗

Compositionality Out-of-Distribution

Training distribution

✗5xx2
exploit

long problem

✓ ✓ ✓

✗5x + 10 + cos(x)sin(x)2 + . . .

✓

Figure 1: Illustrating robustness, compositionality, and out-
of-distribution deficiencies in the neural sequence integrator.

algorithm, SAGGA (Symbolic Archive Generator with Ge-
netic Algorithms), that automatically discovers diverse and
targeted failures. We find that successfully integrating an
in-distribution problem does not imply success on nearby
problems, despite being governed by the same underlying
rule (robustness). Moreover, the model often succeeds on a
collection of problems without being able to systematically
compose those problems (compositionality), and struggles
to generalize to longer problems, larger values, and func-
tions not covered in training (out-of-distribution).

In addition to the model’s approximate mode being in-
correct – i.e. the most probable sequence returned by beam
search – the deficiencies are present deeper into its ranked
list of candidate solutions, impacting the model’s effective-
ness in a search-and-verify setting. Overall, our investiga-
tion highlights the difficulty of achieving robustness, com-
positionality, and out-of-distribution generalization with the
predominant modeling and learning approach, and the im-
portance of evaluating beyond the test set, across aspects of
generalization that are required by the task at hand.

2 Problem Setup
Symbolic integration is the problem of finding the integral y
of an input equation x. For instance, x2/2 is the integral of
x, up to an additive constant.

Neural sequence integrator. Lample and Charton (2019)
frame symbolic integration as a sequence-to-sequence prob-
lem. In this view, input and output equations x and y are
prefix-notation sequences. The neural sequence integrator
uses a 6-layer transformer (Vaswani et al. 2017) to model
the distribution pθ(y|x) =

∏Ty

t=1 pθ(yt|y<t,x) by train-
ing the model to maximize the log-likelihood of a set of
training problems, argmaxθ

∑
(x,y)∈D log pθ(y|x). Given

a trained model and input x, a set of predicted solutions
ranked by a model score is obtained by beam search, denoted
{ŷ1, . . . , ŷk} = fθ(x; k, b), where b is beam size and k is
the number of candidates saved for evaluation. For brevity
we omit b in the discussion unless necessary.

Evaluation. The standard practice is to evaluate a candi-
date ŷ by checking whether the derivative of ŷ is equivalent
to x using a symbolic solver (e.g. Sympy). In the maximum-
a-posteriori (MAP) setting, the model’s output is considered
correct if its top-ranked candidate ŷ1 is correct. This crite-
rion is relaxed in the search-and-verify setting, where the

model’s output is considered correct if any of its k candi-
dates {ŷ1, . . . , ŷk} is correct. In this view, the neural net-
work narrows the search space to a small set of candidates
that are checked, trading off correctness for search and veri-
fication cost. We denote checking k candidate solutions as,

m(x, fθ(x; k)) =

{
0 x ≡ d

dx ŷi for any i ∈ 1 to k,

1 otherwise.
(1)

In other words, m(·, ·) is 1 when the model fails to pre-
dict the correct integral, and 0 when the model succeeds.
We measure the proportion of failures on problems X =
{x1, . . . ,xN} using k candidate solutions per problem as:

Fail@k(fθ, X) =
1

N

∑
x∈X

m(x, fθ(x; k)). (2)

Fail@k is 0 when the model correctly integrates all of the
problems in X , and increases towards 1 as it fails to inte-
grate more problems. Evaluating a model’s performance in
the MAP setting corresponds to evaluating Fail@1, while
the search-and-verify setting with a budget of k > 1 candi-
dates uses Fail@k. We omit k in fθ(x; k) unless necessary.

2.1 Experiment Structure
We structure our investigation into three parts (Figure 1). We
begin close to the model’s training distribution, evaluating
robustness to small perturbations of in-distribution problems
and simple functions. We then ask whether learning to inte-
grate a collection of functions implies that the model can
integrate a composition of those functions. Finally we de-
part from the training distribution by studying extrapolation
to larger problems and values, then by finding adversarial
exploits that expose gaps in the training distribution.

