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Abstract

Adversarial training (AT) is currently one of the most success-
ful methods to obtain the adversarial robustness of deep neural
networks. However, the phenomenon of robust overfitting, i.e.,
the robustness starts to decrease significantly during AT, has
been problematic, not only making practitioners consider a
bag of tricks for a successful training, e.g., early stopping,
but also incurring a significant generalization gap in the ro-
bustness. In this paper, we propose an effective regularization
technique that prevents robust overfitting by optimizing an
auxiliary ‘consistency’ regularization loss during AT. Specifi-
cally, we discover that data augmentation is a quite effective
tool to mitigate the overfitting in AT, and develop a regular-
ization that forces the predictive distributions after attacking
from two different augmentations of the same instance to be
similar with each other. Our experimental results demonstrate
that such a simple regularization technique brings significant
improvements in the test robust accuracy of a wide range of
AT methods. More remarkably, we also show that our method
could significantly help the model to generalize its robustness
against unseen adversaries, e.g., other types or larger perturba-
tions compared to those used during training. Code is available
at https://github.com/alinlab/consistency-adversarial.

Introduction
Despite the remarkable success of deep neural networks
(DNNs) in real-world applications (He et al. 2016a; Girshick
2015; Amodei et al. 2016), recent studies have demonstrated
that DNNs are vulnerable to adversarial examples, i.e., inputs
crafted by an imperceptible perturbation which confuse the
network prediction (Szegedy et al. 2014; Goodfellow, Shlens,
and Szegedy 2015). This vulnerability of DNNs raises serious
security concerns about their deployment in the real-world
applications (Kurakin, Goodfellow, and Bengio 2016; Li,
Schmidt, and Kolter 2019), e.g., self-driving cars and secure
authentication system (Chen et al. 2015).

In this respect, there have been significant efforts to design
various defense techniques against the adversarial examples,
including input denoising (Guo et al. 2018; Liao et al. 2018),
detection techniques (Ma et al. 2018; Lee et al. 2018), and
certificating the robustness of a classifier (Cohen, Rosenfeld,
and Kolter 2019; Jeong and Shin 2020). Overall, adversarial
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(a) Conventional CR (b) Proposed CR

Figure 1: An overview of our consistency regularization (CR)
and conventional approach (Hendrycks et al. 2020; Xie et al.
2020). Our regularization forces the predictive distribution of
attacked augmentations to be consistent. T and δ indicates
the randomly sampled augmentation, and the corresponding
adversarial noise, respectively.

training (AT) is currently one of the most promising ways
to obtain the adversarial robustness of DNNs, i.e., directly
augmenting the training set with adversarial examples (Good-
fellow, Shlens, and Szegedy 2015; Madry et al. 2018). Recent
studies have been actively investigating a better form of AT
(Qin et al. 2019; Zhang et al. 2019; Wang et al. 2020).

One of the major downsides that most AT methods suffer
from, however, is a significant generalization gap of adver-
sarial robustness between the train and test datasets (Yang
et al. 2020), possibly due to an increased sample complexity
induced by the non-convex, minimax nature of AT (Schmidt
et al. 2018). More importantly, it has been observed that such
a gap gradually increases from the middle of training (Rice,
Wong, and Kolter 2020), i.e., overfitting, which makes prac-
titioners to consider several heuristic approaches for a suc-
cessful optimization e.g., early stopping (Zhang et al. 2019).
Only recently, a few proposed more advanced regularization
techniques, e.g., self-training (Chen et al. 2021)1 and weight
perturbation (Wu, Xia, and Wang 2020), but it is still largely
unknown to the community that why and how only such so-
phisticated training schemes could be effective to prevent the
robust overfitting of AT.

Contribution. In this paper, we suggest to optimize an

1We do not consider comparing with the method by Chen et al.
(2021) as they require pre-training additional models.
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auxiliary ‘consistency’ regularization loss, as a simpler and
easy-to-use alternative for regularizing AT. To this end, we
first found that the existing data augmentation (DA) schemes
are already quite effective to reduce the robust overfitting
in AT. Yet, it is contrast to the recent studies (Rice, Wong,
and Kolter 2020; Gowal et al. 2020) which reported DA does
not help for AT. Our new finding is that considering more
diverse set of augmentations than the current conventional
practice can prevent the robust overfitting: we use AutoAug-
ment (Cubuk et al. 2019) which is an effective augmentation
for standard cross-entropy training.

