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Abstract
Model-based reinforcement learning algorithms, which aim
to learn a model of the environment to make decisions, are
more sample efficient than their model-free counterparts.
The sample efficiency of model-based approaches relies on
whether the model can well approximate the environment.
However, learning an accurate model is challenging, espe-
cially in complex and noisy environments. To tackle this
problem, we propose the conservative model-based actor-
critic (CMBAC), a novel approach that achieves high sam-
ple efficiency without the strong reliance on accurate learned
models. Specifically, CMBAC learns multiple estimates of
the Q-value function from a set of inaccurate models and
uses the average of the bottom-k estimates—a conservative
estimate—to optimize the policy. An appealing feature of
CMBAC is that the conservative estimates effectively en-
courage the agent to avoid unreliable “promising actions”—
whose values are high in only a small fraction of the mod-
els. Experiments demonstrate that CMBAC significantly out-
performs state-of-the-art approaches in terms of sample effi-
ciency on several challenging tasks, and the proposed method
is more robust than previous methods in noisy environments.

Introduction
Reinforcement learning has achieved great success in
decision-making tasks, ranging from playing video games
(Mnih et al. 2015; Hessel et al. 2018) to controlling robots
in simulators (Lillicrap et al. 2016; Haarnoja et al. 2018).
However, many of these results are achieved by model-free
algorithms and generally require a massive number of sam-
ples, which significantly hinders the applications of model-
free methods in real-world tasks (Kurutach et al. 2018; Jan-
ner et al. 2019). In contrast, model-based approaches, which
build a model of the environment and generate fictitious
interactions, are more sample-efficient than their model-
free counterparts. Therefore, model-based approaches are
promising candidates for dealing with real-world tasks.

The sample efficiency of model-based approaches cru-
cially relies on learning accurate models efficiently, as
model errors limit the performance of learned policies,
known as the model-bias problem (Deisenroth and Ras-
mussen 2011; Clavera et al. 2018). Specifically, model errors
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can mislead the agent into selecting the unreliable actions—
whose values are high in the model but is low in the true
environment with a large probability—and thus degrade the
performance of the learned policy until learning an accu-
rate model from a large number of interactions (Kurutach
et al. 2018; Clavera et al. 2018). Previous methods tackle this
problem by improving the expressive power of the models,
such as using neural networks and ensemble models (Pun-
jani and Abbeel 2015; Nagabandi et al. 2018; Kurutach et al.
2018; Chua et al. 2018). However, efficiently learning accu-
rate models remains challenging, especially in complex and
noisy environments (Janner et al. 2019; Wang et al. 2019;
Pan et al. 2020), which creates a hindrance in further im-
proving the sample efficiency of model-based approaches.

To alleviate the strong reliance on accurate models, re-
cent model-based algorithms (Luo et al. 2019; Zhou, Li, and
Wang 2020; Yu et al. 2020; Pan et al. 2020) prevent the
agent from exploiting model errors by an uncertainty-based
penalty. Specifically, they explicitly quantify the uncertainty
of the Q-value via the discrepancy of ensemble models and
use it as a penalty to learn a lower bound of the true Q-value.
However, many works have shown that the uncertainty quan-
tification of existing methods can be unreliable, which acts
as a bottleneck to their sample efficiency (Ovadia et al. 2019;
Yu et al. 2021). We also empirically show that many existing
uncertainty quantification methods can not well approximate
the errors of Q-function in Section .

