
SplitFed: When Federated Learning Meets Split Learning

Chandra Thapa1*, Pathum Chamikara Mahawaga Arachchige1, Seyit Camtepe1, Lichao Sun2*

1CSIRO Data61, Sydney, Australia
2Lehigh University, Bethlehem, Pennsylvania, USA

{chandra.thapa, chamikara.arachchige, seyit.camtepe}@data61.csiro.au, lis221@lehigh.edu

Abstract

Federated learning (FL) and split learning (SL) are two pop-
ular distributed machine learning approaches. Both follow a
model-to-data scenario; clients train and test machine learn-
ing models without sharing raw data. SL provides better
model privacy than FL due to the machine learning model ar-
chitecture split between clients and the server. Moreover, the
split model makes SL a better option for resource-constrained
environments. However, SL performs slower than FL due to
the relay-based training across multiple clients. In this re-
gard, this paper presents a novel approach, named splitfed
learning (SFL), that amalgamates the two approaches elim-
inating their inherent drawbacks, along with a refined archi-
tectural configuration incorporating differential privacy and
PixelDP to enhance data privacy and model robustness. Our
analysis and empirical results demonstrate that (pure) SFL
provides similar test accuracy and communication efficiency
as SL while significantly decreasing its computation time per
global epoch than in SL for multiple clients. Furthermore, as
in SL, its communication efficiency over FL improves with
the number of clients. Besides, the performance of SFL with
privacy and robustness measures is further evaluated under
extended experimental settings.

Introduction
Distributed Collaborative Machine Learning (DCML) is
popular due to its default data privacy benefits (Kairouz,
McMahan, and et al. 2019). Unlike the conventional ap-
proach, where the data is centrally pooled and accessed,
DCML enables machine learning without having to transfer
data from data custodians to any untrusted party. Moreover,
analysts have no access to raw data; instead, the machine
learning (ML) model is transferred to the data curator for
processing. Besides, it enables computation on multiple sys-
tems or servers and distributed devices.

The most popular DCML approaches are federated learn-
ing (Konecný, McMahan, and Ramage 2015; McMahan
et al. 2017) and split learning (Gupta and Raskar 2018).
Federated learning (FL) trains a full ML model on the dis-
tributed clients with their local data and later aggregates the
locally trained full ML models to form a global model in a

*Corresponding author.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

server. The main advantage of FL is that it allows parallel,
hence efficient, ML model training across many clients.

Computational requirement at the client-side and
model privacy during ML training in FL. The main dis-
advantage of FL is that each client needs to run the full ML
model, and resource-constrained clients, such as available in
the Internet of Things, could not afford to run the full model.
This case is prevalent if the ML models are deep learning
models. Besides, there is a privacy concern from the model’s
privacy perspective during training because the server and
clients have full access to the local and global models.

To address these concerns, split learning (SL) was intro-
duced. SL splits the full ML model into multiple smaller
network portions and train them separately on a server, and
distributed clients with their local data. Assigning only a part
of the network to train at the client-side reduces processing
load (compared to that of running a complete network as in
FL), which is significant in ML computation on resource-
constrained devices (Vepakomma et al. 2018). Besides, a
client has no access to the server-side model and vice-versa.

Training time overhead in SL. Despite the advantages
of SL, there is a primary issue. The relay-based training in
SL makes the clients’ resources idle because only one client
engages with the server at one instance; causing a significant
increase in the training overhead with many clients.

To address these issues in FL and SL, this paper proposes
a novel architecture called splitfed learning (SFL). SFL con-
siders the advantages of FL and SL, while emphasizing on
data privacy, and robustness of the model. Refer to Table 1
for its abstract comparison with FL and SL. Our contribu-
tions are mainly two-fold: Firstly, we are the first to propose
SFL. Data privacy and model’s robustness are enhanced at
the architectural level in SFL by the differential privacy-
based measures (Abadi et al. 2016) and PixelDP (Lecuyer
et al. 2019). Secondly, to demonstrate the feasibility of SFL,
we present comparative performance measurements of FL,
SL, and SFL by considering four standard datasets and four
popular models. Based on our analyses and empirical re-
sults, SFL provides an excellent solution that offers better
model privacy than FL, and it is faster than SL with a sim-
ilar performance to SL in model accuracy and communica-
tion efficiency.

Overall, SFL is beneficial for resource-constrained envi-
ronments where full model training and deployment are not

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8485

SL FL SFL

Model aggregation No Yes Yes

Model privacy advan-
tage by splitted model Yes No Yes

Client-side training Sequential Parallel Parallel

Distributed computing Yes Yes Yes

Access to raw data No No No

Table 1: An abstract comparison of split learning (SL), fed-
erated learning (FL), and splitfed learning (SFL).

feasible, and fast model training time is required to period-
ically update the global model based on a continually up-
dating dataset over time (e.g., data stream). These environ-
ments characterize various domains, including health, e.g.,
real-time anomaly detection in a network with multiple In-
ternet of Medical Things1 connected via gateways, and fi-
nance, e.g., privacy-preserving credit card fraud detection.