Upon the observation, we claim that the way of incorpo-
rating such augmentations could play a significant role in AT.
Specifically, we suggest to optimize an auxiliary consistency
regularization loss during AT: it forces adversarial examples
from two independent augmentations of the same input to
have similar predictions. Here, we remark that forcing the
prediction consistency over ‘clean’ DA is widely used for
many purposes (Zhang et al. 2020; Hendrycks et al. 2020),
however, it looks highly non-trivial at first glance whether
matching such attack directions over DA is useful in any
sense. Our finding is that the attack direction provides intrin-
sic information of the sample (other than its label), where the
most frequently attacked class is the most confusing class
of the ‘clean’ input, i.e., class with the maximum softmax
probability disregarding the true label. The proposed regu-
larization loss injects a strong inductive bias to the model
that such ‘dark’ knowledge (Hinton, Vinyals, and Dean 2015)
over DA should be consistent. Our regularization technique
is easy to apply to any existing AT methods (Madry et al.
2018; Zhang et al. 2019; Wang et al. 2020), yet effectively
improves the performance.

We verify the efficacy of our scheme through extensive
evaluations on CIFAR-10/100 (Krizhevsky and Hinton 2009)
and Tiny-ImageNet.2 Overall, our experimental results show
that the proposed regularization can be easily adapted for a
wide range of AT methods to prevent overfitting in robustness.
For example, our regularization could improve the robust ac-
curacy of WideResNet (Zagoruyko and Komodakis 2016)
trained via standard AT (Madry et al. 2018) on CIFAR-10
from 45.62%→52.36%. Moreover, we show that our regular-
ization could even notably improve the robustness against un-
foreseen adversaries (Tramer and Boneh 2019), i.e., when the
adversaries assume different threat models from those used
in training: e.g., our method could improve the l1-robustness
of TRADES (Zhang et al. 2019) from 29.58%→48.32% on
PreAct-ResNet (He et al. 2016b). Finally, we also observe
that our method could be even beneficial for the corruption
robustness (Hendrycks and Dietterich 2019).

Consistency Regularization for
Adversarial Robustness

In this section, we introduce a simple yet effective strategy
for preventing the robust overfitting in adversarial training
(AT). We first review the concept of AT and introduce one of
popular AT methods in Section . We then start in Section by
showing that the data augmentations can effectively prevent

2https://tiny-imagenet.herokuapp.com/

the robustness overfitting. Finally, in Section , we propose
a simple yet effective consistency regularization to further
utilize the given data augmentations in AT.

Preliminaries: Adversarial Training
We consider a classification task with a given K-class dataset
D = {(xi, yi)}ni=1 ⊆ X × Y , where x ∈ Rd represents an
input sampled from a certain data-generating distribution P
in an i.i.d. manner, and Y := {1, . . . ,K} represents a set of
possible class labels. Let fθ : Rd → ∆K−1 be a neural net-
work modeled to output a probability simplex ∆K−1 ∈ RK ,
e.g., via a softmax layer. The notion of adversarial robustness
requires fθ to perform well not only on P , but also on the
worst-case distribution near P under a certain distance met-
ric. More concretely, the adversarial robustness we primarily
focus in this paper is the ℓp-robustness: i.e., for a given p ≥ 1
and a small ϵ > 0, we aim to train a classifier fθ that correctly
classifies (x+ δ, y) for any ∥δ∥p ≤ ϵ, where (x, y) ∼ P .

The high level idea of adversarial training (AT) is to di-
rectly incorporate adversarial examples to train the classifier
(Goodfellow, Shlens, and Szegedy 2015), hence the network
becomes robust to such adversaries. In general, AT methods
formalize the training of fθ as an alternative min-max opti-
mization with respect to θ and ||δ||p ≤ ϵ, respectively; i.e.,
one minimizes a certain classification loss L with respect to
θ while an adversary maximizes L by perturbing the given
input to x+ δ during training. Here, for a given L, we denote
the inner maximization procedure of AT as Ladv(x, y; θ):

Ladv(x, y; θ) := max
∥δ∥p≤ϵ

L
(
x+ δ, y; θ

)
. (1)

For example, one of most basic form of AT method (Madry
et al. 2018) considers to design Ladv with the standard cross-
entropy loss LCE (we also provide an overview on other types
of AT objective such as TRADES (Zhang et al. 2019) and
MART (Wang et al. 2020), in the supplementary material):