In this paper, we propose the conservative model-based
actor-critic (CMBAC), a novel approach that approximates
a posterior distribution over Q-values based on the ensem-
ble models and uses the average of the left tail of the dis-
tribution approximation to optimize the policy. Specifically,
CMBAC alternates between learning multiple estimates of
the Q-value from the ensemble models and uses a conserva-
tive estimate, i.e., the average of the bottom-k estimates, to
optimize the policy. CMBAC has two main advantages: (1)
the conservative estimates effectively encourage the agent
to avoid unreliable “promising actions”—whose values are
high in only a small fraction of the models; (2) the distri-
bution approximation over Q-values can produce reasonable
uncertainty estimates of the Q-value. We empirically show
that the uncertainty quantification of CMBAC approximates
the errors of Q-function more accurately than previous un-
certainty quantification methods, which plays a crucial role
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in the impressive performance of CMBAC (please refer to
Figure 3). Experiments show that CMBAC significantly out-
performs state-of-the-art methods in terms of sample effi-
ciency on several challenging control tasks (Brockman et al.
2016; Todorov, Erez, and Tassa 2012). Moreover, experi-
ments demonstrate that CMBAC is more robust to model
imperfections than previous methods in noisy environments.

Related Work
In this section, we discuss related work, including model-
based reinforcement learning, uncertainty in reinforcement
learning, and conservatism in reinforcement learning.

Model-Based Reinforcement Learning
Roughly speaking, model-based approaches fall into three
categories according to the way of model usage: (1) dyna-
style methods (Sutton 1990; Luo et al. 2019; Zhou, Li, and
Wang 2020; Janner et al. 2019), which use the model to
generate imaginary samples as additional training data; (2)
shooting algorithms (de Boer et al. 2005; Chua et al. 2018;
Wang and Ba 2020), which use the model to plan to seek the
optimal action sequence; (3) policy search with backprop-
agation (Nguyen and Widrow 1990; Fairbank and Alonso
2012; Heess et al. 2015; Clavera, Fu, and Abbeel 2020;
Amos et al. 2021) through time, which exploits the model
derivatives and computes the analytic policy gradient. Our
work falls into the first category, i.e., the dyna-style algo-
rithm, which has recently shown the potential to achieve
high sample efficiency (Janner et al. 2019).

Uncertainty in Reinforcement Learning
Uncertainty estimation plays a crucial role in many rein-
forcement learning methods (Strehl and Littman 2008; Os-
band et al. 2016; O’Donoghue et al. 2018; Zhou, Li, and
Wang 2020; Yu et al. 2020). In model-based reinforcement
learning, recent methods (Luo et al. 2019; Yu et al. 2020; Pan
et al. 2020) mainly focus on explicitly quantifying the un-
certainty of the Q-value via the discrepancy of the ensemble
models to alleviate the strong reliance on accurate models.
However, their uncertainty quantification can be unreliable
for deep network models (Ovadia et al. 2019; Yu et al. 2021).
In contrast, our work approximates a posterior distribution
over Q-values based on the ensemble models to capture the
uncertainty of the value function. Although the work (Vuong
and Tran 2019) also approximates a posterior distribution
over Q-values based on the ensemble models, our work dif-
fers from it in the way of value estimation. Vuong and Tran
(2019) estimates the value in a model via Monte Carlo meth-
ods (Sutton and Barto 2018), which can suffer from com-
pounding model errors. In contrast, we use temporal differ-
ence methods to estimate the value (Sutton and Barto 2018).
In model-free reinforcement learning, many methods (Strehl
and Littman 2008; Osband et al. 2016; O’Donoghue et al.
2018) quantify the uncertainty via the true environment sam-
ples and use it as a reward bonus to promote exploration,
while these uncertainty quantification methods are inappro-
priate for model-based methods (Zhou, Li, and Wang 2020).

Conservatism in Reinforcement Learning
Previous methods introduce the conservatism into policy op-
timization by underestimating the true value to improve the
robustness (Doyle 1996; Lim, Xu, and Mannor 2013; Ra-
jeswaran et al. 2017) and alleviate the overestimation bias
(Fujimoto, van Hoof, and Meger 2018; Kuznetsov et al.
2020; Kumar et al. 2020). In model-based reinforcement
learning, some methods (Doyle 1996; Lim, Xu, and Mannor
2013; Rajeswaran et al. 2017) leverage robust policy opti-
mization, which learns a policy that performs well across
models. However, the learned policies tend to be over-
conservative (Clavera et al. 2018). In contrast, we use the
average of the bottom-k estimates instead of the minimum
to optimize the policy, controlling the degree of conser-
vatism. In model-free reinforcement learning, many meth-
ods incorporate conservatism into policy learning to alle-
viate the overestimation bias that comes from function ap-
proximation errors (Fujimoto, van Hoof, and Meger 2018;
Kuznetsov et al. 2020; Kumar et al. 2020). In contrast, CM-
BAC leverages conservatism to alleviate the overestimation
that comes from model errors (please refer to Section ).