Background and Related Works
Federated learning (Konecný, McMahan, and Ramage 2015;
McMahan et al. 2017; Bonawitz et al. 2019) trains a com-
plete ML network/algorithm at each client on its local data
in parallel for a certain number of local epochs, and then the
local updates are sent to the server for aggregation (McMa-
han et al. 2017). This way, the server forms a global model
and completes one global epoch2. The learned parameters of
the global model are then sent back to all clients to train for
the next round. This process continues until the algorithm
converges. In this paper, we consider the federated averag-
ing (FedAvg) algorithm (McMahan et al. 2017) for model
aggregations in FL. FedAvg considers a weighted average
of the gradients for the model updates.

Split learning (Vepakomma et al. 2018; Gupta and Raskar
2018) splits a deep learning network W into multiple por-
tions, and these portions are processed and computed on dif-
ferent devices. In a simple setting, W is split into two por-
tions WC and WS, called client-side network and server-
side network, respectively. The clients, where the data re-
side, commit only to the client-side portion of the network,
and the server commits only to the server-side portion of the
network. The communication involves sending activations,
called smashed data, of the split layer, called cut layer, of
the client-side network to the server, and receiving the gra-
dients of the smashed data from the server-side operations.
The synchronization of the learning process with multiple
clients is done either in a centralized mode or peer-to-peer
mode in SL (Gupta and Raskar 2018).

1The examples of the Internet of Medical Things include glu-
cose monitoring devices, open artificial pancreas systems, wearable
electrocardiogram (ECG) monitoring devices, and smart lenses.

2When forward propagation and back-propagation are com-
pleted for all available datasets across all participating clients for
one cycle, it is called one global epoch.

Fed Server

Client 1
Client-side

Local Model

Forward pass -> smashed data

Backward pass -
> gradients

of th
e sm

ashed dataClient-side

Global Model

Client-side
model portion Server-side

model portion

Full model

Client 2
Main Server

Client K

Figure 1: Overview of splitfed learning (SFL) system model.

Differential privacy (DP) is a privacy model that defines
privacy in terms of stochastic frameworks (Dwork and Roth
2014; Dwork et al. 2016). DP is formally defined as follows:

Definition 1 A mechanism M is considered to be (ϵ, δ)-
differential private if, for all adjacent datasets, x and y, and
for all possible subsets of results, R of the mechanism, the
following holds:

P[M(x) ∈ R] ≤ eϵ ∗ P[M(y) ∈ R] + δ.

Practically, the values of ϵ (privacy budget) and δ (proba-
bility of failure) should be kept as small as possible to main-
tain a high level of privacy. However, the smaller the values
of ϵ and δ, the higher the noise applied to the input data by
the DP algorithm.

The Proposed Framework
The framework SFL is presented in this section. We first
give the overview of SFL. Then we detail three key mod-
ules: (1) the differentially private knowledge perturbation,
(2) the PixelDP for robust learning, and (3) total cost analy-
sis of SFL.

Overall Structure
SFL combines the primary strength of FL, which is paral-
lel processing among distributed clients, and the primary
strength of SL, which is network splitting into client-side
and server-side sub-networks during training. Refer to Fig-
ure 1 for a representation of the SFL architecture. Unlike SL,
all clients carry out their computations in parallel and engage
with the main server and fed server. A client can be a hos-
pital or an Internet of Medical Things with low computing
resources, and the main server can be a cloud server or a re-
searcher with high-performance computing resources. The
fed server is introduced to conduct FedAvg on the client-
side local updates. Moreover, the fed server synchronizes the
client-side global model in each round of network training.
The fed server’s computations, which is mainly computing
FedAvg, are not costly. Hence, the fed server can be hosted
within the local edge boundaries. Alternatively, if we imple-
ment all operations at the fed server over encrypted informa-
tion, i.e., homomorphic encryption-based client-side model
aggregation, then the main server can perform the operations
of the fed server.

SFL workflow. All clients perform forward propaga-
tion on their client-side model in parallel, including its

8486

Algorithm 1: Splitfed Learning (SFL)
Notations: (1) St is a set of K clients at t time instance, (2)
Ak,t is the smashed data of client k at t, (3) Yk and Ŷk are the
true and predicted labels, respectively, of the client k, (4) ▽ℓk
is the gradient of the loss for the client k, (5) n and nk are the
total sample size and sample size at a client k, respectively.