LAT := max
∥δ∥p≤ϵ

LCE

(
fθ(x+ δ), y

)
. (2)

Effect of Data Augmentations in Adversarial
Training
Now, we investigate the utility of data augmentations in AT.
We first show that current standard choices of augmentation
in AT are already somewhat useful for relaxing the robust
overfitting, where considering more diverse augmentations is
even more effective. Throughout this section, we train PreAct-
ResNet-18 (He et al. 2016b) on CIFAR-10 (Krizhevsky and
Hinton 2009) using standard AT (Madry et al. 2018), follow-
ing the training details of Rice, Wong, and Kolter (2020). We
use projected gradient descent (PGD) with 10 iterations under
ϵ = 8/255 (step size of 2/255) with l∞ constraint to perform
adversarial attacks for both training and evaluation. Formally,
for a given training sample (x, y) ∼ D, and augmentation
T ∼ T , the training loss is:

max
||δ||∞≤ϵ

LCE(fθ(T (x) + δ), y). (3)

Unless otherwise specified, we assume the set of baseline
augmentations T := Tbase (i.e., random crop with 4 pixels
zero padding and horizontal flip) by default for this section.
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(a) Conventional augmentations (b) Additional augmentations

Figure 2: Robust accuracy (%) against PGD-10 attack on standard AT (Madry et al. 2018) under (a) conventional augmentations,
and (b) additional augmentations to the convention. We consider PreAct-ResNet-18 trained on CIFAR-10. We use l∞ threat
model with ϵ = 8/255. None, HFlip, and Crop, indicates no augmentation, horizontal flip, and random crop, respectively. Note
that the AutoAugment (Cubuk et al. 2019) includes horizontal flip, random crop and Cutout (DeVries and Taylor 2017). The
jump in robust accuracy at 100, 150 epochs is due to a drop in the learning rate.

Role of base augmentations in adversarial training. We
recognize the set of base augmentations Tbase has been com-
monly used in most existing AT methods, and observe these
augmentations are already somewhat useful for relaxing the
robust overfitting in AT. To this end, we conduct a controlled
experiment by removing each augmentation from the pre-
defined augmentation set Tbase and train the network. Figure
2a summarizes the result of the experiment. As each aug-
mentation is removed, not only the robustness degrades, but
also the adversarial overfitting is getting significant. This
phenomenon stands out more when no augmentations are
applied during AT, which only shows the increment of robust
accuracy at the first 5% of the whole training procedure. This
result implies that there may exist an augmentation family
that effectively prevents the robust overfitting as the base
augmentation is already useful.

Reducing robust overfitting with data augmentations.
We further find that the existing data augmentation schemes
are already quite effective to reduce the robust overfitting
in AT. Specifically, we utilize AutoAugment (Cubuk et al.
2019) which is the state-of-the-arts augmentation scheme for
the standard cross-entropy training. As shown in Figure 2b,
the robust overfitting is gradually reduced as more diverse
augmentations are used, and even the best accuracy improves.
Note that AutoAugment is more diverse than the conventional
augmentations as it includes the Tbase and Cutout (DeVries
and Taylor 2017). Interestingly, our empirical finding some-
what shows a different conclusion from the previous studies
(Gowal et al. 2020) which conclude that data augmentations
are not effective for preventing the robust overfitting. We
further discuss a detailed analysis of data augmentations in
the supplementary material.

Consistency Regularization for Adversarial
Training
We suggest to optimize a simple auxiliary consistency regu-
larization during AT to further utilize the given data augmen-
tations. Specifically, our regularization forces adversarial ex-
amples from two independent augmentations of an instance

to have a similar prediction (see Figure 1). However, it is
highly non-trivial whether matching such attack directions
via consistency regularization is useful, which we essentially
investigate in this paper. Our major finding is that the attack
direction itself contains intrinsic information of the instance,
as in Section . For example, the most frequently attacked
class is the most confusing class of the ‘clean’ input, i.e.,
class with the maximum softmax probability disregarding the
true label. Hence, our regularization utilize this dark knowl-
edge (other than the true labels) of samples and induce a
strong inductive bias to the classifier.