Background
In this section, we present the notation and provide a brief
introduction to the state-of-the-art model-based algorithm,
i.e., Model-Based Policy Optimization (Janner et al. 2019).

Preliminaries
We here introduce notation which we will use throughout the
paper. We consider an infinite-horizon Markov decision pro-
cess (MDP) denoted by a tuple (S,A, P ∗, r, γ, ρ0), where
S and A are the sets of states and actions, respectively,
P ∗ : S×A×S → [0,∞) is the transition probability density
function with P ∗(·|s, a) representing the conditional distri-
bution of the next state given the current state s and action
a, r : S × A → R is the reward function, ρ0 : S → [0,∞)
is the starting state distribution, and γ is the discount factor.
Let π : S → P(A) be a stationary policy, where P(A) is a
set of probability distribution over A. Let π(·|s) denote the
probability distribution overA at state s. In model-based re-
inforcement learning, we learn a dynamics model P̂ (·|s, a)
using data collected from interaction with the true MDP.
For simplicity, we assume that the reward function r(s, a)
is known throughout the paper, but in practice, we learn a
reward function. Let S0 be the random variable for the ini-
tial state. Let Qπ,P be the state-action value function on the
model P and policy π defined by:

Qπ,P (s, a) = Eπ,P [
∞∑
t=0

γtr(St, At)|S0 = s,A0 = a].

We define η(π, P ) = Eπ[Qπ,P (S0, A0)] as the expected
reward-to-go. Our goal is to maximize the reward-to-go on
the true model, that is, η(π, P ∗), over the policy π.

Model-Based Policy Optimization
Model-based policy optimization (MBPO) is a state-of-the-
art model-based algorithm that has achieved impressive per-
formance (Janner et al. 2019). MBPO has three ingredients:
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Algorithm 1: Pseudo code for CMBAC
.

1: Initialize an ensemble of models {Pψi}Ni=1, environ-
ment dataset Denv, and model dataset Dmodel

2: Initialize policy πφ, multi-head Q-network {Qθj}Kj=1
3: for N epochs do
4: Train models {Pψi}Ni=1 on Denv
5: for E steps do
6: Take action in environment using πφ; add to Denv
7: for M model rollouts do
8: Sample st unifromly from Denv
9: Perform k-step model rollouts starting from st

using policy πφ; add to Dmodel
10: end for
11: for G gradient updates do
12: Train value functions on model data: θj ← θj −

λQ∇̂JjQ(θj) for j ∈ {1, . . . ,K}
13: Conservative policy optimization on model data:

φ← φ− λπ∇̂Jπ(φ)
14: end for
15: end for
16: end for

1. Ensemble models MBPO trains a bootstrap ensemble
of dynamics models via maximum likelihood technique
(Chua et al. 2018) on datasetDenv collected from interac-
tions with the true environment. Each member of the set
is modeled as a Gaussian with mean and diagonal covari-
ances given by neural networks. Our work also learns an
ensemble of probabilistic models.

2. Model usage MBPO selects a model uniformly at ran-
dom from the ensemble and generates a prediction from
the selected model. To reduce compounding model errors
introduced by long rollouts, MBPO generates many short
rollouts as additional training dataset Dmodel.

3. Policy optimization MBPO uses soft actor-critic (SAC)
(Haarnoja et al. 2018)—a state-of-the-art model-free al-
gorithm based on the maximum entropy reinforcement
learning framework—to optimize the policy.