Experimental setup. We use the implementation and pre-
trained model from Lample and Charton (2019) for all of our
experiments, specifically the FWD+BWD+IBP model which
obtained top-10 accuracies of 95.6%, 99.5%, and 99.6% on
their publicly available test sets.1 Our evaluation is based on
their code, we use their utilities for inputs and outputs, and
by default use beam search with beam-size 10. Following the
authors, we use Sympy to check whether the derivative of a
prediction is equal to the original problem. We generously
count the prediction as correct if a timeout occurs. See the
Apppendix for additional details.

2.2 Automatic Problem Discovery With SAGGA
Automatically finding problems that expose deficiencies re-
quires a non-differentiable cost (Equation 1), satisfying con-
straints for valid equations, and finding diverse problem sets
to characterize each aspect of generalization. To address
these challenges, we develop SAGGA (Symbolic Archive
Generation with Genetic Algorithms), a gradient-free ge-
netic algorithm which iteratively finds diverse failures.

At each iteration, SAGGA mutates a seed set of problems
by modifying each problem’s equation tree, ensuring that the

1https://github.com/facebookresearch/SymbolicMathematics/,
commit 4596d07.
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Algorithm 1: SAGGA. Each seed problem denoted
as x̂, mutated problem as x̃, archived problem as x.
Parameters: Fitness F (fθ,x) → R,
mutate and seed strategies, archive size N .
Output: Problem archive D = {x1, . . . ,xN}.
D = ∅ // initial archive

x̂
(0)
1:M = seed(D, ∅) // initial seed

while |D| < N do
// generate mutations

x̃
(i)
1:M ′ = mutate(x̂(i)

1:M )

// select problems by fitness

x
(i)
1:M ′′ = select(F, x̃(i)

1:M ′)

// archive selected problems

D = D ∪ x
(i)
1:M ′′

// choose next seed

x̂
(i+1)
1:M = seed(D, F, x̃

(i)
1:M ′)

resulting candidates are valid equations. The candidates are
scored by a fitness function – i.e. according to whether the
neural sequence integrator fails to integrate the problem and
other desired constraints – and the highest-fitness candidates
are saved in a problem archive. The next seed set is then
formed to balance diversity and fitness, by clustering can-
didates and selecting the highest-fitness members of each
cluster. SAGGA continues until the archive contains a target
number of problems. Algorithm 1 summarizes SAGGA.

SAGGA offers control over the types of problems that it
discovers through its seed problems, fitness function, and
mutation strategy. We detail our choices for each kind of
generalization in their respective sections, and show default
settings and further implementation details in the Appendix.

3 Robust or Brittle?
First, we study whether the model’s strong test-set perfor-
mance adequately represents its robustness. Robustness tells
us whether the integration model systematically solves all
problems in a neighborhood governed by a generalizable
pattern; for instance a model that solves

∫
26x42 should

solve
∫
53x42. We study problems that are nearby to those

from the original test distribution, as well as to simple prim-
itive functions that offer fine-grained, interpretable control.

A robust model is stable to small perturbations in input,
meaning that it gets nearby problems x̃ correct when it gets a
problem x correct. Formally, let X = {x1, . . . ,xN} contain
problems that the model gets correct,

∑
x∈X m(x, fθ(x)) =

0, and let Nd(x) be a set of problems that are nearby to x
according to a distance d(x, x̃). We measure robustness by
measuring failures on nearby problems,

Fail@k(fθ, XN ), (3)

where XN =
⋃

x∈X Nd(x). We measure this quantity by
varying (i) the neighborhood Nd(x) used to generate nearby
problems, and (ii) the seed problems X to consider. Below,
we will refer to a problem as x or f interchangeably.

Type Test Fail@50 Fail@10 Fail@1
coeff k1 ln(k2x) 0.0 0.0 0.0

k1x 0.0 0.0 0.0
k1x

42 0.0 6.1 45.5
k1 exp(k2x) 15.4 20.8 30.3
k1 sin(k2x) 6.6 19.6 29.7
k1 cos(k2x) 10.6 20.7 28.2
k1 tan(k2x) 13.9 17.4 24.2

coeff 1/k · f 5.9 12.0 13.7
coeff k · f 5.4 5.8 16.3
+exp f + ex 0.9 1.6 3.3
+ln f + ln(x) 1.9 3.2 5.3

Table 2: Robustness results with simple primitives (top) and
validation problems f which the model correctly integrates
(bottom). Coefficients are sampled from [1, 100].

