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Abstract
Continual learning is an intellectual ability of artificial agents
to learn new streaming labels from sequential data. The main
impediment to continual learning is catastrophic forgetting, a
severe performance degradation on previously learned tasks.
Although simply replaying all previous data or continuously
adding the model parameters could alleviate the issue, it is
impractical in real-world applications due to the limited avail-
able resources. Inspired by the mechanism of the human brain
to deepen its past impression, we propose a novel framework,
Deep Retrieval and Imagination (DRI), which consists of two
components: 1) an embedding network that constructs a uni-
fied embedding space without adding model parameters on
the arrival of new tasks; and 2) a generative model to pro-
duce additional (imaginary) data based on the limited memory.
By retrieving the past experiences and corresponding imagi-
nary data, DRI distills knowledge and rebalances the embed-
ding space to further mitigate forgetting. Theoretical analysis
demonstrates that DRI can reduce the loss approximation error
and improve the robustness through retrieval and imagination,
bringing better generalizability to the network. Extensive ex-
periments show that DRI performs significantly better than
the existing state-of-the-art continual learning methods and
effectively alleviates catastrophic forgetting.

1 Introduction
Humans continuously learn new skills and accumulate knowl-
edge over their lifetime (Alvarez et al. 1994; Smolen et al.
2019). By contrast, artificial neural networks suffer from
catastrophic forgetting (McCloskey et al. 1989) which refers
to the drastic drop in performance on the previous tasks
while learning new tasks. The underlying reason is that train-
ing a network with new information severely interferes with
the previously learned knowledge (McClelland et al. 1995).
As trivial workarounds, devoting a whole new network to
each task or storing all previous task data for re-training the
model could alleviate the performance degradation on previ-
ous learning, but it is impractical for real-world applications
in terms of required resources. Continual learning (also called
lifelong or incremental learning) methods aim at training a
neural network from sequential data with streaming labels, re-
lieving catastrophic forgetting with limited resources (Rebuffi
et al. 2017; Riemer et al. 2019; van de Ven et al. 2018).
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Previous continual learning progresses majorly follow two
directions: (1) trying to estimate the importance of each
network parameter for previous tasks and penalizing the
changes of important parameters during the learning of new
tasks (Kirkpatrick et al. 2017; Schwarz et al. 2018; Serra et al.
2018; Zenke et al. 2017). However, it is difficult to find a
reasonable metric to regularize all the parameters effectively,
especially in long sequences of tasks and large networks. (2)
trying to consolidate the knowledge in the original network
by replaying a subset of past examples stored in a memory
buffer (Buzzega et al. 2020; Hou et al. 2018; Rannen et al.
2017; Rebuffi et al. 2017; Buzzega et al. 2021). Whereas,
the main additional challenge is the class imbalance between
previous versus new tasks. The latest literature (Delange
et al. 2021) proposed a series of guidelines for continual
learning methods to be applicable in practice: i) good perfor-
mance and less forgetting on previous tasks; ii) no oracle of
task identifiers at inference time; and iii) bounded memory
footprint throughout the entire training phase. Unfortunately,
most of the exiting methods fail to satisfy all these guidelines
mentioned above (Chaudhry et al. 2021; Wang et al. 2020;
Lopez-Paz et al. 2017; Wei et al. 2021; Riemer et al. 2019;
Kong et al. 2021; Schwarz et al. 2018; Zhu et al. 2020).

Contemporary biology suggests that humans can keep past
knowledge with limited memory capacity, benefiting from the
retrieval and imagination of a few past experiences (Schuster
et al. 2011; Grilli et al. 2013). The Complementary Learn-
ing Systems (CLS) theory (Gelbard-Sagiv et al. 2008; Ku-
maran et al. 2016) holds that the hippocampus in human
brain stores episodic-like memory that can be reactivated
during sleep or in unconscious and conscious recall, thus con-
solidating knowledge in the neocortex via the retrieval and
imagination of past experiences in terms of multiple internal
replays (Schacter et al. 2012; Cheng et al. 2016). Inspired
by the mechanism of the human brain to deepen past impres-
sions, we propose to apply such imagination into machine
vision systems for retrieving the limited memory, in order to
consolidate knowledge and alleviate catastrophic forgetting.

