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Abstract

In recent works, utilizing a deep network trained on meta-
training set serves as a strong baseline in few-shot learn-
ing. In this paper, we move forward to refine novel-class
features by finetuning a trained deep network. Finetuning is
designed to focus on reducing biases in novel-class feature
distributions, which we define as two aspects: class-agnostic
and class-specific biases. Class-agnostic bias is defined as the
distribution shifting introduced by domain difference, which
we propose Distribution Calibration Module(DCM) to re-
duce. DCM owes good property of eliminating domain differ-
ence and fast feature adaptation during optimization. Class-
specific bias is defined as the biased estimation using a few
samples in novel classes, which we propose Selected Sam-
pling(SS) to reduce. Without inferring the actual class distri-
bution, SS is designed by running sampling using proposal
distributions around support-set samples. By powering fine-
tuning with DCM and SS, we achieve state-of-the-art results
on Meta-Dataset with consistent performance boosts over ten
datasets from different domains. We believe our simple yet
effective method demonstrates its possibility to be applied on
practical few-shot applications.

Introduction
In recent works (Chen et al. 2019; Tian et al. 2020; Chen
et al. 2020; Dhillon et al. 2019), the importance of utilizing a
good feature embedding in few-shot learning is well studied
and addressed. A feature embedding is pre-trained as a clas-
sification task using meta-training set(base classes). Fine-
tuning on the meta-test set(novel classes) (Tian et al. 2020;
Yang, Liu, and Xu 2021; Dhillon et al. 2019) is shown to sur-
pass most meta-learning methods. However, only finetuning
a classifier on the meta-test set leaves the feature embed-
ding unchanged. A pre-trained feature extractor is sufficient
to have well-defined feature distributions on base classes,
while this is not true for novel classes. Novel classes may
come from a variety of domains different from base classes.
Globally, initial feature distributions of novel classes could
be affected mainly by the domain difference. Locally, fea-
tures are not trained to cluster tightly within a class and
separate well between classes, which intensifies the biased
estimation of only a few samples. Those biases in novel-
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(a) Reducing Class-agnostic Bias by Distribution Calibra-
tion Module(DCM). For novel classes from different do-
mains, the feature distribution could be skewed and our pro-
posed DCM is to eliminate the domain difference in feature
distribution.

(b) Reducing Class-specific Bias by Selected Sampling. As
shown in the left, a few samples leads to a biased mean esti-
mation. In the right, by selectively sampling more features,
the bias in estimation is largely reduced. The mean estima-
tion is rectified towards the area with higher sample density.

Figure 1: Illustration on Biases in Feature Distribution.

class feature distributions address the importance of refining
novel-class features.

In our work, we refine novel-class features by finetuning
the feature extractor on the meta-test set using only a few
samples. We focus on reducing biases in novel-class fea-
ture distributions by defining them into two aspects: class-
agnostic and class-specific biases. Class-agnostic bias refers
to the feature distribution shifting caused by domain differ-
ences between novel and base classes. The unrefined fea-
tures from novel classes could cluster in some primary direc-
tion due to the domain difference, which leads to the skewed
feature distribution as shown in Fig. 1a. In other words, the
feature distribution of novel classes is shifted by the domain
difference when directly using the pre-trained feature extrac-
tor. Class-specific bias refers to the biased estimation using
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only a few samples in one class. Biased estimation is always
critical for few-shot learning. By only knowing a few sam-
ples, the estimation of feature distribution within one class
is biased as shown in Fig. 1b. The bias between empirical
estimation with its true value would be reduced with more
samples involved. Running sampling under each class dis-
tribution is the most direct way to enlarge the support set.
However, this is not applicable when each class distribution
is unknown.