/* Runs on Main Server */

EnsureMainServer executes:
if time instance t=0 then

Initialize WS
t (global server-side model)

else
for each client k ∈ St in parallel do

while local epoch e ̸= E do
(Ak,t,Yk)← ClientUpdate(WC

k,t)

Forward propagation with Ak,t on WS
t ,

compute Ŷk

Loss calculation with Yk and Ŷk

Back-propagation calculate ▽ℓk(WS
t ;A

S
t)

Send dAk,t := ▽ℓk(AS
t ;W

S
t) (i.e.,

gradient of the Ak,t) to client k for
ClientBackprop(dAk,t)

end
end
Server-side model update:
WS

t+1 ←WS
t − η nk

n

∑K
i=1 ▽ℓi(W

S
t ;A

S
t)

end

/* Runs on Fed Server */

EnsureFedServer executes:
if t=0 then

Initialize WC
t (global client-side model)

Send WC
t to all K clients for ClientUpdate(WC

k,t)
else

for each client k ∈ St in parallel do
WC

k,t ← ClientBackprop(dAk,t)
end
Client-side global model updates:
WC

t+1 ←
∑K

k=1
nk
n
WC

k,t

Send WC
t+1 to all K clients for

ClientUpdate(WC
k,t)

end

noise layer, and pass their smashed data to the main server.
Then the main server processes the forward propagation
and back-propagation on its server-side model with each
client’s smashed data separately in (somewhat) parallel. It
then sends the gradients of the smashed data to the respec-
tive clients for their back-propagation. Afterward, the server
updates its model by FedAvg, i.e., weighted averaging of
gradients that it computes during the back-propagation on
each client’s smashed data. At the client’s side, after receiv-
ing the gradients of its smashed data, each client performs
the back-propagation on their client-side local model and
computes its gradients. A DP mechanism is used to make
these gradients private and send them to the fed server. The
fed server conducts the FedAvg of the client-side local up-
dates and sends them back to all participating clients.

Variants of Splitfed Learning. There can be several vari-
ants of SFL. We broadly divide them into two categories in
the following:

Based on Server-side Aggregation. This paper proposes
two variants of SFL. The first one is called splitfedv1
(SFLV1), which is depicted in Algorithm 1 and 2. The next
algorithm is called splitfedv2 (SFLV2), and it is motivated by
the intuition of the possibility to increase the model accuracy
by removing the model aggregation part in the server-side
computation module in Algorithm 1. In Algorithm 1, the
server-side models of all clients are executed separately in
parallel and then aggregated to obtain the global server-side
model at each global epoch. In contrast, SFLV2 processes
the forward-backward propagations of the server-side model
sequentially with respect to the client’s smashed data (no Fe-
dAvg of the server-side models). The client order is chosen
randomly in the server-side operations, and the model gets
updated in every single forward-backward propagation. Be-
sides, the server receives the smashed data from all partic-
ipating clients synchronously. The client-side operation re-
mains the same as in the SFLV1; the fed server conducts
the FedAvg of the client-side local models and sends the
aggregated model back to all participating clients. These
operations are not affected by the client order as the local
client-side models are aggregated by the weighted averaging
method, i.e., FedAvg. Some other SFL versions are available
in the literature, but they are developed after and influenced
by our approach (Han, amd Jungmoon Lee, and Moon 2021;
Gao et al. 2021).

Based on Data Label Sharing. Due to the split ML mod-
els in SFL, we can carry out ML in the two settings; (1)
sharing the data labels to the server and (2) without sharing
any data labels to the server. Algorithm 1 considers SFL with
data label sharing. In cases without sharing data labels, the
ML model in SFL can be partitioned into three parts, assum-
ing a simple setup. Each client will process two client-side
model portions; one with the first few layers of W, and an-
other with the last few layers of W and loss calculations.
The remaining middle layers of W will be computed at
the server-side. All possible configurations of SL, including
vertically partitioned data, extended vanilla, and multi-task
SL (Vepakomma et al. 2018), can be carried out similarly in
SFL as its variants.

Privacy Protection
The inherent privacy preservation capabilities of SFL are
due to two reasons: firstly, it adopts the model-to-data ap-
proach, and secondly, SFL conducts ML over a split net-
work. A network split in ML learning enables the clients/fed
server and the main server to maintain the full model pri-
vacy by not allowing the main server to get the client-side
model updates and vice-versa. The main server has access
only to the smashed data (i.e., activation vectors of the cut
layer). The curious main server needs to invert all the client-
side model parameters, i.e., weight vectors, to infer data
and client-side model. The possibility of inferring the client-
side model parameters and raw data is highly unlikely if
we configure the client-side ML networks’ fully connected

8487

Algorithm 2: ClientUpdate
/* Runs on Client k */

EnsureClientUpdate(WC
k,t):

Model updates WC
k,t ← FedServer()

Set Ak,t = ϕ
for each local epoch e from 1 to E do

Forward propagation with data Xk up to a layer
L ≥ 1 in WC

k,t

Noise layer: Perturbs the outputs of the layer L
based on Equation (5)

With the output from the noise layer, continue forward
propagation to the remaining layers of WC

k,t, and get
the activations of its final layer Ak,t (smashed data)
Yk is the true labels of Xk