In this work, we propose a novel framework, Deep Re-
trieval and Imagination (DRI), to solve the challenges in
continual learning. DRI can imitate the ability of the brain
to generate additional imaginary data based on the limited
memory of past data and retrieve previous tasks in a bal-
anced manner while learning the current data. Specifically,
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DRI introduces an image-conditional Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014; Antoniou et al.
2017) to learn to strengthen the memory of a past data-item
by generating other within-class imaginary data, and thus
can mitigate forgetting. DRI maps the continuum of data
into a unified embedding space by an embedding network
without adding model parameters on the arrival of new tasks
with streaming labels, as in other methods. We refer to the
class embedding mean as the term prototype and conduct the
classification by computing the distances to the prototype of
each class, which do not require task identifiers at inference
time. By retrieving the limited memory and corresponding
imaginary data, DRI distills dark knowledge (Hinton et al.
2014) and re-optimizes the embedding space with a metric
loss, which effectively consolidates knowledge and alleviates
forgetting. Further, considering the adverse effects caused by
the imbalance between past and new classes, we propose a
cosine herding sampling strategy, which rebalances new data
and past data during each retrieval batch and ensures that all
classes are equally represented in memory.

To verify the effectiveness and the performance of DRI,
we conduct both theoretical and experimental analyses. The-
oretically, we demonstrate that DRI retrieves previous ex-
periences to reduce loss approximation error and leverages
the imaginary data to improve the robustness, bringing better
generalizability for the network. Experimentally, extensive
evaluations under three scenarios show that DRI performs
significantly better than the existing state-of-the-art contin-
ual learning methods and effectively mitigates catastrophic
forgetting. Ablation studies validate the impact of each com-
ponent in DRI.

2 Related Work
Rehearsal-based methods prevent catastrophic forgetting by
replaying a subset of the stored exemplars of the previous
tasks (Benjamin et al. 2019; Hou et al. 2019). By interleaving
the previous task exemplars with current task data, the net-
work parameters can be jointly optimized. GSS (Aljundi et al.
2019) introduces a gradient-based sampling to store optimally
selected exemplars in the memory buffer. HAL (Chaudhry
et al. 2021) complements experience replay with an addi-
tional objective, keeping intact the predictions on some an-
chor points of past tasks. GEM (Lopez-Paz et al. 2017) and
A-GEM (Chaudhry et al. 2019) leverage episodic memory
to compute previous task gradients to constrain the current
update step. Several methods exploit Knowledge Distilla-
tion (Hinton et al. 2014) to alleviate forgetting (Buzzega
et al. 2020; Rebuffi et al. 2017). iCaRL (Rebuffi et al. 2017)
trains a nearest-class-mean classifier while maintaining the
representation in later tasks via a self-distillation loss term.
DER (Buzzega et al. 2020) mixes rehearsal with distillation
loss for retraining past experience and achieves state-of-the-
art performance. Our proposal is a rehearsal-based method,
which leverages a unified embedding network and imagina-
tion generator to achieve state-of-the-art performance.
Generative-based methods synthesize previous data pro-
duced by generative models and replay the synthesized
data (Xiang et al. 2019; van de Ven et al. 2020). CL-GAN
(Shin et al. 2017) employs a generative adversarial network

(GAN) (Goodfellow et al. 2014) to generate past images and
trains a classifier on both of synthesized and real images.
DGM (Ostapenko et al. 2019) relies on conditional GANs
with neural masking, which needs to expand network param-
eters for new tasks. BIR (van de Ven et al. 2020) replays hid-
den representations generated by the network’s own feedback
connections. However, generative-based approaches tend to
produce blurry images or representations (not belonging to
any class) on complex datasets, hurting the classification
accuracy. Instead of synthesizing data, the generator in our
proposal augments the real images, and can produce quality
images as additional data to improve performance.
Parameter-based methods try to estimate the importance
of each network parameter of prior tasks and penalize the
changes of important parameters during the learning of new
tasks (Aljundi et al. 2018). The difference between these
works is the way to compute network parameter importance.
For example, Elastic Weight Consolidation (EWC) (Kirk-
patrick et al. 2017) and online EWC (oEWC) (Schwarz et al.
2018) compute synaptic importance with the diagonal Fisher
information matrix as the approximation of Hessian. Synap-
tic Intelligence (SI) (Zenke et al. 2017) accumulates task-
relevant information over time to measure the importance.
However, it is difficult to find an effective metric to evaluate
all the parameters, and thus leads to the failure of these meth-
ods for solving longer sequences of tasks and large networks.
Other Approaches. LwF (Li et al. 2017) computes the current
responses for the new samples at the beginning of each task,
minimizing their drift during training. DSLL (Wang et al.
2020) models the relationship between new and past labels
to classify instances with newly emerged labels effectively.
SDC (Yu et al. 2020) utilizes metric learning and estimates
the drift of prior tasks during the training of new tasks.

3 Deep Retrieval and Imagination
3.1 Overall Framework
Formally, a continual learning problem is split in a sequence
of T supervised learning tasks t, t ∈ {1, ..., T }. For task t,
input samples x ∈ X and the corresponding ground truth
labels y ∈ Y are drawn from an i.i.d. distribution Dt. A
network fθ with parameters θ observes one task t at a time
in a sequential manner. Let Θ ⊆ Rd be a network parameter
space, and let ℓ(θ;x, y) : Θ 7→ R be the loss function of θ
associated with data point (x, y), and fθ(x) is the output of
fθ for x. The general objective is to minimize the population
loss function of all observed tasks:

F(θ) = 1

T
T∑
t=1

Lt(θ), where Lt(θ) ≜ E(x,y)∼Dt
[[ℓ(θ;x, y)]].