In our work, we propose the Distribution Calibration
Module(DCM) to reduce class-agnostic bias. DCM is de-
signed to eliminate domain difference by normalizing the
overall feature distribution for novel classes and further re-
shaping the feature manifold for fast adaptation during fine-
tuning. For class-specific bias, we propose Selected Sam-
pling(SS) to augment more data for better estimation. More
specifically, the Selected Sampling happens on a chain of
proposal distributions centered with each data point from
the support set. And the whole sampling process is guided
by an acceptance criterion that only samples beneficial to
the optimization will be selected. By eliminating the domain
difference through distribution calibration, DCM boosts per-
formance over ten datasets from different domains on Meta-
Dataset evaluation, demonstrating the importance of reduc-
ing class-agnostic bias when dealing with domain issues.
Meanwhile, we theoretically analyze how DCM is designed
for fast feature adaptation and showcase its supreme faster
convergence compared with direct finetuning in Fig. 4. Fur-
thermore, based on DCM’s competitive performance, reduc-
ing class-specific bias with Selected Sampling can further
enhance the finetuning performance by a large margin over
ten datasets. Without inferring the actual feature distribution,
our selected sampling can effectively explore unknown fea-
ture space and augment features to reduce class-specific bias
in estimation.

Our contributions: 1) We address the understanding
of biases in novel-class feature distributions when using a
pre-trained feature extractor. By proposing to reduce class-
agnostic and class-specific biases through DCM and SS, we
power finetuning with domain-agnostic consistent perfor-
mance gain. 2) We propose an efficient Selected Sampling
strategy to direct sample features for class-specific bias re-
duction. Without inferring the class distribution, the selected
sampling effectively enlarges the support set with informa-
tive data on the feature space. 3) We evaluate our method by
performing comprehensive experiments on Meta-Dataset.
We achieve State-of-the-Art performance and a remarkably
consistent performance improvement over ten datasets from
different domains. We hope this work could contribute to the
understanding of the feature space for classification-oriented
tasks as well.

Related Work
Overview of the Few-Shot Problem
Few-shot learning has been quite an active research field in
recent years. The branch of Meta-learning methods (Finn,
Abbeel, and Levine 2017; Rusu et al. 2018; Vinyals et al.
2016; Snell, Swersky, and Zemel 2017; Sung et al. 2018;

Chen et al. 2020; Simon et al. 2020) on few-shot learning
is designed to directly back-propagate the loss of the test
set while the hypothesis for classification is proposed with
the training set. Also methods are not adherent to meta-
learning only. There are: data argumentation with halluci-
nating more samples(Hariharan and Girshick 2017; Wang
et al. 2018), optimization with ridge regression or support
vector machine (Bertinetto et al. 2018; Lee et al. 2019), us-
ing graph neural networks (Garcia and Bruna 2017; Kim
et al. 2019), self/semi-supervised learning (Ren et al. 2018;
Gidaris et al. 2019; Li et al. 2019b; Wang et al. 2020),
learning with semantic information (Li et al. 2020), class
weight generalization (Gidaris and Komodakis 2018, 2019;
Guo and Cheung 2020), modules working on attentive spa-
tial features (Li et al. 2019a; Hou et al. 2019; Doersch,
Gupta, and Zisserman 2020), knowledge distillation (Tian
et al. 2020). The recent (Triantafillou et al. 2019) proposes
a more realistic evaluation for few-shot learning where al-
gorithms are evaluated over 10 datasets from different do-
mains with a large-scale meta-training set spanned from Im-
ageNet(Krizhevsky, Sutskever, and Hinton 2012). The eval-
uation on meta-Dataset not only requires algorithms to ob-
tain a good performance on few-shot learning but also sets
higher demands on generalization over different domains.