Input Integral Prediction

30 cos(39x) 10
13 sin(39x)

10
13 sin(39x) ✓

17 cos(83x) 17
83 sin(83x)

1
17 sin(83x) ✗

34 cos(77x) 34
77 sin(77x) sin(77x) ✗

26x42 26
43x

43 26
43x

43 ✓

88x42 88
43x

43 8x43 ✗

53x42 53
43x

43 (x44 + x)/x ✗

Table 3: Robustness examples. We show the model’s top
prediction (beam search, size 10). Note that (x44 + x)/x =
x43 + 1; its derivative is 43x42 and is hence incorrect.

3.1 Manually Testing Robustness
To define nearby problems, we first consider manual tem-
plates which minimally perturb a problem f , e.g.

k · f, f + lnx, . . .

These problems are nearby f in the sense that a single op-
eration is added to the problem’s equation tree, or a small
number of node values are changed in the tree.

Brittleness on simple primitive functions. We first inves-
tigate whether the neural sequence integrator is robust on
simple primitive functions, since they make up more com-
plicated functions and are frequently entered by real-world
users. We use a manual neighborhood which yields,

XN = {k1 ln(k2x), k1 exp(k2x), k1x, k1x
42,

k1 sin(k2x), k1 cos(k2x), k1 tan(k2x)},

where k1 ∼ U(a, b) and k2 ∼ U(a, b) are randomly sampled
coefficients from a range (a, b). We use [0, 100] which is
covered by the training distribution and evaluate on 1,000
k1, k2 pairs sampled without replacement for each primitive.

Table 2 shows the results. On a positive note, the neu-
ral sequence integrator is robust on the primitives k1x and
k1 ln(k2x). The integral of k1x is k1

2 x2, so the model
learned to divide by 2 for these cases. The integral of ln in-
volves copying the coefficients into a correct template (that
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is,
∫
k1 ln(k2x) = k1x(ln(k2x) − 1)), and the neural se-

quence integrator learned this behavior.
On the other hand, the model is surprisingly brittle on

the other primitives. These require dividing coefficients (e.g.∫
k1 cos(k2x) = k1

k2
sin(k2x)). The failure rate shows that

the model has not perfectly learned the required division be-
havior. Moreover, despite learning a ‘division by 2’ rule for
integrating k1x, the neural sequence integrator’s failures on
k1x

42 indicate that it did not perfectly learn an analogous
‘division by 43’ rule. Table 3 shows examples.

Test accuracy does not imply robustness. Next, we want
to see whether the neural sequence integrator’s strong test
accuracy implies that it is robust on test problems. We use
the validation set, and perturb validation problems that the
model correctly integrates using the neighborhoods,

XN1 = {1
k
f, k · f}, XN2 = {f + ex, f + ln(x)},

where k ∼ U(1, 100). The first set multiplies the function
by a constant, while the second adds a single primitive.

Table 2 shows the results. Despite achieving perfect accu-
racy on the original problems, the model frequently fails un-
der the slight perturbations. The local neighborhood around
validation examples reveals deficiencies in robustness that
are not evident from validation performance alone, aligning
with findings in NLP tasks (Gardner et al. 2020).

3.2 Automatically Finding Robustness Failures
Next, we use SAGGA to automatically discover robustness
failures in the neighborhood of a seed set of problems.

Discovering brittleness near simple problems. First, we
run SAGGA and only allow it to mutate leaves in a prob-
lem’s equation tree into a random integer. The problems are
nearby in the sense that the tree’s structure is not changing,
only a small number of its leaf values. We use SAGGA to
mutate the leaves of seed sets of 9 polynomials Xpoly and
9 trigonometric functions Xtrig, which are listed in the Ap-
pendix. We run SAGGA until it discovers 1000 failing prob-
lems, then cluster these using k-means on SciBERT embed-
dings (Beltagy, Lo, and Cohan 2019) of each problem.

Table 4 shows three members from three discovered prob-
lem clusters, for the polynomial and trigonometric seeds.
Intuitively, each cluster shows failures in a neighborhood
around a prototypical problem – for instance, on 2x42 + k
the neural sequence integrator correctly integrates 2x42+21,
but not the problems in Cluster 2 (e.g. 2x42 + 22).