Send Ak,t and Yk to the main server
Wait for the completion of ClientBackprop(dAk,t)

end

/* Runs on Client k */

EnsureClientBackprop(dAk,t):
while local epoch e ̸= E do

dAk,t ←MainServer()
Back-propagation, calculate gradients ▽ℓk(WC

k,t)
with dAk,t

ℓ2-norm of each gradient is clipped and a
calibrated noise is added based on Equation (2)
and (3) to calculate g̃k,t

Update WC
k,t ←WC

k,t − ηg̃k,t

end
Send WC

k,t to the Fed server

layers with sufficiently large numbers of nodes (Gupta and
Raskar 2018). However, for a smaller client-side network,
the possibility of this issue can be high. This issue can
be controlled by modifying the loss function at the client-
side (Vepakomma et al. 2019). Due to the same reasons, the
clients (having access only to the gradients of the smashed
data from the main server) and the fed server (having access
only to the client-side updates) cannot infer the server-side
model parameters. Since there is no network split and sep-
arate training on the client-side and server-side in FL, SFL
provides superior architectural configurations for enhanced
privacy for an ML model during training compared to FL.

Privacy Protection at the Client-side. We discuss the in-
herent privacy of the proposed model in the previous sec-
tion. However, there can be an advanced adversary exploit-
ing the underlying information representations of the shared
smashed data or parameters (weights) to violate data own-
ers’ privacy. This can happen if any server/client becomes
curious though still honest. To avoid these possibilities, we
apply two measures in our studies; (i) differential privacy to
the client-side model training and (ii) PixelDP noise layer in
the client-side model.

Privacy Protection on Fed Server. Considering Algo-
rithm 2, we present the process for implementing differential
privacy at a client k. We assume the following: σ represents
the noise scale, and C ′ represents the gradient norm bound.
Now, firstly, after t time, the client k receives the gradients

dAk,t from the server, and with this, it calculates client-side
gradients ▽ℓk(WC

k,i,t) for each of its local sample xi, and

gk,t (xi)← ▽ℓk(W
C
k,i,t). (1)

Secondly, the ℓ2-norm of each gradient is clipped accord-
ing to the following equation:

gk,t (xi)← gk,t (xi) /max

(
1,
∥gk,t (xi)∥2

C ′

)
. (2)

Thirdly, calibrated noise is added to the average gradient:

g̃k,t ←
1

nk

∑
i

(
gk,t (xi) +N

(
0, σ2C ′2I

))
. (3)

Finally, the client-side model parameters of client k are
updated as follows; WC

k,t+1 ←WC
k,t − ηtg̃k,t.

We apply calibrated noise iteratively until the model con-
verges or reaches a specified number of iterations. As the
iterations progress, the final convergence will exhibit a pri-
vacy level of (ε, δ)- differential privacy, where (ε, δ) is the
overall privacy cost of the client-side model.

Differential privacy is used to enforce strict privacy
to the client-side model training algorithm based on
Abadi et al.’s approach (Abadi et al. 2016). Equation 2
(norm clipping) guarantees that ∥gk,t (xi)∥2 is preserved
when ∥gk,t (xi)∥2 ≤ C ′. This step also guarantees that
∥gk,t (xi)∥2 scaled down to C ′ when ∥gk,t (xi)∥2 > C ′.
This step also helps clipping out the effect of Equation 5 on
the gradients. Hence, norm clipping step allows bounding
the influence of each individual example on gk,t in the pro-
cess of guaranteeing differential privacy. It was shown that,
the corresponding noise addition (refer to Equation 3) pro-
vides (ϵ, δ)-DP for each step of b (b = nk/batch size), if we

choose σ (noise scale) to be
√

2 log 1.25
δ /ε (Dwork and Roth

2014). Hence, at the end of b steps, this will result in (bϵ, bδ)-
DP. As shown by Abadi et al., for any ε < c1b

2T and δ > 0,

by choosing σ ≥ c2
b
√

T log(1/δ)

ε , the privacy can be main-
tained at (ϵ, δ)-DP (Abadi et al. 2016). Moments accountant
(a privacy accountant) is used to track and maintain (ϵ, δ).
Hence, at the end of b, a client model guarantees (ϵ, δ)-DP.
With the strict assumption that all clients work on IID data,
we can confirm that all clients maintain and guarantee (ϵ, δ)-
DP while client-side model training and synchronization.

Privacy Protection on Main Server. The above DP mea-
sures do not stop potential leakage from the smashed data
to the main server though it has some effect on the smashed
data after the first global epoch. Thus, to avoid privacy leak-
age and further strengthen data privacy and model robust-
ness against potential adversarial ML settings, we integrate
a noise layer in the client-side model based on the concepts
of PixelDP (Lecuyer et al. 2019).