Distribution calibration (Yang et al. 2020; Yang, Liu, and
Xu 2021) raises attention in few-shot learning recently. In
(Yang, Liu, and Xu 2021), to conduct sampling, the similar-
ities between base and novel classes are used to transfer the
distribution parameters from base classes to novel classes.
The similarity measurement may limit its application for
cross-domain problems. Unlike their method, we tackle the
distribution calibration from coarse to refined bias reduction.
The class-agnostic bias reduction is conducted to eliminate
skewness shown in the overall feature distribution. Further,
class-specific bias is reduced by sampling using proposal
distribution centered with the support set. Our methods suc-
cessfully run direct sampling on the feature space without
inferring the actual feature distribution for each class. There
have been some works on feature transformations in few-
shot learning recently. (Wang et al. 2019) uses the mean es-
timation of base classes to normalize novel-class features,
without considering the domain difference between novel
and base classes. (Liu et al. 2020) proposes random prun-
ing features after normalization for one-shot learning, and
the random pruning is expected to find part of feature em-
bedding that fits in the domain of novel classes. We di-
rectly solve the domain shifting issue in feature distribution,
and as illustrated later, those class-sensitive features are fur-
ther amplified during finetuning. Finetuning results in (Tri-
antafillou et al. 2019) is to finetune the K-Nearest Neighbor
trained model with the meta-training set(followed by inner-
loop finetuning on meta-test set); the experiments with our
methods are more precisely defined as (inner-loop) finetun-
ing, which is only to use the support set within one episode
from meta-test set during evaluation. (Inner-loop) finetun-
ing is an attempt to reach a good classification through only
a handful of training samples. (Dhillon et al. 2019) proposes
transductive finetuning which involves the query set also.
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Method
Leverage a Feature Extractor to Few-Shot Problem
We first formalize the few-shot classification setting with no-
tation. Let (x, y) denote an image with its ground-truth la-
bel. In few-shot learning, training and test sets are referred
to as the support and query set respectively and are col-
lectively called a C-way K-shot episode. We denote train-
ing(support) set as Ds = {(xi, yi)}Ns

i=1 and test(query) set
as Dq = {(xi, yi)}

Nq

i=1, where yi ∈ C and |C| is the number
of ways or classes and Ns equals to C ×K.

For supervised learning, a statistics θ∗ = θ∗(Ds) is learnt
to classify Ds as measured by the cross-entropy loss:

θ∗(Ds) = argθ min
1

Ns

∑
(x,y)∈Ds

− log pθ(y|x) (1)

Where pθ(·|x) is the probability distribution on C as pre-
dicted by the model in response to input x. More specifi-
cally:

p(y = k|x) = exp ⟨wk, fθ(x)⟩∑C
j=1 exp ⟨wj , fθ(x)⟩

(2)

⟨·⟩ refers to dot-product between features with class pro-
totypes. As widely used in (Snell, Swersky, and Zemel 2017;
Qi, Brown, and Lowe 2018; Chen et al. 2020), the novel
class prototype wc, c ∈ C is the mean feature from the sup-
port set Ds:

wc =
1

Ns

∑
x∈Ds

fθ(x) (3)

In our work, fθ(x) is first pre-trained with meta-training
set using cross-entropy loss; and further in each testing
episode, θ∗ = θ∗(Ds) is learned by finetuning fθ(x) using
Ds. Given a test datum x where (x, y) ∈ Dq , y is predicted:

ŷ = argmax
c

pθ∗(c|x) (4)

With this basic finetuning framework, we propose Distri-
bution Calibration Module and Selected Sampling as intro-
duced in the following section.

Class-Agnostic Bias Reduction by Distribution
Calibration Module
We propose an easy-plug-in distribution calibration mod-
ule(DCM) to reduce class-agnostic bias caused by domain
difference.