Conservative Model-Based Actor-Critic
In this section, we present a detailed description of CMBAC.
CMBAC alternates between (1) learning multiple estimates
of the Q-value function from the ensemble models and (2)
using the average of the bottom-k estimates to optimize the
policy. We provide an illustration of CMBAC in Figure 1
and summarize the procedure of CMBAC in Algorithm 1.

Capturing the Uncertainty of the Q-value
To capture the uncertainty of the Q-value, CMBAC directly
approximates the posterior distribution over Q-values based
on the posterior distribution approximation over models.
The uncertainty of the Q-value comes from the unknown
true environment, and model-based approaches usually es-
timate it using a possible set of models.

To approximate the posterior distribution over mod-
els, CMBAC learns an ensemble of probabilistic neural

networks {pψi}Ni=1, which has been shown the potential
to capture the uncertainty of models (Lakshminarayanan,
Pritzel, and Blundell 2017; Chua et al. 2018). Each prob-
abilistic neural network model the transition probability
density as a Gaussian with mean and diagonal covari-
ances given by neural networks. That is, pψi(s

′|s, a) =
N (µψi(s, a), σψi(s, a)). To control the granularity of dis-
crepancy between models, CMBAC constructs a set of mod-
els M using these probabilistic neural networks. Each ele-
ment inM, denoted byMj , is a set consists of M different
networks (M < N ) and thus the size ofM isK =

(
N
M

)
. We

view eachMj as a model, andMj generates next state s′
given current state-action pair (s, a) under the distribution

Pj(s
′|s, a) =

∑
p∈({pψi}

N
i=1∩Mj)

1

M
p(s′|s, a).

The set of models M has the ability to well approximate
the posterior distribution of the true environment using non-
parametric bootstrap with random initialization (Efron and
Tibshirani 1993; Osband et al. 2016; Chua et al. 2018).
Given fixed M , CMBAC achieves more fine-grained gran-
ularity of discrepancy between models inM by increasing
the total number of networks N . Given fixed N , the dis-
crepancy between models drops with increasing M , i.e., the
number of networks in eachMj . If M = N , then CMBAC
reduces to MBPO. Moreover, representing each model by
an ensemble of neural networks significantly improves the
model accuracy (Kurutach et al. 2018; Chua et al. 2018).

To approximate the posterior distribution over Q-values,
CMBAC learns multiple estimates via a multi-head Q-
network from the distribution approximation over models
M. Similar to bootstrapped DQN (Osband et al. 2016), the
multi-head Q-network is a shared neural network architec-
ture withK ”heads” branching off independently (please re-
fer to Appendix D for details). Each “head” Q̂θj provides an
estimate of the Q-value for a policy π, which corresponds to
a model Mj ∈ M. That is, CMBAC aims to approximate
the Qπ,Pj via the “head” Q̂θj .

The target value of each “head” Q̂θj (s, a) is given by

yj(s, a) = r(s, a) + γ(Q̂θ̄j (s
′
j , a
′
j)− α log(π(a′j |s′j))),

where j = 1, . . . ,K , s′j is sampled from Pj(·|s, a), a′j is
sampled from π(·|s′j), α is the temperature parameter, and
Q̂θ̄j is the target value network with θ̄j being an exponen-
tially moving average of the value network weights, which
has been shown to stabilize training (Mnih et al. 2015). For
each j ∈ {1, . . . , k}, the parameter θj can be trained to min-
imize the Bellman residual

JQ(θj) = E(s,a)∼Dmodel [
1

2
(Q̂θj (s, a)− yj(s, a))2].

CMBAC naturally approximates the posterior distribution
over Q-values, as it learns an estimate from a model sampled
from the approximated posterior distribution over models,
respectively. We use the clipped double Q-learning as pro-
posed by (Fujimoto, van Hoof, and Meger 2018). In practice,
we use two multi-head Q-network and train each “head” us-
ing the minimum of the corresponding two “heads”.
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Figure 1: Illustration of CMBAC with N = 3,M = 2, and L = 1. It first learns three probabilistic neural networks and
constructs each model using the arbitrarily two probabilistic neural networks. It then alternates between learning three estimates
of the Q-value function from the ensemble models and using the average of the bottom-2 estimates to optimize the policy.