This extended measure utilizes the noise application
mechanism involved in differential privacy to add a cali-
brated noise to the output (e.g., activation vectors) of a layer
at the client-side model while maintaining utility. In this
process, firstly, we calculate the sensitivity of the process.
The sensitivity of a function A is defined as the maximum

8488

change in output that can be produced by a change in the
input, given some distance metrics for the input and output
(p-norm and q-norm, respectively):

∆Ip,q = ∆IAp,q = maxi,j,i ̸=j
∥Ak,i −min Ak,j∥q
∥xi − xk∥p

(4)

Secondly, Laplacian noise with scale
∆IA

p,q

ε′ is applied to ran-
domize any data as follows:

AP
k,i = Ak,i + Lap

(
∆IAp,q
ε′

)
, (5)

where, AP
k,i represents a private version of Ak,i, and ϵ′ is the

privacy budget used for the Laplacian noise. This method en-
ables forwarding private versions of the smashed data to the
main server; hence, preserving the privacy of smashed data.
The private version of the smashed data is due to the post-
processing immunity of the DP mechanism applied at the
noise layer in the client-side model. The noisy smashed data
is more private than the original data due to the calibrated
noise. Moreover, PixelDP not only can provide privacy for
smashed data, but also can improve the robustness of the
model against adversarial examples. However, detailed anal-
ysis and mathematical guarantees are kept for future work to
preserve the main focus of the proposed work.

Robustness via PixelDP. The primary intuition behind us-
ing random DP mechanism to robust ML against adversarial
examples is to create a DP scoring function. For example,
feeding any data sample through the DP scoring function,
the outputs are DP with regards to the features of the in-
put. Then, stability bounds for the expected output of the DP
function are given by the following Lemma (Lecuyer et al.
2019):
Lemma 1 Suppose a randomized function M, with
bounded output M ∈ [0, b], b ∈ R+, satisfies (ϵ, δ)-DP.
Then the expected value of its output meets the following
property:

∀α ∈ Bp(1).E(M(x)) ≤ eϵ · E(M(x+ α)) + bδ, (6)

where Bp(r) := α ∈ Rn : ∥α∥p ≤ r is the p-norm ball, and
the expectation is taken over the randomness inM.
Combined with Equation, ∀α ∈ Bp(L), k = f(x). yk(x +
α) > maxi:i̸=k yi(x + α), the bounds provide a rigorous
certification for robustness to adversarial examples.

Total Cost Analysis
This section analyzes the total communication cost and
model training time for FL, SL, and SFL under a uniform
data distribution. Assume K be the number of clients, p be
the total data size, q be the size of the smashed layer, R be
the communication rate, T be the time taken for one forward
and backward propagation on the full model with dataset of
size p (for any architecture), Tfedavg is the time required to
perform the full model aggregation (let Tfedavg

2 be the aggrega-
tion time for an individual server), |W| be the size of the full
model, and β be the fraction of the full model’s size avail-
able in a client in SL/SFL, i.e., |WC| = β|W|. The term

2β|W| in communication per client is due to the download
and upload of the client-side model updates before and after
training, respectively, by a client. The result is presented in
Table 2. As shown in the table, SL can become inefficient
when there is a large number of clients. Besides, we see that
when K increases, the total training time cost increases in
the order of SFLV2<SFLV1<SL. Also, we observe this in
our empirical results3.

Experiments
Experiments are carried out on uniformly distributed and
horizontally partitioned image datasets among clients. All
programs are written in python 3.7.2 using the PyTorch li-
brary (PyTorch 1.2.0). For quicker experiments and devel-
opments, we use the High-Performance Computing (HPC)
platform that is built on Dell EMC’s PowerEdge platform
with partner GPUs for computation and InfiniBand network-
ing. We run clients and servers on different computing nodes
of the cluster provided by HPC. We request the following
resources for one slurm job on HPC: 10GB of RAM, one
GPU (Tesla P100-SXM2-16GB), one computing node with
at most one task per node. The architecture of the nodes is
x86 64. In our setup, we consider that all participants update
the model in each global epoch (i.e., C = 1 during training).
We choose ML network architectures and datasets based on
their performance and their need to include proportionate
participation in our studies. The learning rate for LeNet is
maintained at 0.004 and 0.0001 for the remainder of network
architectures (AlexNet, ResNet, and VGG16). We choose
the learning rate based on the models’ performance during
our initial observations. For example, for LeNet on FM-
NIST, we observed train and test accuracy of 94.8% and
92.1% with a learning rate of 0.004, whereas 87.8% and
87.3% with a learning rate of 0.0001 in 200 global epochs.
We set up a similar computing environment for our analysis.

We use four public image datasets in our experiments,
and these are summarized in Table 3. HAM10000 dataset
is a medical dataset, i.e., the Human Against Machine
with 10000 training images (Tschandl 2018). It consists
of colored images of pigmented skin lesions, and has der-
matoscopic images from different populations, acquired and
stored by different modalities. It has seven cases of impor-
tant diagnostic categories of lesions: Akiec, bcc, bkl, df, mel,
nv, and vasc. MNIST, Fashion MNIST, and CIFAR10 are
standard datasets, all with 10 classes.