The first step to reduce class-agnostic bias is to calibrate
skewed feature distribution. A pre-trained feature extrac-
tor fθ(x) could provide an initial feature space that gen-
eral invariant features are learnt from a large-scale dataset.
θ∗ = θ∗(Dbase) is sufficient to well classify those base
classes which makes it inadequate to well distinguish novel
classes. The overall feature distribution of novel classes may
be skewed due to its domain property. And the feature dis-
tribution could be described statistically:

µ =
1

Ns

∑
xi∈Ds

fθ(xi), σ =
1

Ns

∑
xi∈Ds

(fθ(xi)− µ)2 (5)

Note that µ and σ are class-agnostic parameters describ-
ing the feature distribution for all obtained novel classes. For
feature distributions that are skewed in some directions, the
µ and σ presented could be far from the normal distribution.
We first apply to calibrate the distribution to approach zero
centered mean and unit standard deviation: fi−µ

σ . This dis-
tribution calibration by feature normalization helps correct
the skewed directions brought by large domain differences
between base and novel classes.

Meanwhile, fast feature adaptation is enabled during fine-
tuning. For a feature vector, there are locations encoding
class-sensitive information and locations encoding common
information. Values on class-sensitive locations are expected
to vary between classes to distinguish them. Similar val-
ues are obtained from common locations among all samples,
representing some domain information but contributing lit-
tle to classification. By this normalization, those locations
that encode class-sensitive features are relatively stood out
compared with the locations encoding common information.
We further element-wisely multiply a scale vector among the
calibrated feature embedding:

f̄θ(xi) =
fθ(xi)− µ

σ
∗ s (6)

∗ is the element-wise multiplication. For simplicity, we use
fi = fθ(xi) for notation. The scale vector is learnable during
fine-tuning. The element-wise multiplication allows each lo-
cation on the scale vector could optimize independently, and
thus the whole feature embedding could be reshaped on
novel classes by this scale vector.

As s is element-wisely multiplied with fi, in the following
discussion, we show only the partial derivative at a single
location on the feature vector. In the 1-shot case with mean
features as class prototypes, we have:

∂Li

∂s
∝ fi − µ

σ
[(p(yi|x)− 1)

fi − µ

σ
+

C∑
j ̸=yi

p(j|x)fj − µ

σ
]

(7)
After applying distribution calibration on fi and fj , the

gradients of s for the class-sensitive locations have relatively
larger values than the common ones. The difference between
features is further addressed and enlarged correspondingly
through gradient-based optimization. And the feature mani-
folds will fast adapt to the shape where distinguished parts
are amplified.

Class-Specific Bias Reduction by Selected
Sampling
Biased estimation in a class inevitably hinders the optimiza-
tion of features. The gradient for feature f of (x, y) during
finetuning is:

∂Li

∂f
= (p(y|x)− 1)wy +

C∑
j ̸=y

p(j|x)wj (8)

As p(y|x) ≤ 1, the optimization of gradient descent
focuses f moving close towards the direction of wy , its
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Strayed point

Initial feature 
distribution Iteration 10 Iteration 20

overlap

(a) Without Selected Sampling. The optimization of feature distribution is distracted by a strayed point in the
support set.

overlap

Initial feature 
distribution Iteration 10 Iteration 20

(b) With Selected Sampling. SS helps to reduce bias in mean estimation brought by strayed points. And during
optimization, the strayed points are gradually clustered towards the majority rather than distracting the clustering.

Figure 2: Finetuning w/o Selected Sampling on MNIST in 2d feature space. We plot all testing samples from the two novel
classes for different iterations to visualize the change of feature distributions. Using Selected Sampling to reduce the bias in
mean estimation, feature distributions are more compact within the same class. The overlap between the two classes is much
smaller, with less sample density.

ground-truth class prototypes. For a class c, mean feature
from the support set is used as the class prototypes when
computing the predicted probability (Snell, Swersky, and
Zemel 2017; Qi, Brown, and Lowe 2018; Triantafillou et al.
2019): wc = 1

Ns

∑
x∈Ds

fθ(x). This is the empirical esti-
mation of mean using the support set. We denote the true
mean from the class distribution as mc. We further define
the bias term δc between empirical estimation with its true
value as:

δc = wc −mc (9)
For few-shot learning, as the w is estimated from a small

number of data, δc is indeed not neglectful. As defined in
Eq. 9, wy can be replaced by δy +my . Then the gradient of
feature f is:

∂Li

∂f
= (p(y|x)− 1)δy + (p(y|x)− 1)my +

C∑
j ̸=y

p(j|x)wj

(10)
The optimization of f towards its class prototype wy can

be factorized into two parts: one part (p(y|x) − 1)δy domi-
nated by the bias and the other by the true mean my . Ideally,
features are expected to tightly cluster around m for a re-
fined feature distribution. However, (p(y|x)−1)δy in the gra-
dient distracts the optimization of f by moving it close to the
bias, which hinders its approaching to the true mean. And
this inevitably impedes the optimization for few-shot learn-

ing. As shown in Fig. 2a, points in the support set could be
strayed from a majority in the class distribution. The strayed
points enlarge bias in estimation, and thus during optimiza-
tion, the clustering of the feature distribution is distracted by
the bias.

Augmenting more data is an efficient way to reduce bias.
If more features could be sampled and added to the sequence
of computing the class prototype within one class, effects
caused by the bias will be vastly reduced. However, the fea-
ture distribution is unknown for each class, which disables
the direct sampling from that distribution.

Without inference of actual feature distribution, we pro-
pose the Selected Sampling, which guides the Monte-Carlo
Sampling under a proposal distribution. By taking advan-
tage of each known data in the support set and let these
a few samples guide the direction of a Monte-Carlo Sam-
pling, we directly augment features into the support set. For
each known data point (xi, yi) the corresponding vector in
the feature space is denoted as fi, a proposal distribution
Q(f ′|f) = N (fi,Σ) is used to sample f

′

i . p(y|f) is a de-
terministic variable as the predicted logits from the classi-
fier given a feature f . The sampled points are queried by
the criterion p(yi|f

′

i ) > p(yi|fi) in determination of ac-
ceptance. If accepted, f

′

i becomes the new starting feature
point to run the next sampling step using proposal distribu-
tion N(f ′i , σ

2); if rejected, the sampling process for (xi, yi)
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N(f(0), 𝝈2) f(0)

Reject f’:
P(y|f’)<P(y|f(4)) 

f(1)

f(2)

f(3)

f(4)

f’

Accept f(4):
P(y|f(3))<P(y|f(4)) 

Class 
prototype

Figure 3: Illustration on Selective Sampling. With one fea-
ture f (0) in the support set as an initial point, a new f (1)

is drawn from the proposal distribution N(f (0), σ2); and
once f (1) is accepted, it becomes the next point for an-
other sampling step. The sampling process will be termi-
nated upon seeing one rejected point. The already sampled
points f (1), f (2)...f (n) will be appended to the support sets
for updating the mean estimation.

terminates. We illustrate the sampling process in Fig. 3.
The proposal distribution ensures that samples are drawn

from the vicinity around the known point during the pro-
cess. N (fi,Σ) is a multivariate Gaussian distribution cen-
tered with fi. The covariance matrix Σ is an identity matrix
scaled with a hyper-parameter σ, which allows each loca-
tion on features to be sampled independently. However, the
proposal distribution is only a random walk process which
brings no further constraints on the sampled points. With a
feature f = fθ(x), the acceptance criterion is whether the
sampled feature will have a more significant predicted prob-
ability of belonging to the ground-true class or not, which is
p(yi|f

′

i ) > p(yi|fi):

exp ⟨wk, f
′

i ⟩∑C
j=1 exp ⟨wj , f

′
i ⟩

>
exp ⟨wk, fi⟩∑C
j=1 exp ⟨wj , fi⟩

(11)

The numerator exp ⟨wk, f
′

i ⟩ represents the distance be-
tween a feature with its class prototype, and the denominator∑C

j=1 exp ⟨wj , f
′

i ⟩ represents the overall distance between
a feature with all class prototypes. This criterion indicates
that a sampled point is accepted under the case either closer
to its class prototype or further away from other classes in
the high-dimensional feature space. Either way, the accepted
point is ensured to provide helpful information that avoids
the cons of random walk Sampling. This selected sampling
on the feature space allows exploration of unknown feature
space while still controlling the quality of sampling to opti-
mize. As shown in Fig. 2b, by enlarging the support set with
selected samples, the bias in mean estimation is reduced.
And Selected Sampling is an ongoing process for each itera-
tion that helps to enhance the feature distribution clustering.