Conservative Policy Optimization
To prevent the agent from exploiting model errors, CMBAC
uses a conservative estimate of the Q-value function to op-
timize the policy, named conservative policy optimization.
Previous model-based methods aim to learn a conservative
estimate that is an approximate lower bound of the true
Q-value Qπ,P

∗
. For example, robust policy optimization

(Doyle 1996; Lim, Xu, and Mannor 2013) considers a set
of possible models and learns the worst-case Q-value, i.e.,
Qπ(s, a) = minP∈MQπ,P (s, a). However, these methods
tend to learn an over-conservative policy, which severely de-
grades their sample efficiency and asymptotic performance
(Clavera et al. 2018). Unlike these methods, CMBAC in-
troduces conservatism to alleviate the overestimation that
comes from the model errors and does not aim to learn
a lower bound. We observe that if we learn multiple esti-
mates using the approach in Section , a small fraction of
the “heads” severely overestimate the Q-value (see details in
Section ) while the others provide a relatively reasonable es-
timation. Based on the observation, we hypothesize that the
actions—whose values are high in only a small fraction of
the models—are unreliable in the true environment. That is,
the true Q-values of these actions are low with a large proba-
bility. Therefore, we propose to drop the top-k estimates and
use the average of the others for policy optimization to al-
leviate the effect of such overestimation. Specifically, given
a state s and action a, we sort the estimates produced by
the multi-head Q-network in ascending order, denoted by
Q̂θj (s, a) with j ∈ [1..K], and then optimize the policy πφ
by minimizing the objective as proposed in (Haarnoja et al.
2018)

Jπ(φ) = Es∼Dmodel [DKL(πφ(·|s)‖
exp( 1

α Q̂(s, ·))
Z(s)

)], (1)

where Q̂(s, ·) = 1
K−L

∑K−L
j=1 Q̂θj (s, ·), and Z(st) =∫

a
exp( 1

α Q̂(s, a))da, which does not contribute to the gra-
dient with respect to the new policy.

In contrast to CMBAC, existing methods use the uncer-
tainty of the Q-value as a penalty. However, we find it may
be sensitive to the penalty coefficient (See Appendix C).

Discussion
We discuss some advantages of CMBAC in this subsection.

Capture global uncertainty CMBAC naturally captures
the global uncertainty (O’Donoghue et al. 2018; Zhou, Li,
and Wang 2020), which considers the compounding model
error and its effect on the critic learning. The global uncer-
tainty allows CMBAC to deal with the overestimation that
comes from the long-term prediction errors of the model.
Otherwise, conservatively optimizing the policy via local
uncertainty (i.e., the one-step prediction error) may mislead
the agent into exploiting the regions where the one-step pre-
diction is accurate, but multi-step prediction errors are large.

Capture uncertainty with various granularity CMBAC
approximates a posterior distribution over Q-values to im-
plicitly capture the uncertainty of Q-value. To achieve gran-
ularity in uncertainty capturing, CMBAC controls the gran-
ularity of distribution approximation by varying M , i.e., the
number of neural networks in each model. The number of
estimates K depends on M , and different K correspond to
the different granularity of distribution approximation.

Flexibly control the degree of conservatism CMBAC
can flexibly control the degree of conservatism by varying
M and L. By varying M , CMBAC can provide fine-grained
control over the degree of conservatism, as it achieves gran-
ularity in capturing uncertainty. By varying L, the degree of
conservatism increases with L.

Experiments
Our experiments have four main goals in this section: (1)
Test whether CMBAC can significantly outperform state-
of-the-art methods. (2) Perform carefully designed ablation
study of CMBAC. (3) Perform visualization experiments of
CMBAC to explain its effectiveness. (4) Test the robustness
of CMBAC in noisy environments.