Curiously, each problem in a neighborhood is gov-
erned by a common template – e.g. the problems
{−104,−136,−33} are governed by

∫
k = kx + C, yet

the failures suggest that the neural sequence integrator has
either not inferred the template, or does not apply it across
the neighborhood. To investigate this phenomenon, we show
the raw model prediction in Table 5, along with its simplified
version and derivative. Compared to the underlying template∫
k = kx+ C the model’s raw output is long and complex.

In contrast, the simplified version is short; we hypothesize
this gap makes adhering to the template difficult.

Seed Cluster 1 Cluster 2 Cluster 3

Xpoly −104 2x42 + 22 −47 + 2/x− 2/x71

−136 2x42 + 28 −47 + 2/x− 31/x71

−33 2x42 + 68 −71 + 36/x+ 2/x71

Xtrig 13 cos 19x 13 cos 83x− 59 10 sin 47x cos 2x
13 cos 83x 17 cos 37x− 49 10 sin 90x cos 2x
17 cos 47x 17 cos 41x− 45 19 sin 90x cos 2x

Table 4: Example robustness problems discovered by
SAGGA which the neural sequence integrator fails to inte-
grate.

x Raw Simplified Deriv.

−104 x2 + 2x− (x+ 25)2 −48x− 625 −48
−136 x2 − x(x+ 130) + 2x −128x −128
−33 x2 + x− (x+ 16)2 −31x− 256 −31

Table 5: The raw model predictions for the problems x and
their simplified forms. Each prediction is incorrect since its
derivative is not equal to x. The neural sequence integrator’s
raw output is long and varied compared to the underlying
integration rule

∫
k = kx+ C.

Discovering brittleness near validation problems. Fi-
nally, we use SAGGA to discover difficult problems that are
close to a target set X – in our case validation problems – ac-
cording to an explicit distance d(x, x̃). This allows for less
hand-designing of the perturbations.

Specifically, we define a fitness which is high whenever a
candidate is close to any problem in a target set X ,

fitness(x̃) =
[
min
x∈X

d(x, x̃)

]−1

·m(x̃, fθ(x̃)). (4)

We randomly sample 10 validation problems to form X ,
set SAGGA’s initial seed to X , and use cosine similarity of
SciBERT vectors to define the distance d(x, x̃). Since the
distance now constrains the problems, we are free to use a
wider set of mutations: changing a node’s operation, adding
an argument to a node, and replacing the node with a random
constant, symbol, or simple operation.

Table 6 shows example problems that SAGGA discovers
around the successful validation problems, exposing a wider
class of robustness failures than our preceding experiments.

4 Integrating Parts But Not The Whole
While the preceding section identified weaknesses in ro-
bustness – for instance, integrating 26x42 but not 88x42 –
a remaining question is whether successfully integrating a
collection of primitives implies that a composition of those
primitives will be successfully integrated.

Compositionality refers to forming compound equations
from known primitives and operations. A compositional
model should correctly integrate equations of the form,

f = f1 ◦ f2 ◦ · · · ◦ fk, (5)
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Validation Problem Nearby Failures

−x2 + x+ log(4) tan(x) −x2 + x+ log(4) tan(17x2)
−x2 + x+ log(4) tan(2x2)
−x2 + x+ log(4) tan(63/x2)

√
3x+ 3− 2

√
−86x2 + 62/x− 40√
14 + 62/x+ 4√
14 + 62/x− 2

tan(exp(2))/18x tan(exp(2 + 71/x))/18x
tan(exp(2− 46x))/18x
tan(exp(37x))/18x

Table 6: SAGGA discovers failures around successful val-
idation problems, within a neighborhood defined by an ex-
plicit distance.

Input Prediction

x1/3 3
4x

4/3 ✓

x1/606 606
607x

607
606 ✓

x1/3 + x1/606 3
5x

5
3 + 6

613x
613
606 ✗

x209 1
210x

210 ✓

x764 1
765x

765 ✓

x209 + x764 1
205x

205 ✗

14 cos(58x) 7
29 sin(58x) ✓

46 cos(84x) 23
42 sin(84x) ✓

14 cos(58x) + 46 cos(84x) sin(59x) cos(x) ✗

Table 7: Compositionality examples. We show the model’s
top prediction (beam search, width 10). The model success-
fully integrates the individual primitives, but not their sum.

where f1, . . . , fk are equations that the model successfully
integrates, and ◦ is a binary operation (e.g. addition). For
instance, a system that integrates x2 and cosx and is capable
of addition should successfully integrate x2 + cosx.