Experimental Validations
In this section, we first conduct comprehensive ablation ex-
periments to verify the effectiveness of both DCM and SS
and analyze how our method boosts performance under shot
analysis. Then we compare our results with the other latest

techniques. We follow the same setting and evaluation met-
rics in meta-Baseline (Chen et al. 2020). More specifically,
when training the feature extractors, softmax cross-entropy
loss is applied for learning. For finetuning on the (Meta-)test
set, features and class prototypes are under normalization
for the softmax loss. The temperature in the loss function is
initialized to 10.

We evaluate our method on Meta-Dataset(Triantafillou
et al. 2019), which is so far the most comprehensive bench-
mark for few-shot learning composed of multiple existing
datasets in different domains. The cross-domain property of
meta-Dataset raises the real challenges for few-shot learn-
ing. To strictly verify the feature adaptation ability under
different domains, we follow the evaluation by using the
Imagenet-only training set to pre-train the feature extractor.

Implementation Details
Pre-training the Backbone: Choice of the Network and
Training Setting.

The ILSVRC-2012 (Russakovsky et al. 2015) in Meta-
Dataset is splitted into 712 training, 158 validation and
130 test classes. We use the training set of 712 classes to
train two feature extractors with backbones: ResNet18 and
ResNet34. For ResNet18, we follow the same protocol in
Meta-Baseline (Chen et al. 2020), which is: the images are
randomly resized cropped to 128x128, horizontal flipped
and normalized. For ResNet34, we follow the same struc-
ture modification in (Doersch, Gupta, and Zisserman 2020)
which uses stride 1 and dilated convolution for the last resid-
ual block and the input image size is 224x224. The initial
learning rate is set to 0.1 with 0.0001 weight decay and
decreases by a factor of 0.1 every 30 epochs with total 90
epochs. Both models are trained using the SGD optimizer
with batch size 256.

Setting of Evaluation and Fine-tuning. The general
evaluation on Meta-Dataset utilizes a flexible sampling of
episodes (Triantafillou et al. 2019), which allows a maxi-
mum of 500 images in the support set in one episode. In the
finetuning stage, the scale vector s is initialized with value
1. Data argumentation works as resizing and center cropping
images to 128x128(ResNet18) and 224x224(ResNet34) fol-
lowed by normalization. We follow the setting in (Dhillon
et al. 2019) as described with learning rate of 0.00005, Adam
optimizer and 25 total epochs. σ in the proposal distribution
for sampling is set to 0.1. Finetuning experiments are con-
ducted with whole batch update.

Ablation Studies
We first study the importance of applying DCM during fine-
tuning with the typical class prototype(mean feature from
support set) and then upon applying DCM we add SS to rec-
tify class prototypes. All ablation results are in Table. 1.

DCM enables competitive domain-agnostic fast fea-
ture adaptation for finetuning. There are two functionali-
ties in DCM: feature normalization and the scale vector mul-
tiplication. We first independently evaluate the performance
gain brought by feature normalization(FN) and then also
verify the importance of the scale vector(S) in fast feature
adaptation. Only finetuning the backbone cannot guarantee
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Figure 4: Convergence Curves on Meta-Dataset Standard Benchmark. For every dataset, we plot the average accuracy and loss
over 600 episodes for each epoch during finetuning. The dashed curves represent finetuning backbone and the solid curves are
for finetuning backbone with DCM. For all 10 datasets, finetuning backbone with DCM demonstrates faster speed to reach
good training accuracy and much lower loss values.