Comparative Evaluation
For model-based methods, we compare our method to
model-based policy optimization (MBPO) (Janner et al.
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Figure 2: Performance of CMBAC and four baselines on six continuous control tasks. The solid curves correspond to the mean
and the shaded region to the standard deviation over five random seeds. For visual clarity, we smooth curves uniformly. The
results show that CMBAC significantly outperforms these baselines in terms of sample efficiency on several challenging tasks.
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Figure 3: Performance of CMBAC and its ablations on the
Ant and Walker2d environments. On the Ant environment,
each component of CMBAC is significant for performance
improvement. On the Walker2d environment, CMBAC re-
duces to B-LMEQ-MBPO, as conservative policy optimiza-
tion does not further improve the performance.

2019), a state-of-the-art algorithm. In addition, we com-
pare to an online variant of model-based offline policy opti-
mization (MOPO) (Yu et al. 2020)—a state-of-the-art offline
model-based algorithm—which quantifies the uncertainty of
the models and uses the uncertainty as a penalty for policy
optimization. For a fair comparison, we implement CMBAC
and MOPO-Online, i.e., the online variant of MOPO, both
on top of the MBPO. Although masked model-based actor-
critic (M2AC) (Pan et al. 2020) outperforms MBPO by using
the uncertainty of models, its core component is a masking
mechanism, which is orthogonal to our method. Therefore,
we do not compare to M2AC. For model-free methods, we
compare to soft actor-critic (SAC) (Haarnoja et al. 2018),
which is used for policy learning in our method; randomized
ensembled double Q-learning (REDQ) (Chen et al. 2021),
which has achieved comparable sample efficiency to MBPO.

We evaluate CMBAC and these baselines on MuJoCo
(Todorov, Erez, and Tassa 2012) benchmark tasks as used in
MBPO. We use two multi-head Q-networks with three hid-
den layers of 512 neurons each. For all environments except
Walker2d, we use the number of dropped estimates L = 1.

On Walker2d, we use L = 0. For our method, we select the
hyperparameter M for each environment independently via
grid search. The best hyperparameter for Humanoid, Hop-
per, Walker2d, and the rest is M = 1, 3, 4, 2, respectively.
The details of the experimental setup are in Appendix B.

Figure 2 shows that CMBAC significantly outperforms
these baselines in terms of sample efficiency on several chal-
lenging control tasks. For the most challenging Humanoid
environment, CMBAC learns substantially faster than state-
of-the-art methods. Specifically, the performance of CM-
BAC on the Humanoid task at 200 thousand steps matches
that of MBPO at 300 thousand steps and SAC at 3 million
steps. MOPO-Online achieves poor results on several chal-
lenging tasks, which may suggest that its uncertainty-based
penalty is inappropriate for the online setting (please refer
to Figure 6). The model-free method REDQ has recently
achieved comparable sample efficiency to MBPO, which
raises the question of whether model-based methods carry
the promise of being data efficient. Our results demonstrate
that model-based methods can be more sample efficient than
their model-free counterparts with careful model usage.

To demonstrate the hyperparameter insensitivity of CM-
BAC, we replot Figure 2 using unified hyperparameters. De-
tailed results are in Appendix E. To demonstrate the scal-
ability of CMBAC, we compare CMBAC and the base-
lines on two additional environments, i.e., Walker2d-NT and
Hopper-NT (Wang et al. 2019) (See Appendix E).

Ablation Study
In this subsection, we perform carefully designed ablation
study to understand the superiority of CMBAC on Ant,
which is one of the most challenging environments, and
Walker2d, which has the highest resolution power among all
2D environments. We provide additional results in Appendix
C. All results are reported over at least 4 random seeds.