Formally, we say that a model is k-compositional with
respect to equations X and operation ◦ when it success-
fully integrates any combination of k equations from X ,∑

x∈X̃ m(x, fθ(x)) = 0, where X̃ = {f1◦· · ·◦fk|fi ∈ X}.
We evaluate k-compositionality with respect to addition,

using simple primitive functions and validation problems.
As integration is linear,

∫
(f+g) =

∫
f+

∫
g, composition-

ality with respect to addition is a reasonable requirement.

Succeeding on simple primitives, failing on their sum.
We collect simple primitives from the coefficient robustness
experiments that the model successfully integrates (coeff),
and successful exponents xc or x1/c, c ∈ [0, 1000] (exp).
We randomly sample 1000 compound equations f1+. . .+fk
for k ∈ {2, 3, 4} and evaluate the failure rate. Table 8 shows
the results. Adding two primitives gives failure rates of 29%
and 85% for coefficient and exponent primitives, respec-
tively, despite failing 0% of the time on the individual prim-

Type Test Fail@50 Fail@10 Fail@1

exp(1) f1 00.0 00.0 00.0
exp(2) f1 + f2 70.8 72.4 84.9
exp(3) f1 + f2 + f3 91.3 97.5 99.5
exp(4) f1 + . . .+ f4 86.2 97.4 99.8

coeff(1) f1 00.0 00.0 00.0
coeff(2) f1 + f2 8.60 16.2 29.2
coeff(3) f1 + f2 + f3 23.8 37.5 61.0
coeff(4) f1 + . . .+ f4 23.1 38.7 60.0

valid(1) f1 00.0 00.0 00.0
valid(2) f1 + f2 6.80 14.5 15.0
valid(3) f1 + f2 + f3 21.5 36.5 43.6
valid(4) f1 + . . .+ f4 52.5 69.0 79.2

Table 8: Compositionality. Top: successful simple prim-
itives from the robustness experiments (Table 2). Bot-
tom: successful validation-set primitives. Despite integrat-
ing each primitive, the model struggles to integrate their
sums.

Nodes Fail@10 Fail@1

1-15 0.4 1.6
20 1.9 10.7
25 7.2 17.2
30 24.4 37.1
35 49.0 59.2

Table 9: Extrapolation to more operator nodes under the
training data generation process. Training used 1-15 nodes.

itives. As the number of compositions increases, the failure
rate increases towards 100%. Table 7 shows examples.

Succeeding on test problems, failing on their sum. We
perform a similar experiment using successful validation-set
functions. We filter examples longer than 20 tokens so that
composed equations are within the training domain in terms
of length, and sample 1000 compound equations f1 + . . .+
fk for k ∈ {2, 3, 4}. As seen in Table 8, the failure rate
grows as the number of compositions increases, similar to
the simple primitives case. Maximizing the likelihood of a
large training set did not yield a compositional model.

5 Departing Further From Training
The preceding experiments found problems that were nearby
to, or composed directly from, in-distribution examples. In
this section, we deliberately move from the model’s training
distribution to evaluate its out-of-distribution generalization.
First, we study extrapolation to longer equation sizes than
those in its training distribution, and to integer ranges that
are only sparsely covered in the training set. Then we use
SAGGA to expose exotic failures and reveal problem classes
that were not covered during training.

Longer problems are more difficult. First, we use the
same data-generating process as for training, but vary its
parameters to depart from the training distribution. Specifi-
cally, we test extrapolation on number of operator nodes in
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Figure 2: Integer extrapolation. Failure rates for integrating
simple primitives with coefficients from the specified range.

Problem Exploit

169 sin(4x)/x Uses Si(·).
−2 sin(42/x) Uses Ci(·).

−2 sin(185x2) cos(2x) Uses Fresnel S,C integrals.
357x

2x
+ 2 sin(2x) Uses incomplete gamma Γ(a, x).

1/(x48(3x+ 2)49) Decoding does not terminate.

Table 10: Exploits discovered by SAGGA whose integrals
use out-of-domain functions.

each equation tree, using Lample and Charton (2019)’s data
generation process and varying the max ops parameter. Ta-
ble 9 shows performance when max ops is increased past
the model’s training domain (1-15). The neural sequence in-
tegrator does show some extrapolation to equation trees with
more operator nodes than it was trained on, but its failure
rate increases substantially as the number of nodes increases.