Specifically, when learning on the t-th task, the model obtains
access to Nt data points sampled from Dt and we define

L̂t(θ) =
1

Nt

Nt∑
i=1

ℓ(θ;xi, yi)

as the empirical loss function; then the network parameters
update by these Nt training data. After the training procedure
is finished, these Nt data are assumed to be unavailable, but a
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Figure 1: The overall DRI architecture.

small amount of data can be stored in a limited memory. The
goal is to avoid forgetting past tasks when trained on new
tasks by utilizing the limited stored data.

We propose the brain-inspired framework Deep Retrieval
and Imagination (DRI) to effectively alleviate catastrophic
forgetting for continual learning. Our overall learning archi-
tecture is illustrated in Figure 1. DRI mainly consists of two
components: 1) an embedding network f with parameters
θ, mapping data onto a unified embedding space; and 2)
a generative model, referred as Imagination GAN (IGAN),
for generating imaginary data based on real images. As a
rehearsal-based method, DRI is allocated a memory buffer
M to store a tiny subset of past exemplars. Key to continual
learning is how to utilize the limited past exemplars to mit-
igate catastrophic forgetting (Section 3.2). For current task
t, we distill dark knowledge (Hinton et al. 2014) through
retrieving past experiences and consolidate the representa-
tion of past tasks by metric learning, which can be achieved
through optimizing the following objective:

Lt(θ) + E(x,y)∼M

[[
α
∥∥fθ(x)− fθpre(x)

∥∥2
2
+ β ℓ(θ;x, y)

]]
, (1)

where fθpre serves as the teacher model parameterized by
last task θpre and remains frozen; fθ as the student model
mimics fθpre by minimizing the Euclidean distance between
their output embeddings; ℓ is a metric learning loss; α and β
are coefficients balancing the terms.

Furthermore, we introduce a novel image-conditioned gen-
erative model (IGAN) to enrich the within-class images based
on limited real images stored inM (Section 3.3). In that case,
images generated through IGANg(x) could help consolidate
knowledge by replaying generated images as real sample-
related imagination, thus alleviate the forgetting while train-
ing new tasks. Besides, we consider the adverse effects of an
imbalance between new and past tasks, and introduce cosine
herding (Welling 2009) sampling strategy, which rebalances
new data and past data during each retrieval batch and ensures
that all classes are equally represented in the memory. With
these considerations in hands, DRI optimizes the objective:

LDRI = E
(x,y)∼Dt∪M̃

[[ℓ(θ;x, y))]]

+ E
(x,y)∼M̃

[[
α
∥∥fθ(x)− fθpre(x)

∥∥2
2
+ β ℓ(θ;x, y)

]]
,

(2)

where M̃ represents a set including memory data and their
corresponding generated data; ∪ denotes the Union operation.

Algorithm 1: - Deep Retrieval and Imagination (DRI)
Input: continuum dataset D, memory capacity K
Require: parameters θ, IGAN, scalars α and β, learning rate η
M← {} ▷ Initialize memory with empty set
for t = 1, ..., T do

θpre ← θ
for (x, y) in Dt do

(x′, y′)← sample(M)
(x′

a, y
′
a)← (IGANg(x

′), y′) ∪ (x′, y′)

∆← α
∥∥fθ(x′

a)− fθpre(x
′
a)
∥∥2

2
+ β ℓ(θ;x′

a, y
′
a)

(xb, yb)← rebalance((x, y), (x′
a, y

′
a))

θ ← θ − η∇θ[ℓ(θ;xb, yb) + ∆] ▷ Section 3.2
end for
IGAN← updateIGAN(IGAN;Dt,M) ▷ Section 3.3
M← updateMemory(M;Dt, θ,K) ▷ Eq. (8)

end for

3.2 Deep Retrieval for Embeddings
DRI constructs a unified embedding space by an embed-
ding network with a metric learning loss to continually learn
from a sequential data stream. By retrieving the stored exem-
plars and corresponding imaginary data, DRI distills previous
knowledge and rebalances the embedding space, which allevi-
ates forgetting effectively and improves overall performance.