Contribution of each component The path from MBPO
(Janner et al. 2019) to CMBAC comprises three modifica-
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Figure 4: (1) Left two: varying the number of neural networks in a model M . The results demonstrate that M is essential, and
there is an optimal number, i.e., M = 2. (2) Right two: varying the number of dropped estimates L. The results show that L is
essential, and L = 1 provides significant performance improvement on Ant.
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Figure 5: Learning curves of CMBAC and its variants on the
Ant and Walker2d environments. The results show that in-
creasing ensemble Q-values does not boost the performance,
and different implementations of conservative policy opti-
mization significantly impact performance.

tions: Q-network size increase (Big), learning multiple es-
timates of the Q-value (LMEQ), and conservative policy
optimization (CPO). B-MBPO is MBPO with an increased
size of Q-networks (Big MBPO). The big Q-network has
three layers with 512 neurons versus two layers of 256 neu-
rons in MBPO. Note that the policy network size does not
change. B-LMEQ-MBPO is B-MBPO with learning multi-
ple estimates of the Q-value to capture the uncertainty of the
Q-value function. B-LMEQ-MBPO uses the average of all
the estimates to optimize the policy. CMBAC is B-LMEQ-
MBPO with conservative policy optimization, i.e., it uses the
average of the bottom-k estimates to optimize the policy.

Figure 3 shows that both LMEQ and CPO are signifi-
cant for performance improvement (though CPO does not
improve the performance on Walker2d). The increased Q-
network size does not improve MBPO. The uncertainty es-
timation method of CMBAC improves its performance in
both environments. A possible reason is that it may incor-
porate more information of the model into the multi-head
Q-network and thus improves the value estimation. For the
Ant environment, conservative policy optimization provides
an additional performance improvement. For the Walker2d
environment, we find that our method without conservative
policy optimization performs better than that with it (please
refer to Figure 4). One possible reason is that the agent may
require an optimistic value estimate to promote exploration,
and thus avoid suboptimal policies on Walker2d.

Sensitivity to hyperparameters In this part, we analyze
the sensitivity of CMBAC to the number of neural networks

in each model M and the number of dropped estimates L.
Please refer to Appendix C for additional results.

The number of neural networks in a modelM We vary
the number M ∈ {1, 2, 3, 4} with N = 5 on the Ant and
Walker2d environments. Figure 4 shows that (1) the number
M is essential as it controls the granularity of uncertainty
capturing, and (2) there is an optimal number, i.e., M = 2.

The number of dropped estimates L We vary the num-
ber of dropped estimates for each ensemble multi-head Q-
network L ∈ {0, 1, 2}. The total number of estimates
dropped is 2L. Figure 4 suggests that dropping L topmost
estimates provides a performance improvement on the Ant
environment but degrades the performance on the Walker2d.

Analysis of CMBAC variants To provide further insight
into CMBAC, we discuss the performance of some CMBAC
variants. These variants implement the two core components
of CMBAC, i.e., capturing the uncertainty of the Q-value
and conservative policy optimization, in different ways.

LMEQ variants To capture the uncertainty of the Q-
value, we propose to increase the number of ensemble Q-
value functions, i.e., deep ensembles (Lakshminarayanan,
Pritzel, and Blundell 2017). Thus, we propose Model-Based
Policy Optimization with Ensemble Q (MBPOEQ), which
uses the same multi-head Q-networks as our method. In
contrast to CMBAC, MBPOEQ learns all “heads” using the
same target, i.e., the average of these “heads”.

CPO variants We additionally propose three possi-
ble conservative policy optimization variants, named CM-
BAC Uncertainty Penalty (CMBACUP), MINimum CM-
BAC (MINCMBAC), and REDQ-CMBAC, respectively.
CMBACUP uses the standard deviation of the Q-value es-
timates as a penalty. MINCMBAC uses the minimum of all
estimates to optimize the policy. Similar to REDQ (Chen
et al. 2021), REDQ-CMBAC produces a conservative esti-
mate via each multi-head Q-network and uses the mean of
the two conservative estimates to optimize the policy. Due
to limited space, we provide the details in Appendix D.