In regard to ML models, we consider four popular archi-
tectures in our experiments. These four architectures fall un-
der Convolutional Neural Network (CNN) architectures and
are summarized in Table 4. We restrict our experiments to
CNN architectures to maintain the cohesiveness of our work
proposed in this paper. We will conduct further experimental
evaluations on other architectures such as recurrent neural
networks in future work.

For all experiments in SL, SFLV1, and SFLV2, the net-
work layers are split at the following layer: second layer of
LeNet (after 2D MaxPool layer), second layer of AlexNet

3Empirical results are provided in (Thapa, Chamikara, and
Camtepe 2020).

8489

Method Comms. per client Total comms. Total model training time

FL 2|W| 2K|W| {T + 2 |W|
R + Tfedavg}

SL (2pK)q + 2β|W| 2pq + 2βK|W| T + 2pq
R + 2β |W|

R K

SFLV1 (2pK)q + 2β|W| 2pq + 2βK|W| T + 2 pq
KR + 2β|W|

R + Tfedavg

SFLV2 (2pK)q + 2β|W| 2pq + 2βK|W| T + 2 pq
KR + 2β|W|

R +
Tfedavg

2

Table 2: Total cost analysis of the four DCML approaches for one global epoch.

Dataset Training samples Testing samples Image size

HAM10000 (Tschandl 2018) 9,013 1,002 600× 450
MNIST (LeCun, Cortes, and Burges 2010) 60,000 10,000 28× 28
FMNIST (Xiao, Rasul, and Vollgraf 2017) 60,000 10,000 28× 28
CIFAR10 (Krizhevsky, Nair, and Hinton 2009) 50,000 10,000 32× 32

Table 3: Datasets

(after 2D MaxPool layer), fourth layer of VGG16 (after 2D
MaxPool layer), and third layer (after 2D BatchNormaliza-
tion layer) of ResNet18. For a fair comparison, while per-
forming the comparative evaluations of SFLV1 and SFLV2
with FL and SL, we do not consider the addition of differ-
ential privacy-based measures and PixelDP in SFLV1 and
SFLV24.

Performance of FL, SL, SFLV1 and SFLV2
We consider the results under normal learning (centralized
learning) as our benchmark. Table 5 summarizes our first
result, where the observation window is 200 global epochs
with one local epoch, batch size of 1024, and five clients for
DCML. The tables show the best accuracy observed within
200 global epochs. Moreover, the test accuracy is averaged
over all clients in the DCML setup at each global epoch.

As presented in Table 5, SL and SFL (both versions) per-
formed well under the proposed experimental setup. How-
ever, we also observed that among DCML, FL shows bet-
ter learning performance in most cases, possibly due to the
FedAvg of the full models at each global epoch. Based on
the results, we can observe that SFLV1 and SFLV2 have in-
herited the characteristics of SL. In a separate experiment,
we noticed that VGG16 on CIFAR10 did not converge in
SL, which was the same for both versions of splitfed learn-
ing, although there were around 66% and 67% of training
and testing accuracies, respectively, for FL. We assume that
this was because of the unavailability of certain other factors
such as hyper-parameters tuning or change in data distribu-
tion or additional regularization terms in the loss function,
which are beyond the scope of this paper.

Further diving into individual cases, as an example, we
present the performance of ResNet18 on the HAM10000
dataset for normal (centralized learning), FL, SL, SFLV1,

4Some source codes are available at https://github.com/
chandra2thapa/SplitFed-When-Federated-Learning-Meets-Split-
Learning.

Figure 2: Testing convergence of ResNet18 on HAM10000
under various learning with five clients.

and SFLV2, under similar settings. For ResNet18 on
HAM10000, the test accuracy convergence was almost the
same for FL, SL, SFLV1, and SFLV2, and they reached
around 76% in the observation window of 200 global epochs
(refer to Figure 2). However, SFLV1 and SFLV2 struggled to
converge if SL failed to converge. This was observed for the
case of VGG16 on CIFAR10 in our separate experiments.

So far, we considered the testing mean accuracy in our re-
sults. Figure 4 illustrates the variations of the performance
(i.e., accuracy) over five clients at each global epoch. In this
regard, we compute the coefficient of variation (CV), which
is a ratio of the standard deviation to the mean, and it mea-
sures the dispersion. Moreover, we calculate the CV over the
five accuracies generated by the five clients at each global
epoch. Based on our results for ResNet18 on HAM10000,
the CVs for SL, FL, SFLV1, and SFLV2 are bounded be-
tween 0.06 and 2.63 while training, and 0.54 and 6.72 while
testing after epoch 2; at epoch 1, the CV is slightly higher.
The results indicate uniform individual client-level perfor-
mance across the clients, as the CV coefficient values below
10 are considered a good range in literature.