Formally, for a given data point (x, y) ∼ D and augmen-
tations T1, T2 ∼ T , we denote δi as an adversarial noise of
Ti(x), i.e., δi := argmax∥δ∥p≤ϵ L

(
Ti(x), y, δ; θ

)
. We con-

sider regularizing the temperature-scaled distribution f̂θ(x; τ)
(Guo et al. 2017) over the adversarial examples across aug-
mentations to be consistent, where τ is the temperature hy-
perparameter. Concretely, temperature-scaled classifier is
f̂θ(x; τ) = Softmax(zθ(x)/τ) where zθ(x) is the logit value
of fθ(x), i.e., activation before the softmax layer of fθ(x).
Then the proposed regularization loss is given by:

JS
(
f̂θ
(
T1(x) + δ1; τ

)
∥ f̂θ

(
T2(x) + δ2; τ

))
, (4)

where JS(· ∥ ·) denotes the Jensen-Shannon divergence.
Since the augmentations are randomly sampled in every train-
ing step, adversarial example’s predictions become consistent
regardless of augmentation selection when minimizing the
proposed objective. We note that the motivation behind the
temperature scaling is that the confidence of prediction (i.e.,
maximum softmax value) is relatively low on AT than the
standard training. Hence, we compensate this issue by enforc-
ing the sharp distribution by using a small temperature.

Comparison to other consistency regularization loss
over DA. There has been prior works that suggested a con-
sistency regularization loss to better utilize DA (Hendrycks
et al. 2020; Zhang et al. 2020; Sohn et al. 2020), which can
be expressed with the following form:

D
(
fθ
(
T1(x)

)
, fθ

(
T2(x)

))
, (5)
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Loss Clean PGD-100

AT (3) 85.41 55.18
AT (3) + previous CR (5) 88.01 53.11
AT (3) + proposed CR (4) 86.45 56.38

Table 1: Comparison of the consistency regularization (CR)
loss. We report clean accuracy and robust accuracy (%)
against PGD-100 attack of PreAct-ResNet-18 trained on
CIFAR-10. We use l∞ threat model with ϵ = 8/255.

where D is a discrepancy function. The regularization term
used in (5) has a seemingly similar formula to ours but there is
a fundamental difference: our method (4) does not match the
predictions directly for the ‘clean’ augmented samples, but
does after attacking them independently, i.e., fθ(T (x) + δ).
To examine which one is better, we compare (4) with (5)
under the same discrepancy function, D := JS and same aug-
mentation family, i.e., AutoAugment. As shown in Table 1,
our design choice (4) improves both clean and robust accu-
racy compare to the baseline (3), while the prior consistency
regularization (5) shows significant degradation on the robust
accuracy. We additionally try to attack only single augmented
instance in (5), where it also shows degradation in the robust
accuracy, e.g., 53.20% against PGD-100 (such regularization
is used in unsupervised AT (Kim, Tack, and Hwang 2020)).

Overall training objective. In the end, we derive a final
training objective, Ltotal: an AT objective combined with the
consistency regularization loss (4). To do so, we consider the
average of inner maximization objective on AT Ladv (1) over
two independent augmentations T1, T2 ∼ T , as minimizing
(1) over the augmentations T ∼ T is equivalent to an average
of (1) over T1 and T2:

1

2

(
Ladv

(
T1(x), y; θ

)
+ Ladv

(
T2(x), y; θ

))
. (6)

We then combine our regularizer (4) with a given hyperpa-
rameter λ, into the average of inner maximization objectives
(6). Then the final training objective Ltotal is as follows:

Ltotal :=
1

2

2∑
i=1

Ladv

(
Ti(x), y; θ

)
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
∥ f̂θ

(
T2(x) + δ2; τ

))
.

Note that our regularization scheme is agnostic to the choice
of AT objective, hence, can be easily incorporated into well-
known AT methods (Madry et al. 2018; Zhang et al. 2019;
Wang et al. 2020). For example, considering standard AT loss
(Madry et al. 2018) as the AT objective, i.e., Ladv = LAT (2),
the final objective becomes:

Ltotal =
1

2

2∑
i=1

max
∥δi∥p≤ϵ

LCE

(
fθ(Ti(x) + δi), y

)
+ λ · JS

(
f̂θ
(
T1(x) + δ1; τ

)
∥ f̂θ

(
T2(x) + δ2; τ

))
.

We introduce explicit forms of other variants of final ob-
jective Ltotal for other AT methods, e.g., TRADES (Zhang
et al. 2019) and MART (Wang et al. 2020), integrated with
our regularization loss, in the supplementary material.