Embedding-Based Network Structure Most existing con-
tinual learning methods (Buzzega et al. 2020; Chaudhry et al.
2019; Li et al. 2017; Rebuffi et al. 2017; Riemer et al. 2019;
Schwarz et al. 2018) employ one-hot classification networks,
and have to add new weights (or multi-head classifiers) to
accommodate newly arrived classes. Instead, we use embed-
dings as the network outputs, which naturally allow for mod-
eling emerging new classes, and do not require direct changes
to the network structure. Embedding networks map data into
a low-dimensional output, where similar data are clustered
together and dissimilar data are far apart (Chopra et al. 2005;
Wang et al. 2019b, 2021a,b). In the learned space, general
metrics, such as L2-distance, can be applied to determine
the similarities between the original data. Metric learning
losses (Hoffer et al. 2015; He et al. 2021; Wang et al. 2019a)
are used for training embedding networks, with the aim to
reduce the distance between similar data and to increase the
distance between dissimilar data. Next, by using embeddings
as network outputs, we make the further regularized retrieval
feasible.

Regularized Retrieval Retrieving limited memory data
during learning new tasks is a crucial way to maintain pre-
vious knowledge. Ideally, we look for network parameters
that are well adapted to the new task while approximating the
behavior observed in the previous one. Effectively, we seek to
encourage the network to mimic its previous representation
for past exemplars by minimizing:

E
(x,y)∼M̃

[[∥∥fθ(x)− fθpre(x)
∥∥2
2

]]
, (3)

where θpre is the network parameters after the completion
of the previous task, and M̃ is the set containing memory
data and their corresponding generated data from IGAN (de-
scribed in Section 3.3). It is worth noting that we can only
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save one previous model, at most, or we could get the net-
work output on M̃ before starting a new task without saving
any previous model.

During continual learning, a constant class representation
in the embedding space is not necessarily optimal, and it
needs to be adjusted to accommodate more classes. We expect
the network could review the past and know the new, which
requires the model not only to consolidate past knowledge,
but also to jointly learn the interrelationship between past
and new tasks. For this purpose, we seek to minimize:
E
(x,y)∼Dt∪M̃[[ℓ(θ;x, y)]] + E

(x,y)∼M̃[[β ℓ(θ;x, y)]], (4)

where β is a coefficient balancing the past experience replay.
Learning on the union Dt ∪ M̃ could form a unified em-
bedding space covering past and new tasks. Eq. (3) with a
coefficient α and Eq. (4) constitute the objective function of
DRI (Eq. (2)). Here, we employ a pair-based metric learning
loss, Multi-Similarity (MS) loss (Wang et al. 2019a), as our
loss function ℓ:

ℓ =
1

Nb

Nb∑
i=1

{
1

µ
log
[
1 +

∑
k∈Pi

e−µ(Si,k−λ)
]

+
1

υ
log
[
1 +

∑
k∈Ni

eυ(Si,k−λ)
]}

,

(5)

where Si,k denotes the similarity of a pair {xi, xk}; Pi and
Ni are the positive and negative sets for the anchor xi; Nb is
the number of training samples in a batch; and µ, υ and λ are
hyper-parameters.

Having trained an embedding network with MS loss, we
can leverage the embedding space for classification. DRI
uses a nearest-class-mean classification strategy, in which an
image x is classified to a class c∗ determined by:

c∗ =argmin
c∈C

dist(fθ(x), ρc), (6)

ρc =
1

Nc

∑
i

δyi=cfθ(xi), (7)

where Nc is the number of examples for class c; C is the set
of classes; ρc is referred to as the prototype of class c, the
average presentation vector of all exemplars for a class c; and
δ is the indicator function. In the evaluation, we compute ρc
based onM.

Rebalance in Training and Memory Different from other
rehearsal-based methods simply interleaving the past exem-
plars with current task data (Buzzega et al. 2020; Rebuffi
et al. 2017; Riemer et al. 2019), we consider the adverse
effects of imbalance and sample past data and new data in a
balanced manner, propelling all classes observed so far to be
equally represented in a training batch. Given a batch size Nb

in metric learning, we sample Nb/|C| images per class from
Dt ∪ M̃ for forming a batch, where C is the set of classes
observed so far. However, even if classes are balanced in a
batch, the magnitudes of each class embeddings are signif-
icantly uneven. To this end, we propose to leverage cosine
normalization for embeddings and prototypes, as:

g(vi, vj) =
< vi, vj >

∥vi∥2 ∥vj∥2
,

where vi and vj are vectors, and ∥·∥2 denotes the l2-norm. We
deploy the cosine normalization for metric learning (Eq. (5))
and nearest-class-mean classification (Eq. (6)). Although co-
sine normalization has been adopted in other visual prob-
lem (Gidaris et al. 2018; Wei et al. 2019; Guo et al. 2020;
Qi et al. 2018; Hou et al. 2019), we demonstrate that it can
effectively eliminate the imbalance in the magnitude of class
embeddings and facilitate continual learning (Section 5.3).