Larger failures on larger digits. Next, we study per-
formance as integer values increase, quickly going out-of-
domain. Considering a sample of 200,000 sequences from
the training distribution, 99.4% of the positive integers
were between 1 and 100. Other ranges were non-empty but
sparsely represented; for instance, 0.2% of the integers were
between 100 and 200, and 0.096% between 1,000 and 2,000.
Figure 2 shows performance on primitive functions with co-
efficients from the specified range. As in the robustness ex-
periments, the x and ln primitives perform well, showing
that there is some ability to use large numbers. However,
performance severely degrades for the exp,sin,cos,tan
primitives as the coefficient magnitudes increase, reaching
near 100% failure rates on large coefficients.

Discovering unsupported functionality. Next, we run
SAGGA in an unconstrained setting with all mutation types,
favoring short problems using the fitness, F (fθ,x) =
m(x, fθ(x)) · 1

|x| , which is positive when the model returns
an incorrect integral for x, and higher for shorter problems.

SAGGA discovers exploits based on the neural sequence
integrator’s limited training distribution, such as problems

Cluster 1 Cluster 2 Cluster 3 Cluster 4

119x −240x + 2 cos 2x −100xx 158xx2

+ 611

132x −398x + 2 cos 2x −149xx 256xx2

+ 191

136x −692x + 2 sin 2x −151xx 332xx2

+ 559

Table 11: SAGGA discovers many failures that involve x in
an exponent.

k Unresolved@k
1 91.6%

10 65.2%

Table 12: Percentage of failures on the FWD validation set
in which the ground truth y∗ is scored lower than the top
beam candidate (Unresolved@1) or the bottom beam candi-
date (Unresolved@10), meaning that perfect search would
leave the failures at level k unresolved.

whose integral is expressed using the Gamma function Γ(·),
or the cosine integral Ci, which are not included in its train-
ing data (Table 10).2 These examples are a reminder that the
sequence-to-sequence paradigm determines which functions
are ‘built in’ by inclusion in training data; omitted behavior
is left unspecified, leaving it susceptible to exploits.

Finally, the last problem in Table 10 caused the neural
sequence integrator to enter a non-terminating loop during
decoding, a known idiosyncrasy of autoregressive models
with beam search (Welleck et al. 2020).

SAGGA also finds many clusters that indicate the neural
sequence integrator struggles when x appears in an expo-
nent. The discovered problems in Table 11 are a microcosm
of our previous findings: For the first cluster, we manually
found a nearby problem, 30x, that the model gets correct;
this cluster is a robustness failure. The second cluster shows
how such failures cascade further as the function is com-
posed. The final two clusters involve xx or xx2

, which do
not have analytical integrals;3 these clusters are exploits.

6 Is It A Search Problem?
Both the experiments of Lample and Charton (2019) and
our own generate candidate solutions from a sequence-to-
sequence model using beam search. This raises the possibil-
ity that failures are due to search rather than the model: what
if the highest scoring sequences are correct, but not found?

Specifically, we want to distinguish between search er-
rors, which occur when pθ(y∗|x) ≫ p(y|x) but the search
algorithm (e.g. beam search) does not return y∗, and model
errors, meaning pθ(y|x) ≫ p(y∗|x).

6.1 The Model Is Deficient: Model Errors
We study simple-robustness and in-distribution problems,
and find evidence of model deficiencies that would remain
unresolved with perfect search.

2https://en.wikipedia.org/wiki/Trigonometric integral.
3https://www.wolframalpha.com/input/?i=integral+of+x**x
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Figure 3: Probabilities assigned to the top-ranked beam can-
didate (max) versus correct candidates (correct) with a
large search & verification budget (500 candidates).

Robustness. First, we study the simple-primitive robust-
ness problems (e.g. k1 exp(k2x), see 2), as these short prob-
lems resulted in a small number of timeouts, allowing us to
scale up search and verification. We increase the beam size
to 500 candidates, and study the model’s probabilities on the
500 returned candidates and correct solutions.

When a correct solution is within the 500 returned can-
didates, the correct solution often has much lower probabil-
ity than the top candidate, pθ(y

(1)
beam|x) ≫ p(y∗|x). Specif-

ically, correct solutions often appear at the bottom of the
candidates (3, orange), yet on average the bottom candidate
y
(500)
beam has probability ≈ 0.0000035, while the top candidate

y
(1)
beam has probability ≈ 0.92. These are model deficiencies:

the model is confidently incorrect, assigning very high prob-
ability to an incorrect solution at the top, and very low prob-
ability to correct solutions.