Experiments
We verify the effectiveness of our technique on image clas-
sification datasets: CIFAR-10/100 (Krizhevsky and Hinton
2009) and Tiny-ImageNet. Our results exhibit that incor-
porating simple consistency regularization scheme into the
existing adversarial training (AT) methods significantly im-
prove adversarial robustness against various attacks (Carlini
and Wagner 2017; Madry et al. 2018; Croce and Hein 2020b),
including data corruption (Hendrycks and Dietterich 2019).
Intriguingly, our method shows better robustness against un-
seen adversaries compared to other baselines. Moreover, our
method surpass the performance of the recent regularization
technique (Wu, Xia, and Wang 2020). Finally, we perform an
ablation study to validate each component of our approach.

Experimental Setups
Training details. We use PreAct-ResNet-18 (He et al.
2016b) architecture in all experiments, and additionally use
WideResNet-34-10 (Zagoruyko and Komodakis 2016) for
white-box adversarial defense on CIFAR-10. For the data aug-
mentation, we consider AutoAugment (Cubuk et al. 2019)
where random crop (with 4 pixels zero padding), random hor-
izontal flip (with 50% of probability), and Cutout (DeVries
and Taylor 2017) (with half of the input width) are included.
We set the regularization parameter λ = 1.0 in all cases ex-
cept for applying on WideResNet-34-10 with TRADES and
MART where we use λ = 2.0. The temperature is fixed to
τ = 0.5 in all experiments.

For other training setups, we mainly follow the hyperpa-
rameters suggested by the previous studies (Pang et al. 2021;
Rice, Wong, and Kolter 2020). In detail, we train the network
for 200 epochs3 using stochastic gradient descent with mo-
mentum 0.9, and weight decay of 0.0005. The learning rate
starts at 0.1 and is dropped by a factor of 10 at 50%, and 75%
of the training progress. For the inner maximization for all
AT, we set the ϵ = 8/255, step size 2/255, and 10 number of
steps with l∞ constraint (see the supplementary material for
the l2 constraint AT results).

Throughout the section, we mainly report the results where
the clean accuracy converges, i.e., fully trained model, to
focus on the robust overfitting problem (Rice, Wong, and
Kolter 2020). Nevertheless, we also note that our regulariza-
tion method achieves better best robust accuracy compare to
the AT methods (see Table 2).

Main Results
White-box attack. We consider a wide range of white-box
adversarial attacks, in order to extensively measure the robust-
ness of trained models without gradient obfuscation (Athalye,
Carlini, and Wagner 2018): PGD (Madry et al. 2018) with
20 and 100 iterations (step size with 2ϵ/k, where k is the
iteration number), CW∞ (Carlini and Wagner 2017), and
AutoAttack (Croce and Hein 2020b).4 We report the fully

3Our method maintains almost the same robust accuracy under
the same computational budget to the baselines: reduce the training
steps in half. See the supplementary material for more discussion.

4We regard AutoAttack as a white-box attack, while it both
includes white-box and black-box attacks. See the supplementary
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Dataset
(Architecture) Method Clean PGD-20 PGD-100 CW∞ AutoAttack

CIFAR-10
(PreAct-ResNet-18)

Standard (Madry et al. 2018) 84.57 (83.43) 45.04 (52.82) 44.86 (52.67) 44.31 (50.66) 40.43 (47.63)
+ Consistency 86.45 (85.25) 56.51 (57.53) 56.38 (57.39) 52.45 (52.70) 48.57 (49.05)

TRADES (Zhang et al. 2019) 82.87 (82.13) 50.95 (53.98) 50.83 (53.85) 49.30 (51.71) 46.32 (49.32)
+ Consistency 83.63 (83.55) 55.00 (55.16) 54.89 (54.98) 49.91 (50.67) 47.68 (49.01)

MART (Wang et al. 2020) 82.63 (77.00) 51.12 (54.83) 50.91 (54.74) 46.92 (49.26) 43.46 (46.74)
+ Consistency 83.43 (81.89) 59.59 (60.48) 59.52 (60.47) 51.78 (51.83) 48.91 (48.95)

CIFAR-10
(WideResNet-34-10)

Standard (Madry et al. 2018) 86.37 (87.55) 50.16 (55.86) 49.80 (55.65) 49.25 (54.45) 45.62 (51.24)
+ Consistency 89.82 (89.93) 58.63 (61.11) 58.41 (60.99) 56.38 (57.80) 52.36 (54.08)