Whenever new classes or tasks arrive, the memory M
is adjusted for the data stream. We expect that all classes
are treated equally and a subset with the most representa-
tive exemplars of each class can be stored. Inspired by herd-
ing (Welling 2009) strategy, we design a cosine herding sam-
pling to balance memory and retrieval, described as follows.
Given the memory capacity K, we assign M = ⌊K/|C|⌋ ex-
emplars for each class, where C is the set of classes observed
so far. For current task t with a set of classes Ct, we compute
prototype ρc of each class on Dt, c ∈ Ct (Eq. (7)). We select
the exemplars in a ranked order. The m-th exemplar em of
class c is obtained by:

em ← argmin
x∈{Dt|y=c}

g

(
ρc,

1

m
[f(x) +

m−1∑
i=1

f(ei)]

)
. (8)

The first M exemplars, e1, ..., eM , are added to the memory.
Due to the limited memory capacity, we reduce the number of
exemplars of each previous class to M in reverse order, i.e.,
removing eM+1, eM+2, ... for each of the previous classes.
The superiority of the cosine herding sampling is that the av-
erage normalized embedding over all exemplars can best ap-
proximate the average embedding over all training examples.
Besides, we rebalance past and new data within a training
batch to maintain a stable embedding space in the training.

3.3 Imagination GAN
As mentioned above, a novel Generative Adversarial Network
referred as Imagination GAN (IGAN) is introduced to create
imaginary images from given real images stored in the limited
memory. During learning a new task, imaginary images are
involved in the retrieval as additional data to consolidate
previously learned knowledge. Figure 2 illustrates the brief
architecture of IGAN, which we describe in detail below.

IGAN is composed of a generator network and a discrim-
inator network. Consider the current task data Dt and the
memory M as the training data {xc

i |i = 1, 2, ..., Nc and
c ∈ C}, with each image labelled by its class c and indexed
by i, taken from the set of classes C observed so far. The
generator network consists of an encoder projecting an image
from class c to a lower-dimensional vector and a decoder
generating a within-class image from the bottleneck vector
concatenated with a Gaussian noise zi. The discriminator
network is trained to discriminate between real and fake, ac-
cording to a critic. We expect the generator is able to produce
diverse data that is related to, but different from the input
image. Therefore, we improve WGAN (Arjovsky et al. 2017;
Gulrajani et al. 2017) critic as the 3-tuple fashion that takes:
• fake tuple {xc

i , x̂}, a real image xc
i and the output x̂ of

generator that takes xc
i as an input;

• stable tuple {xc
i , x

c
i}, a real image xc

i and itself;
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Figure 2: IGAN architecture. Adversarial training leads the
network to generate within-class images with diversity ac-
cording to the input image.

• real tuple {xc
i , x

c
j}, a real image xc

i and another images
xc
j from the same class c.

The critic tries to discriminate the fake tuple from the real
tuple, where stable tuples are treated as real tuples in a certain
proportion to maintain the stability of the network. IGAN can
generate diverse data by making fake tuples look like real
tuples. Moreover, IGAN also needs fractional fake tuples to
look like stable tuples to prevent the model from collapsing.

Specifically, the generator is optimized by minimizing
this discriminative ability measured by the Wasserstein dis-
tance (Arjovsky et al. 2017). By providing the real tuple to
the discriminator, we propel the GAN to generate within-
class images with diversity in a generalized way, rather than
autoencoding the current images. However, for some com-
plex datasets with large intra-class distances, such as CI-
FAR (Krizhevsky et al. 2009) and ImageNet (Deng et al.
2009), GAN will collapse on them because it has to learn
the diversity of the huge differences (Antoniou et al. 2017).
To this end, we utilize the stable tuple, treating a certain
proportion of stable tuple as real tuple, to prevent the GAN
from collapsing, balancing diversity with stability. At the end
of each task t, IGAN is trained on Dt ∪M to update the
generative ability of imagining data. The update of IGAN
requires only slight re-training after the first task, therefore it
necessitates only low computation.

4 Theoretical Analysis
In this section, we analyze the generalization of our learn-
ing framework based on robustness theory in machine learn-
ing (Bellet et al. 2015; Mohri et al. 2009; Yin et al. 2020; Guo
et al. 2022). Our analysis demonstrates that DRI retrieves
previous experiences to reduce loss approximation error and
leverages the imaginary data to improve the algorithmic ro-
bustness, bringing better generalizability to the network.