In some datasets and architectures, the training/testing ac-
curacy of the model was still improving and showing bet-
ter performance at higher global epochs than 200. For ex-

8490

Architecture # Parameters Layers Kernel size

LeNet (Lecun et al. 1998) 60 thousands 5 (5× 5), (2× 2)
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) 60 million 8 (11× 11),(5× 5),(3× 3)
VGG16 (Simonyan and Zisserman 2015) 138 million 16 (3× 3)
ResNet18 (He et al. 2016) 11.7 million 18 (7× 7), (3× 3)

Table 4: Model Architecture

Dataset Architecture Normal FL SL SFLV1 SFLV2

HAM10000 ResNet18 79.3% 77.5% 79.1% 79% 79.2%
HAM10000 AlexNet 80.1% 75 % 73.8% 70.5% 74.9%
FMNIST LeNet 92.7% 91.9 % 90.4% 89.6% 90.4%
FMNIST AlexNet 90.5% 89.7% 84.7% 86% 81%
CIFAR10 LeNet 72.1% 69.4 % 62.7% 62.6% 63.8%
MNIST AlexNet 98.8% 98.7 % 95.1% 96.9% 92%
MNIST ResNet18 99.3% 99.2 % 99.2% 99% 99.2%

Table 5: Test Results (five clients for DCML)

ample, going from 200 epochs to 400 epochs, we noticed
training and testing accuracy increment from around 83% to
around 86% for FL with LeNet on FMNIST with 100 users.
However, we limited our observation window to 100 or 200
global epochs as some network architecture such as AlexNet
on HAM10000 in FL was taking an extensive amount of
training time on the HPC (a shared resource).

Effect of Number of Users on the Performance
This section presents the analysis of the effect of the num-
ber of users for ResNet18 on HAM10000. We observed that
up to 100 clients (clients ranging from 5 to 100), the train-
ing and testing curves for all numbers of clients followed a
similar pattern in each plot. Moreover, they achieved a sim-
ilar level of accuracy within each of our DCMLs. We got
comparative test accuracies of 74% (FL), 77% (SL), 75%
(SFLV1), and 77% (SFLV2) at 100 global epochs. While
training, only SL and SFLV2 achieved the centralized train-
ing (normal learning) accuracy at around 100 global epochs.
In contrast, FL and SFLV1 could not achieve this result even
at 200 global epochs. The experimental results for clients
ranging from 5 to 100 showed a negligible effect on the
performance due to the increase in the number of clients
in FL, SL, SFLV1, and SFLV2 (for example, refer to Fig-
ure 3. However, this observation was not the case in gen-
eral. For LeNet on FMNIST with fewer clients, the testing
performances of FL and SL were close to the normal learn-
ing. Moreover, for SL with AlexNet on HAM10000, the per-
formance degraded and even failed to converge with the in-
crease in the number of clients, and we saw a similar effect
on the SFLV2. Overall, the convergence of the learning and
performance slowed down (sometimes failed to progress)
with the increase in the number of clients due to the resource
limitations and other constraints, such as the change in data
distribution among the clients with the increase in its num-
ber, and a regular global model aggregation to synchronize
the model across the multiple clients.

SFL with Differential Privacy at the Client-side
Model with a PixelDP Noise Layer
We implemented the differential privacy measures as de-
scribed in Section “Privacy Protection.” For illustration,
experiments were performed for SFLV1 with AlexNet on
MNIST data distributed over five clients. For 50 global
epochs with 5 local epochs at each client per global epoch,
the testing accuracy curves converged as shown in Figure 5.
Besides, as for illustration, we change the values of ε′, which
is the privacy budget used by the PixelDP noise layer placed
after the first convolution layer of AlexNet, to see the ef-
fect on the overall performance. Moreover, we maintain ε at
0.5 (privacy budget of client-side model training) during all
experiments to examine the behavior of SFLV1 under strict
client-side model privacy. As expected, the convergence of
accuracy curves with DP measures is gradual and slow com-
pared to non-differentially private training. Besides, testing
accuracy of around 40%, 64%, 73%, 77%, and 78% are ob-
served at global epoch 50 for ε′ equal to 0.5, 1, 2, 5, and no
PixelDP, respectively. Clearly, the accuracy increases with
the increase in the privacy budget, i.e., ε + ε′. Overall, the
utility is decreased with a decrease in the privacy budget.
As the client-side architecture in SFLV2 is the same as in
SFLV1, the application of differential privacy in SFLV2 can
be done in the same way as in SFLV1.