TRADES (Zhang et al. 2019) 85.05 (84.30) 51.20 (57.34) 50.89 (57.20) 50.88 (55.08) 46.17 (53.02)
+ Consistency 87.71 (87.92) 58.39 (59.12) 58.19 (58.99) 54.84 (55.97) 51.94 (53.11)

MART (Wang et al. 2020) 85.75 (83.98) 49.31 (57.28) 49.06 (57.22) 48.05 (53.21) 44.96 (50.62)
+ Consistency 87.17 (85.81) 63.26 (64.95) 62.81 (64.80) 57.46 (56.24) 52.41 (53.33)

CIFAR-100
(PreAct-ResNet-18)

Standard (Madry et al. 2018) 57.13 (57.10) 22.36 (29.67) 22.25 (29.65) 21.97 (27.99) 19.85 (25.38)
+ Consistency 62.73 (61.62) 30.75 (32.33) 30.62 (32.24) 27.63 (28.39) 24.55 (25.52)

Tiny-ImageNet
(PreAct-ResNet-18)

Standard (Madry et al. 2018) 41.54 (45.26) 11.71 (20.92) 11.60 (20.87) 11.20 (18.72) 9.63 (16.03)
+ Consistency 50.15 (49.46) 21.33 (23.31) 21.24 (23.24) 19.08 (20.29) 15.69 (16.90)

Table 2: Clean accuracy and robust accuracy (%) against white-box attacks of networks trained on various image classification
benchmark datasets. All threat models are l∞ with ϵ = 8/255. Values in parenthesis denote the result of the checkpoint with the
best PGD-10 accuracy, where each checkpoint is saved per epoch. We compare with the baselines trained under random crop and
flip. The bold indicates the improved results by our proposed loss.

trained model’s accuracy and the result of the checkpoint
with the best PGD accuracy (of 10 iterations), where each
checkpoint is saved per epoch.

As shown in Table 2, incorporating our regularization
scheme into existing AT methods consistently improves both
best and last white-box accuracies against various adversaries
across different models and datasets. The results also demon-
strates that our method effectively prevents robust overfitting
as the gap between the best and last accuracies has been sig-
nificantly reduced in all cases. In particular, for TRADES
with WideResNet-34-10, our method’s robust accuracy gap
under AutoAttack is only 1.17%, while the baseline’s gap is
6.85%, which is relatively 6 times smaller. More intriguingly,
consideration of our regularization technique into the AT
methods boosts the clean accuracy as well in all cases. We
notice that such improvement is non-trivial, as some works
have reported a trade-off between a clean and robust accura-
cies in AT (Tsipras et al. 2019; Zhang et al. 2019).

Unseen adversaries. We also evaluate our method against
unforeseen adversaries, e.g., robustness on different attack
radii of ϵ, or even on different norm constraints of l2 and
l1, as reported in Table 3. We observe that combining our
regularization method could consistently and significantly
improve the robustness against all the considered unseen ad-
versaries tested. It is remarkable that our method is especially
effective against l1 adversaries compared to the baselines,
regarding the fundamental difficulty of achieving the mu-
tual robustness against both l1 and l∞ attacks (Tramer and
Boneh 2019; Croce and Hein 2020a). Hence, we believe our

material for black-box transfer attack results. We use the official
code for the AutoAttack: https://github.com/fra31/auto-attack.

regularization scheme can also be adapted to AT methods
for training robust classifiers against multiple perturbations
(Tramer and Boneh 2019; Maini, Wong, and Kolter 2020).

Common corruption. We also validate the effectiveness
of our method on corrupted CIFAR-10 dataset (Hendrycks
and Dietterich 2019), i.e., consist of 19 types of corruption
such as snow, zoom blur. We report the mean corruption error
(mCE) of each model in Table 4. The results show that the
mCE consistently improves combined with our regularization
loss regardless of AT methods. Interestingly, our method even
reduces the error (from the standard cross-entropy training)
of corruptions that are not related to the applied augmenta-
tion or noise, e.g., zoom blur error 25.8%→19.8%. We note
that common corruption is also important and practical de-
fense scenario (Hendrycks and Dietterich 2019), therefore,
obtaining such robustness should be a desirable property for
a robust classifier.