Let Z = X ×Y , z = (x, y) ∈ Z . A learning algorithm A
takes as input a finite set of pairs from (Z ×Z)n and outputs
a function. We denote by Aps

the function learned by an
algorithm A from a sample ps of pairs. We give the notion
of (E, ϵ(·)) robust (Bellet et al. 2015) for an algorithm:

Definition 1 An algorithm A is (E, ϵ(·)) robust for E ∈ N
and ϵ(·) : (Z × Z)n → R if Z can be partitioned into E

disjoints sets, denoted by {Hi}Ei=1, such that for all samples
s ∈ Zn and the pair set p(s) associated to this sample,
the following holds: ∀(s1, s2) ∈ p(s), ∀z1, z2 ∈ Z, ∀i, j =
1, ..., E : if s1, z1 ∈ Hi and s2, z2 ∈ Hj , then

|ℓ(Aps
, s1, s2)− ℓ(Aps

, z1, z2)| ≤ ϵ(ps).

E and ϵ(·) quantify the robustness of the algorithm and de-
pend on the training sample. With an algorithmic perspective
for DRI, our generalization analysis aims to bound the gap
between average population loss and regularized training loss,
as per the following theorem.
Theorem 1 Assume the algorithm A is (E, ϵ(·))-robust,
Lt(θ) is ρ-Hessian Lipschitz, fθ is L-Lipschitz and
|ℓ(θ;x, y)| ≤ b. With probability at least 1 − δ over the
random training examples (x, y) ∼ Dt, t ∈ {1, ..., T }, we
have

F(θ) ≤ 1

T (L̂T (θ) + Lprox
T −1(θ))︸ ︷︷ ︸

regularized training loss

+
ρ

2T
T −1∑
t=1

||θ − θ̂t||32︸ ︷︷ ︸
loss approximation error

+
1

T
T∑
t=1

ϵ(pst) +O(b
√

2E ln 2 + 2 ln 1/δ

N
+R)︸ ︷︷ ︸

finite-sample effect

,

where L̂T (θ) is the empirical loss of task T ; Lprox
T −1(θ) is the

sum of second-order Taylor approximation of the first T − 1
empirical loss functions; pst is the sample of pairs for task t
and N = mint Nt; R is a constant.
As we can see, the gap between F(θ) and the regularized
training loss includes two parts. The first part is the loss
function approximation error, which could decay as our regu-
larized retrieval. The second part is related to the robustness
terms, which would be improved by leveraging the additional
imaginary data.

5 Experiments
5.1 Experimental Setup
We consider a strict evaluation setting (Hsu et al. 2018),
which models the sequence of tasks following three scenar-
ios: Task Incremental Learning (Task-IL) splits the training
samples into partitions of tasks, which requires task identities
to select corresponding classifiers at inference time; Class
Incremental Learning (Class-IL) sequentially increases the
number of classes to be classified without requiring the task
identities, as the hardest scenario (van de Ven et al. 2018);
Domain Incremental Learning (Domain-IL) observes the
same classes during each task, but the input-distribution is
continuously changing; task identities remains unknown.
Datasets. We experiment with the following datasets:
• Split MNIST: the MNIST benchmark (LeCun et al. 1998)

is split into 5 tasks by grouping together 2 classes.
• Split CIFAR-10: splitting CIFAR-10 (Krizhevsky et al.

2009) in 5 tasks, each of which introduces 2 classes.
• Split Tiny-ImageNet: Tiny-ImageNet (Stanford 2015) has

100,000 images across 200 classes. Each task consists of
20 disjoint subset of classes from these 200 classes.
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Memory Method S-CIFAR-10 S-Tiny-ImageNet R-MNIST

Class-IL Task-IL Class-IL Task-IL Domain-IL

– JOINT 92.20±0.15 98.31±0.12 59.99±0.19 82.04±0.10 95.76±0.04
SGD 19.60±0.04 61.02±3.33 7.92±0.26 18.31±0.68 67.66±8.53
oEWC (Schwarz et al. 2018) 19.49±0.12 68.29±3.92 7.58±0.10 19.20±0.31 77.35±5.77
SI (Zenke et al. 2017) 19.48±0.17 68.05±5.91 6.58±0.31 36.32±0.13 71.91±5.83

– LwF (Li et al. 2017) 19.61±0.05 63.29±2.35 8.46±0.22 15.85±0.58 -
CL-GAN (Shin et al. 2017) 24.73±1.89 78.46±2.18 8.02±0.39 26.33±1.04 -
DGM (Ostapenko et al. 2019) 38.62±1.28 83.51±0.67 8.27±0.46 27.51±1.78 -
BIR (van de Ven et al. 2020) 46.14±1.83 87.52±0.91 - - 73.26±0.89
ER (Riemer et al. 2019) 44.79±1.86 91.19±0.94 8.49±0.16 38.17±2.00 85.01±1.90
GEM (Lopez-Paz et al. 2017) 25.54±0.76 90.44±0.94 - - 80.80±1.15
A-GEM (Chaudhry et al. 2019) 20.04±0.34 83.88±1.49 8.07±0.08 22.77±0.03 81.91±0.76
iCaRL (Rebuffi et al. 2017) 49.02±3.20 88.99±2.13 7.53±0.79 28.19±1.47 -