B S FN SS ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
58.47 69.80 54.35 76.51 75.47 77.68 44.47 89.10 48.18 56.93

✓ 58.61 77.11 69.87 75.20 76.82 85.86 44.31 91.34 70.56 56.96
✓ ✓ 59.10 77.69 71.84 78.80 76.48 86.00 47.28 92.30 74.43 57.94
✓ ✓ ✓ 59.96 78.70 72.32 78.30 76.96 86.04 47.51 91.95 76.39 57.32
✓ ✓ ✓ ✓ 60.94 80.45 72.93 79.85 77.78 86.7 47.85 92.46 77.88 58.85

Table 1: Ablation studies on DCM and SS using ResNet18. Results are reported using average of 600 episodes. Finetuning with
Backbone(B), scale vector(S), feature normalization(FN) and selected sampling(SS) separately or combined are verified.

the performance improvement over all datasets due to the
different domain gaps, especially for CU-Birds and Fungi as
shown in Table. 1. Among these datasets where finetuning
the backbone is not practically working, the performances
improve by 3.10% on CU-Birds and 3.39% on Fungi by sim-
ply adding feature normalization. And by adding the scale
vector, the performance is further improved over 7 out of
10 datasets. These results indicate that DCM improves the
generalization of finetuning over datasets from different do-
mains. We further plot the training losses and accuracy dur-
ing the finetuning iterations in Figure. 4. The plot shows
that finetuning with DCM owes supreme convergence speed
compared with direct finetuning. The advantage in conver-
gence speed demonstrates the property of fast feature adap-
tation of DCM.

Selected Sampling can consistently improve perfor-
mance over all datasets. With adding selected sampling,
performance on all datasets is improved from 0.34% to
1.75%. And for 6 out of 10 datasets, the performance is
boosted by roughly 1%. Especially for ILSVRC, Birds,
and MSCOCO, the performance gains brought by SS are
the most significant compared with finetuning backbone or
adding DCM with backbone. These datasets are diverse in

objects and cover significant variations within one class. For
example, CU-Birds requires high demands on fine-grained
classification. The performance gain strongly indicates that
using Selected Sampling to rectify class prototypes works
well with features in different domains.

DCM with SS plays an essential role under extreme
few shots. Meanwhile, we further evaluate how DCM+SS
powers finetuning, especially under extreme few shots. As
shown in Figure. 5, by fixing the number of shots in one
episode, we provide the average performance gain by run-
ning 600 episodes for each dataset. Finetuning the backbone
leads to a performance drop with only one or two shots per
class, while DCM+SS can dramatically compensate for the
performance loss. Meanwhile, by only increasing the num-
ber of shots(comparing FT-B performance on 2-shot and
3-shot), finetuning can be improved by a relatively small
range. Adding DCM+SS leads to much more performance
gain simply on 2-shot cases. DCM+SS essentially boosts
performance on a few shots. In all, DCM+SS shows con-
sistent significant performance increases over over extreme
few shot cases.

DCM with SS powers finetuning. From Table. 1,
finetuning improves the performance around 7.31% to
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Method Backbone ILSVRC Omni Acraft Birds DTD QDraw Fungi Flower Sign COCO
fo-Proto-MAML - 49.53 59.98 53.10 68.79 66.56 48.96 39.71 85.27 47.12 41.00(Triantafillou et al. 2019)

CNAPS - 50.60 45.20 36.00 60.7 67.5 42.3 30.1 70.7 53.3 45.2(Requeima et al. 2019)
BOHB-Ensemble - 55.39 77.45 60.85 73.56 72.86 61.16 44.54 90.62 57.53 51.86(Saikia, Brox, and Schmid 2020)