Conclusion
By bringing federated learning (FL) and split learning (SL)
together, we proposed a novel distributed machine learn-
ing approach, named splitfed learning (SFL). SFL offered
model privacy by network splitting and differential private
client-side model updates. It is faster than SL by performing
parallel processing across clients. Our results demonstrate
that SFL provides similar performance in terms of model
accuracy compared to SL. Thus, being a hybrid approach,
it supports machine learning with resource-constrained de-

8491

20

35

50

65

80

0 20 40 60 80 100
Ac

cu
ra

cy
 (%

)
Global epoch

Normal 5 users
10 users 20 users
50 users 100 users

(a) FL

20

35

50

65

80

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Global epoch

Normal 5 users
10 users 20 users
50 users 100 users

(b) SL

20

35

50

65

80

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Global epoch

Normal 5 users
10 users 20 users
50 users 100 users

(c) SFLV1

20

35

50

65

80

0 20 40 60 80 100

Ac
cu

ra
cy

 (%
)

Global epoch

Normal 5 users
10 users 20 users
50 users 100 users

(d) SFLV2

Figure 3: Effect of the number of client/users on testing accuracy for ResNet18 on HAM10000.

0
0.5

1
1.5

2
2.5

3

0 50 100 150 200

CV

Global epoch
FL SL SFLV1 SFLV2

(a) Train

0
1
2
3
4
5
6
7

0 50 100 150 200

CV

Global epoch
FL SL SFLV1 SFLV2

(b) Test

Figure 4: Coefficient of variation (CV) of ResNet18 on
HAM10000 under various learning settings with five clients.

Figure 5: SFLV1 testing convergence of AlexNet on MNIST
with five clients, sensitivity δ = 1e−5, ε = 0.5, σ = 1.3
(DP), and under various choices of ε′ (PixelDP).

vices (enabled by network splitting as in SL) and fast train-
ing (enabled by handling clients in parallel as in FL). The
performance of SFL with privacy and robustness measures
based on differential privacy and PixelDP was further ana-
lyzed to investigate its feasibility towards data privacy and
model robustness. Studies related to the detailed trade-off
analysis of privacy and utility, and integration of homomor-
phic encryption (Gentry 2009) for guaranteed data privacy
are left for future works.

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-

8492

curity, 308–318.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konecný, J.; Mazzocchi,
S.; McMahan, H. B.; Overveldt, T. V.; Petrou, D.; Ramage,
D.; and Roselander, J. 2019. Towards Federated Learning at
Scale: System Design. In Proc. SysML Conference, 1–15.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. D. 2016.
Calibrating Noise to Sensitivity in Private Data Analysis. J.
Priv. Confidentiality, 7(3): 17–51.
Dwork, C.; and Roth, A. 2014. The Algorithmic Founda-
tions of Differential Privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4): 211–407.
Gao, Y.; Kim, M.; Thapa, C.; Abuadbba, S.; Zhang, Z.;
Camtepe, S.; Kim, H.; and Nepal, S. 2021. Evaluation and
Optimization of Distributed Machine Learning Techniques
for Internet of Things. CoRR, abs/2103.02762.
Gentry, C. 2009. A fully homomorphic encryption scheme.
Ph.D. thesis, Stanford University, Stanford, California.
Gupta, O.; and Raskar, R. 2018. Distributed learning of deep
neural network over multiple agents. J. Network and Com-
puter Applications, 116: 1–8.
Han, D.-J.; amd Jungmoon Lee, H. I. B.; and Moon, J. 2021.
Accelerating Federated Learning with Split Learning on Lo-
cally Generated Losses. In Proc. FL-ICML.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In Proc. IEEE CVPR, 770–
778.
Kairouz, P.; McMahan, H. B.; and et al. 2019. Ad-
vances and Open Problems in Federated Learning. CoRR,
abs/1912.04977.
Konecný, J.; McMahan, B.; and Ramage, D. 2015. Fed-
erated Optimization: Distributed Optimization Beyond the
Datacenter. CoRR, abs/1511.03575.
Krizhevsky, A.; Nair, V.; and Hinton, G. 2009. CIFAR-
10 (Canadian Institute for Advanced Research).
Http://www.cs.toronto.edu/ kriz/cifar.html.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Proc. NIPS’12 - Vol. 1, 1097–1105. USA.
Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proc. of the IEEE, 86(11): 2278–2324.
LeCun, Y.; Cortes, C.; and Burges, C. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.
Lecuyer, M.; Atlidakis, V.; Geambasu, R.; Hsu, D.; and Jana,
S. 2019. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security
and Privacy (SP), 656–672. IEEE.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proc. AISTATS,
1273–1282.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
Proc. 3rd ICLR.

Thapa, C.; Chamikara, M. A. P.; and Camtepe, S. 2020.
SplitFed: When Federated Learning Meets Split Learning.
CoRR, abs/2004.12088.
Tschandl, P. 2018. The HAM10000 dataset, a large
collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. Harvard Dataverse.
Doi:10.7910/DVN/DBW86T.
Vepakomma, P.; Gupta, O.; Dubey, A.; and Raskar, R. 2019.
Reducing leakage in distributed deep learning for sensitive
health data. In Proc. ICLR AI for social good workshop.
Vepakomma, P.; Gupta, O.; Swedish, T.; and Raskar,
R. 2018. Split learning for health: Distributed deep
learning without sharing raw patient data. arxiv.
Http://arxiv.org/abs/1812.00564.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. CoRR, abs/1708.07747.

8493