200 FDR (Benjamin et al. 2019) 30.91±2.74 91.01±0.68 8.70±0.19 40.36±0.68 85.22±3.35
GSS (Aljundi et al. 2019) 39.07±5.59 88.80±2.89 - - 79.50±0.41
HAL (Chaudhry et al. 2021) 32.36±2.70 82.51±3.20 - - 82.91±1.21
DER (Buzzega et al. 2020) 61.93±1.79 91.40±0.92 11.87±0.78 40.22±0.67 90.04±2.61
DRI (ours) 65.16±1.13 92.87±0.71 17.58±1.24 44.28±1.37 91.17±1.53

ER (Riemer et al. 2019) 57.74±0.27 93.61±0.27 9.99±0.29 48.64±0.46 88.91±1.44
GEM (Lopez-Paz et al. 2017) 26.20±1.26 92.16±0.69 - - 81.15±1.98
A-GEM (Chaudhry et al. 2019) 22.67±0.57 89.48±1.45 8.06±0.04 25.33±0.49 80.31±6.29
iCaRL (Rebuffi et al. 2017) 47.55±3.95 88.22±2.62 9.38±1.53 31.55±3.27 -

500 FDR (Benjamin et al. 2019) 28.71±3.23 93.29±0.59 10.54±0.21 49.88±0.71 89.67±1.63
GSS (Aljundi et al. 2019) 49.73±4.78 91.02±1.57 - - 81.58±0.58
HAL (Chaudhry et al. 2021) 41.79±4.46 84.54±2.36 - - 85.00±0.96
DER (Buzzega et al. 2020) 70.51±1.67 93.40±0.39 17.75±1.14 51.78±0.88 92.24±1.12
DRI (ours) 72.78±1.44 93.85±0.46 22.63±0.81 52.89±0.60 93.02±0.85

Table 1: Classification results (accuracy %) for standard continual learning benchmarks. ‘-’ indicates experiments we were unable
to run, because of compatibility issues (e.g. iCaRL in Domain-IL) or intractable training time (e.g. GEM on Tiny ImageNet).

Dataset \Method ER A-GEM iCaRL FDR GSS HAL DER DRI (ours)

Tiny-ImageNet (Class-IL) 53.51±1.90 62.14±2.29 28.78±0.84 53.72±1.56 - - 32.12±0.34 22.32±0.49
S-CIFAR-10 (Task-IL) 1.34±0.13 11.36±1.68 1.59±0.57 1.93±0.48 7.71±2.31 5.21±0.50 2.59±0.08 0.49±0.24
R-MNIST (Domain-IL) 3.10±0.42 18.10±1.44 - 3.31±0.56 92.66±0.02 17.62±2.33 2.17±0.11 0.78±0.47

Table 2: Forgetting results (%) for continual learning benchmarks with 5120 memory capacity (lower is better).

• Rotated MNIST (Ioffe et al. 2015): containing 20 subse-
quent tasks (domains), each of which is generated by rotat-
ing all MNIST images with a random angle in the interval.

Implementation. To fairly compare each method, we trained
all networks using the stochastic gradient descent (SGD) op-
timizer. For variants of MNIST dataset, we follow (Riemer
et al. 2019; Lopez-Paz et al. 2017) and rely on Multi-Layer
Perceptron (MLP) with two hidden layers, each one com-
prised of 100 ReLU units. For Tiny ImageNet and CIFAR-10,
we follow (Buzzega et al. 2020; Rebuffi et al. 2017) by em-
ploying ResNet18 (He et al. 2016) (not pre-trained). The train-
ing images and generated examples are randomly cropped
and flipped following (Buzzega et al. 2020; Yu et al. 2020).
We select the hyper-parameters by performing a grid search
on the validation set which is obtained by sampling 10% of
the training set. Part of the experiment results of baselines
are from (Buzzega et al. 2020).

5.2 Performance Comparison
In this section, we compare DRI against six rehearsal-based
methods (ER (Riemer et al. 2019), GEM (Lopez-Paz et al.
2017), A-GEM (Chaudhry et al. 2019), GSS (Aljundi et al.
2019), FDR (Benjamin et al. 2019), and HAL (Chaudhry et al.
2021)); three generative-based methods (CL-GAN (Shin et al.
2017), DGM (Ostapenko et al. 2019), and BIR (van de Ven
et al. 2020)); three methods leveraging Knowledge Distil-
lation (LwF (Li et al. 2017), iCaRL (Rebuffi et al. 2017),
and DER (Buzzega et al. 2020)); and two parameter-based
methods (oEWC (Schwarz et al. 2018) and SI (Zenke et al.
2017)). We further provide an upper bound (JOINT) obtained
by training all tasks jointly and a lower bound simply per-
forming SGD without any countermeasure to forgetting.
Accuracy. First, we compare the performance in terms of
overall accuracy at the end of all tasks, shown in Table 1.
From the results, it is observed that DRI achieves state-of-
the-art performance in almost all settings. Especially in the
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Figure 3: Incremental performance evaluated on all tasks
observed so far during continual learning. [↑] higher is better,
[↓] lower is better (best seen in color).