Comparison with Wu, Xia, and Wang (2020)
In this section, we consider a comparison with Adversar-
ial weight perturbation (AWP) (Wu, Xia, and Wang 2020)5,
another recent work which also addresses the overfitting prob-
lem of AT by regularizing the flatness of the loss landscape
with respect to weights via an adversarial perturbation on
both input and weights. We present two experimental scenar-
ios showing that our method can work better than AWP.

White-box attack and unseen adversaries. We consider
various white-box attacks and unseen adversaries for measur-
ing the robustness. As shown in Table 5, our method shows
better results than AWP in l∞ defense in most cases, and

5We use the official code: https://github.com/csdongxian/AWP
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l∞ l2 l1

Dataset Method \ ϵ 4/255 16/255 150/255 300/255 2000/255 4000/255

CIFAR-10

Standard (Madry et al. 2018) 65.93 19.23 52.56 25.68 45.96 36.85
+ Consistency 73.74 23.47 65.81 36.87 58.66 50.79

TRADES (Zhang et al. 2019) 68.30 24.17 56.14 28.94 44.08 29.58
+ Consistency 70.33 26.52 63.70 39.16 56.48 48.32

MART (Wang et al. 2020) 67.76 23.36 57.17 30.98 46.61 34.63
+ Consistency 72.67 30.31 66.17 43.76 60.57 54.19

CIFAR-100 Standard (Madry et al. 2018) 36.14 7.37 27.97 11.98 30.48 27.29
+ Consistency 46.11 11.53 39.77 20.69 36.04 32.75

Tiny-ImageNet Standard (Madry et al. 2018) 23.23 2.69 28.05 17.80 33.30 31.55
+ Consistency 34.18 5.74 40.06 30.62 43.90 42.65

Table 3: Robust accuracy (%) of PreAct-ResNet-18 trained with l∞ of ϵ = 8/255 constraint against unseen attacks. For unseen
attacks, we use PGD-100 under different sized l∞ balls, and other types of norm ball, e.g., l1, l2. We compare with the baselines
trained under random crop and flip. The bold indicates the improved results by the proposed method.

Method mCE ↓
Standard cross-entropy 27.02

Standard (Madry et al. 2018) 24.03
+ Consistency 21.83

TRADES (Zhang et al. 2019) 25.50
+ Consistency 23.95

MART (Wang et al. 2020) 26.20
+ Consistency 24.41

Table 4: Mean corruption error (mCE) (%) of PreAct-ResNet-
18 trained on CIFAR-10, and tested with CIFAR-10-C dataset
(Hendrycks and Dietterich 2019). The arrow on the right side
of the evaluation metric indicates the descending order of the
value is better. We compare with the baselines trained under
random crop and flip. The bold indicates the improved results
by the proposed method.

outperforms in all cases of unseen adversaries defense, e.g.,
l2, l1 constraint attack. In particular, our regularization tech-
nique consistently surpass AWP in the defense against the
l1 constraint attack. In addition, our method shows consis-
tent improvement in clean accuracy, while AWP somewhat
suffers from the trade-off between clean and robust accuracy.

Training with limited data. We also demonstrate that
our method is data-efficient: when only a small number of
training points are accessible for training the classifier. To
this end, we reduce the training dataset’s fraction to 10%,
20%, and 50% and train the classifier in each situation. As
shown in Figure 3, our method shows better results compare
to AWP, especially learning from the small sized dataset, as
our method efficiently incorporates the rice space of data
augmentations. In particular, our method obtained 41.2%
robust accuracy even in the case when only 10% of the total
dataset is accessible (where AWP achieves 34.7%). We note
such efficiency is worthy for practitioners, since in such cases,
validation dataset for early stopping is insufficient.

Figure 3: Clean accuracy and robust accuracy (%) against
PGD-100 attack of l∞ with ϵ = 8/255, under different frac-
tion (%) of CIFAR-10. We train PreAct-ResNet-18 with AWP
(Wu, Xia, and Wang 2020) and consistency regularization
loss based on standard AT (Madry et al. 2018).

Ablation Study
We perform an ablation study on each of the components in
our method. Throughout the section, we apply our method to
the standard AT (Madry et al. 2018) and use PGD with 100
iterations for the evaluation. We also provide more analysis
on the temperature hyperparameter and design choice of
consistency regularization in the supplementary material.