When a correct solution is not within the top 500 candi-
dates, the model is again confidently incorrect, with the top
candidate y(1)

beam receiving ≈ 0.94 probability. Improving the
search algorithm – e.g. by further increasing the search bud-
get or using an alternative to beam search – would inevitably
return a low probability solution, as the 500 candidates al-
ready cover more than 99.4% of the probability mass. The
findings again point to model errors.

In-distribution. Next, we study in-distribution problems
from the FWD validation set of Lample and Charton (2019).
On failure cases, we test if the ground-truth y∗ is scored
above the top k beam candidates, meaning that failure@k
might be resolved with perfect search–y∗ was scored more
highly but was simply not found. As seen in 12, the majority
of failures – 91.6% for failure@1 and 65.2% for failure@10
– would remain unresolved with perfect search.

7 Related Work
In this work, we study systematic generalization in sequence
models applied to symbolic integration, in terms of robust-
ness, compositionality, and extrapolation, and develop a ge-
netic algorithm for building adversarial problem sets.

Symbolic mathematics and sequence models. Several
works study extrapolation to longer sequences and larger
digits in synthetic arithmetic and basic mathematics tasks
(Zaremba and Sutskever 2014; Trask et al. 2018; Saxton
et al. 2019; Nogueira, Jiang, and Li 2021). Sequence models
have also been applied to polynomial rewriting (Piotrowski
et al. 2019; Agarwal, Aditya, and Goyal 2021), and differ-
ential system stability (Charton, Hayat, and Lample 2021).
For symbolic integration, Davis (2019) argue that the neural
sequence integrator’s test performance should be qualified,
though without an empirical demonstration.

Systematic generalization. Several works identify diffi-
culties with modern methods on synthetic tasks (e.g. Lake
and Baroni (2018); Bahdanau et al. (2019); Hupkes et al.
(2020); Kim and Linzen (2020)) and machine translation
(Raunak et al. 2019), with a focus on compositionality and
extrapolation. Some methods address systematicity with in-
ductive biases in model structure (Andreas et al. 2016; Bah-
danau et al. 2019), and others through the data (Hill et al.
2020; Andreas 2020) or learning procedure (Lake 2019;
Vani et al. 2021). We focus on systematic generalization de-
ficiencies in a state-of-the-art model in a new setting – sym-
bolic integration – with additional aspects of generalization.

Robustness and adversaries in sequence models. Sev-
eral works study robustness in NLP, including classification
(Tu et al. 2020), word substitutions (Jia et al. 2019), domain
shift in QA (Kamath, Jia, and Liang 2020) or topic distri-
butions (Oren et al. 2019). Several methods find adversarial
examples in NLP (Morris et al. 2020). Alzantot et al. (2018)
use genetic algorithms in a classification setting, while we
consider generation. Michel et al. (2019) constrain input se-
quences to be similar and use a gradient-based attack to
swap tokens. We face a non-differentiable cost and generate
large collections of failures with a wide class of mutations.

8 Conclusion
We study generalization in symbolic mathematics using the
predominant modeling paradigm: a large-scale transformer
trained with maximum likelihood. We find deficiencies that
are not captured by test accuracy, including brittleness to
small perturbations, difficulty composing known solutions,
and gaps in the training distribution. We offer speculations
based on our results. Due to the large space of equations,
practical empirical distributions do not provide a dense sam-
pling of individual problem types (e.g. k1 cos(k2x)), and
each empirical sample contains shared biases from the un-
derlying data generator (e.g. integer values, lengths). Thus,
sparse test sets do not adequately measure systematic gen-
eralization. From a learning perspective, generic networks
trained with SGD do not necessarily favor the simplest hy-
pothesis to explain the data; thus a sparse training set yields
an underconstrained hypothesis space, with hypotheses that
do not strongly generalize (e.g. Table 5), causing behavior
that breaks simple rules (e.g. adhering to a template or fol-
lowing the sum rule). We suspect that inductive biases– e.g.
encoded through the training distribution, architectural com-
ponents, or learning algorithm– are needed to narrow the hy-
potheses to those that strongly generalize.
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