LR ResNet18 60.14 64.92 63.12 77.69 78.59 62.48 47.12 91.60 77.51 57.00(Tian et al. 2020)
Meta-Baseline ResNet18 59.20 69.10 54.10 77.30 76.00 57.30 45.40 89.60 66.20 55.70(Chen et al. 2020)

Transductive-finetuning WRN-28-10 60.53 82.07 72.40 82.05 80.47 57.36 47.72 92.01 64.37 42.86(Dhillon et al. 2019)
CTX-best ResNet34 62.76 82.21 79.49 80.63 75.57 72.68 51.58 95.34 82.65 59.90(Doersch, Gupta, and Zisserman 2020)

Classifier-Baseline ResNet18 58.47 69.80 54.35 76.51 75.47 77.68 44.47 89.10 48.18 56.93
DCM+SS ResNet18 60.94 80.45 72.93 79.85 77.78 86.7 47.85 92.46 77.88 58.85

Classifier-Baseline ResNet34 60.37 72.38 61.19 77.93 75.91 79.76 42.77 89.80 48.56 51.79
DCM+SS ResNet34 64.58 81.77 79.67 84.94 77.89 87.14 49.34 93.24 88.65 57.69

Table 2: Results on Standard Benchmark of Meta-Dataset. We provide the statistical results of over 600 episodes. As shown
above, our method brings consistent performance improvements over all ten datasets compared with recent works. This demon-
strates our proposed bias reduction methods could effectively work for different data domains.
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Figure 5: Performance Gain using Finetuning w/o DCM+SS
under Different Number of Shots. Performance is averaged
over 600 episodes and reported performance gains are aver-
aged over different datasets in Meta-Dataset.

15.52% on several datasets, but performance drops on
Birds and Fungi. DCM+SS with finetuning the backbone
shows consistent performance boosts on all datasets from
1.92%(mscoco) to 29.7%(Traffic sign). We hope this results
encourage further explorations on bias reduction in feature
distribution.

Compare with the State of the Art Performance
We report our results under different backbone models and
provide a comparison over other popular methods in Ta-
ble. 2. Compared with directly using the pre-trained feature
extractor for evaluation, finetuning backbone with DCM+SS
boosts performance significantly over all datasets. The re-
sults are consistent among both backbones. This demon-
strates the effectiveness of directly applying finetuning using

the support set. Comparing the performance on ResNet18
and ResNet34, we first observe that a larger backbone with
a larger input image size gives a better quality of the fea-
ture extractor. Furthermore, our method shows the adapta-
tion ability of the pre-trained feature extractor to new data
domains can even be improved when the feature extractor
itself is more powerful. By a simple testing-time finetuning,
we achieve the State-of-the-Art performance over several
datasets and closely competitive results for all datasets with
ResNet18 and ResNet34. (Tian et al. 2020) only finetunes
a classifier on the testing set, and with the same backbone
ResNet18, our method surpasses its results with a large mar-
gin on most datasets. This addresses the importance of refin-
ing novel-class features for better generalization. For (Doer-
sch, Gupta, and Zisserman 2020) which overpasses our re-
sults on four datasets, besides a pre-trained feature extrac-
tor, a comprehensive meta-training process using seven days
to converge as reported in their work is also utilized. The
ResNet34 feature extractor we use is only trained by super-
vised classification loss using the training set. Meanwhile,
our method is computationally efficient as we barely involve
any network structure change(only one DCM layer with a
scale vector). The sampling is conducted in an efficient full
batch style. (Dhillon et al. 2019) includes extra query set
during transductive finetuning, which leads to a better result
on DTD. While our finetuning is only using the support set.
And we surpass the results on the other nine datasets and
have a consistent performance gain on DTD.

Conclusion
We show in our experiments that without any meta-training
process, the fast feature adaptation can also be achieved by
better understanding biases in feature distribution for few-
shot learning. We hope our work could provide insight into
the importance of bias reduction in distribution when deal-
ing with datasets from different domains for few-shot learn-
ing.
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