Component analysis. We perform an analysis on each
component of our method, namely the use of (a) data aug-
mentations, and (b) the consistency regularization loss, by
comparing their robust accuracy and mean corruption error
(mCE). The results in Table 6 demonstrate each component
is indeed effective, as the performance improves step by step
with the addition of the component. We note that the proposed
regularization method could not only improve the robust ac-
curacy but also significantly improve the mCE. As shown in
Figure 4, simply applying augmentation to the standard AT
can reduce the error in many cases (13 types out of 19 corrup-
tions) and even reduce the error of corruptions that are not
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l∞ (Seen) l2 (Unseen) l1 (Unseen)

Dataset Method Clean PGD-100
(8/255)

CW∞
(8/255)

AutoAttack
(8/255)

PGD-100
(150/255)

PGD-100
(300/255)

PGD-100
(2000/255)

PGD-100
(4000/255)

CIFAR-10
Standard (Madry et al. 2018) 84.57 44.86 44.31 40.43 52.56 25.68 45.96 36.85
+ AWP (Wu, Xia, and Wang 2020) 80.34 55.39 52.31 49.60 61.39 36.05 56.30 48.37
+ Consistency 86.45 56.38 52.45 48.57 65.81 36.87 58.66 50.79

CIFAR-100
Standard (Madry et al. 2018) 56.96 20.86 21.20 18.93 27.65 11.08 26.49 21.48
+ AWP (Wu, Xia, and Wang 2020) 52.91 30.06 26.42 24.32 35.71 20.18 33.63 30.38
+ Consistency 62.73 30.62 27.63 24.55 39.77 20.69 36.04 32.75

Tiny-ImageNet
Standard (Madry et al. 2018) 41.54 11.60 11.20 9.63 28.05 17.80 33.30 31.55
+ AWP (Wu, Xia, and Wang 2020) 40.25 20.64 18.05 15.26 33.31 26.86 35.48 34.22
+ Consistency 50.15 21.24 19.08 15.69 40.06 30.62 43.90 42.65

Table 5: Clean accuracy and robust accuracy (%) against diverse attacks of each individual, and combined regularization. The
numbers below the attack methods, indicate the radius of the perturbation ϵ. All results are reported on PreAct-ResNet-18 trained
under various image classification benchmark datasets. The bold indicates the best results.

Figure 4: Classification error (%) on each corruption type of CIFAR-10-C (Hendrycks and Dietterich 2019) where the x-axis
labels denote the corruption type. Reported values are measured on PreAct-ResNet-18 trained under standard AT (Madry et al.
2018), standard AT with AutoAugment (Cubuk et al. 2019), standard AT with consistency regularization, respectively.

Method PGD-100 mCE ↓
Standard (Madry et al. 2018) 44.86 24.03
+ Cutout (DeVries and Taylor 2017) 49.95 24.05
+ AutoAugment (Cubuk et al. 2019) 55.18 23.38
+ Consistency 56.38 22.06

Table 6: Ablation study on each component of our proposed
training objective. Reported values are the robust accuracy
(%) against PGD-100 attack of l∞ with ϵ = 8/255, and
mean corruption error (mCE) (%) of PreAct-ResNet-18 under
CIFAR-10. The bold indicates the best result.

related to the applied augmentation (e.g., motion blur, zoom
blur). More interestingly, further adapting the consistency
regularization loss can reduce the corruption error in all cases
from the standard AT with augmentation. It suggests that the
consistency prior is indeed a desirable property for classifiers
to obtain robustness (for both adversarial and corruption).

Analysis on attack directions. To analyze the effect of
our regularization scheme, we observe the attacked directions

of the adversarial examples. We find that the most confus-
ing class of the ‘clean’ input, is highly like to be attacked.
Formally, we define the most confusing class of the given
sample (x, y) as argmaxk ̸=y f

(k)
θ (x) where f

(k)
θ is the soft-

max probability of class k. We observe that 77.45% out
of the misclassified adversarial examples predicts the most
confusing class. This result implies that the attack direction
itself contains the dark knowledge of the given input (Hinton,
Vinyals, and Dean 2015), which supports our intuition to
match the attack direction.

Conclusion

In this paper, we propose a simple yet effective regulariza-
tion technique to tackle the robust overfitting in adversarial
training (AT). Our regularization forces the predictive dis-
tributions after attacking from two different augmentations
of the same input to be similar to each other. Our experi-
mental results demonstrate that the proposed regularization
brings significant improvement in various defense scenarios
including unseen adversaries.
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