The results in Figure 5 suggest the following conclusions.
CMBACUP achieves comparable performance to CMBAC
in both environments. However, we find it sensitive to the
penalty coefficient (please refer to Appendix C). Increasing
the number of ensemble Q-values does not improve perfor-
mance, indicating that our uncertainty capturing technique
is critical to performance improvement. Incorporating con-
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Figure 6: We visualize our uncertainty estimation compared
to previous methods on the InvertedPendulum environment.
Colored points illustrate the uncertainty versus the value es-
timation error at given state-action pairs. Results show that
our uncertainty estimation approximates the errors of the Q-
function more accurately than previous methods. (For a fair
comparison, we use a fixed policy to generate rollouts in the
true environment for computing the real return and use its
corresponding Q-value network to estimate the Q-value.)

servatism is significant for performance improvement, and
different implementations of conservative policy optimiza-
tion have a large impact on performance.

Visualization
Uncertainty estimation In this part, we regard the stan-
dard deviation of the multiple heads as our estimated un-
certainty and compare it to previous uncertainty estimation
used in state-of-the art model-based algorithms. The uncer-
tainty estimation methods include Global, i.e., the cumula-
tive discounted sum of prediction errors similar to that used
in model-based offline policy optimization (Yu et al. 2020),
M2AC that is used in masked model-based actor-critic (Pan
et al. 2020), and SLBO that is used in stochastic lower
bounds optimization (Luo et al. 2019). We visualize the pre-
diction error of the Q-value and the estimated uncertainty
via scatters. The results in Figure 6 show that our estimated
uncertainty can approximate the errors of the Q-function
more accurately than previous methods. The superiority of
our uncertainty estimation demonstrates that the multi-head
Q-networks used in CMBAC can provide a reasonable ap-
proximation of the posterior distribution of the true Q-value.
Moreover, we find that the cumulative discounted sum of
prediction errors can hardly approximate the errors of the
Q-function. We provide possible reasons in Appendix D.

Conservative policy optimization We visualize the esti-
mates of the Q-value in each model versus the true return on
the 2D point environment. To better understand the superior-
ity of the proposed conservative policy optimization, we use
a simplified version of CMBAC (please refer to Appendix
D for details). Figure 7 (left) shows that there are a small
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Figure 7: We visualize the estimates of the Q-value in each
model on the 2D point environment. Colored points illus-
trate the estimate versus the true return at given state-action
pairs. The results demonstrate that dropping several topmost
estimates effectively avoid unreliable actions.
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Figure 8: Performance of CMBAC, MBPO, and MOPO-
Online in noisy environments (100k steps for HalfCheetah
and 200k steps for Walker2d). The results show that our
method is more robust than state-of-the-art methods.

fraction of models in which the value estimates significantly
overestimate due to model errors. Moreover, Figure 7 shows
that dropping several topmost estimates effectively encour-
ages the agent to avoid the unreliable “promising actions”—
whose values are high in only a small fraction of models.

Robust Analysis
To understand the robustness of CMBAC, we compare
it to MOPO-Online and MBPO on noisy Walker2d and
HalfCheetah environments. In these noisy environments,
we add Gaussian white noises with the standard deviation
σ = 0.1 to the agent’s action at every step. The added noise
will decrease the accuracy of the learned models. The re-
sults in Figure 8 show that CMBAC performs robustly and
significantly outperforms the baselines in terms of sample
efficiency in noisy environments.

Conclusion
In this paper, we present conservative model-based actor-
critic, a novel approach that approximates a posterior dis-
tribution over Q-values based on the ensemble models and
uses the average of the left tail of the distribution approxi-
mation to optimize the policy. Experiments show that CM-
BAC significantly outperforms state-of-the-art methods in
terms of sample efficiency on several challenging control
tasks. Moreover, experiments demonstrate that the proposed
method is more robust than previous methods in noisy envi-
ronments. We believe that our proposed approach will bring
new insights into model-based reinforcement learning.
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