S-CIFAR-10 S-Tiny-ImageNet R-MNIST
Class-IL Task-IL Domain-IL

DRI\∆ 54.04±1.81 38.97±1.76 87.93±1.72

DRI\IGANg 59.38±1.37 40.48±1.21 88.35±1.29

DRI\ML 62.07±2.21 40.79±0.85 89.82±1.33

DRI\KD 60.11±0.78 39.74±1.59 89.01±1.90

DRI\Re 61.34±1.92 41.05±2.14 90.16±2.31

DRI 65.16±1.13 44.28±1.37 91.17±1.53

Table 3: Ablation study for main components.

(a) DRI\∆ (b) DRI\IGANg (c) DRI

Figure 4: The t-SNE visualization of embedding space.

case of small memory, the advantage of DRI is more obvious,
e.g., DRI can reduce the classification error by more than
5% on Tiny ImageNet with 200 memory capacity. This is
supported by IGAN providing additional imaginary data to al-
leviate the memory-limitation problem. The gap is unbridge-
able when comparing with oEWC and SI, which indicates
that the regularization towards old parameters is not effec-
tive in preventing forgetting. The generative-based methods’
performance on complex datasets, e.g., ImageNet, degrades
significantly due to its difficulty in generating complex and
clear images.
Forgetting. Second, to compare the preventing forgetting
capability, we assess the average forgetting (Chaudhry et al.
2018) that measures the performance degradation in sub-
sequent tasks. Table 2 shows forgetting results in different
learning scenarios. Our approach suffers from less forget-
ting than all the other methods, as DRI constructs a unified
embedding space throughout the learning and consolidates
knowledge through deep retrieval and imagination.
Incremental Performance. Finally, we demonstrate the
average incremental performance (Rebuffi et al. 2017) which

real stable fake DA S-MNIST S-CIFAR-10√ √
75.35±0.92 42.61±4.77√ √
85.86±1.02 54.82±3.61√ √
82.14±1.81 59.11±2.06√
82.91±2.33 62.24±1.89√ √ √
87.35±1.27 65.16±1.13

Table 4: Ablation experiments for IGAN.

is the result of evaluating on all the tasks observed so far
after completing each task. As shown in Figure 3, the results
are curves of accuracy and forgetting after each task. The
performance of most methods degrades rapidly as new tasks
arrive, while DRI consistently outperforms the state-of-the-
art methods throughout the learning.

5.3 Ablation Study

To assess the effects of the proposed components in DRI, we
perform comprehensive ablation studies. Table 3 shows the
comparison with the removal of each major component of
DRI, including regularized retrieval (∆), IGAN generator
(IGANg), embedding network with metric learning (ML),
knowledge distillation (KD) and rebalance (Re), where \ in-
dicates the removal operation. The results of Table 3 demon-
strate the effectiveness of each component of DRI. Specially,
Figure 4 shows the t-SNE (Van der Maaten et al. 2008) visu-
alization for the impact of retrieval (DRI\∆) and imagination
(DRI\IGANg) in embedding space. By leveraging the pro-
posed Deep Retrieval and IGAN, the embeddings of DRI are
better clustered and separated after the continual learning.

Furthermore, we investigate the impact of three types of tu-
ples (real, stable and fake) in IGAN and compare IGAN with
data augment (DA) techniques as shown in Table 4. IGAN
can generate diverse data by making fake tuples look like real
tuples. If we remove fake tuples, the generator cannot get
the supervision and produces noises. If removing real tuples,
IGAN will simply autoencode the current image. Moreover,
IGAN also needs fractional stable tuples to prevent the model
from collapsing, especially in complex datasets. Table 4 also
reveals that naive data augmentation does not significantly
improve the accuracy of the nearest-class-mean classifier
(Eq. (6)).

6 Conclusion
In this paper, we propose a brain-inspired framework, Deep
Retrieval and Imagination (DRI), to effectively mitigate the
catastrophic forgetting for continual learning. DRI designs
a generative model to produce imaginary data and leverages
knowledge distillation for retrieving past experiences in a
balanced manner, thereby can consolidate knowledge. The-
oretical analysis demonstrates that DRI improves the gener-
alizability of the network by leveraging the imaginary data
and retrieving previous experiences. Extensive experimen-
tal results show that DRI significantly outperforms current
state-of-the-art methods, and ablation studies validate the
effectiveness of the proposed components.
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