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Abstract

Models in the supervised learning framework may capture rich
and complex representations over the features that are hard for
humans to interpret. Existing methods to explain such models
are often specific to architectures and data where the features
do not have a time-varying component. In this work, we pro-
pose TIME, a method to explain models that are inherently
temporal in nature. Our approach (i) uses a model-agnostic
permutation-based approach to analyze global feature impor-
tance, (ii) identifies the importance of salient features with
respect to their temporal ordering as well as localized win-
dows of influence, and (iii) uses hypothesis testing to provide
statistical rigor.

Introduction
The last decade has seen an explosion in models that learn
rich representations over large, complex parameter spaces.
These have increasingly been applied in domains with a high
degree of social impact, such as healthcare, but this very
complexity makes them black-boxes whose decision-making
is hard to explain, a critical deficit in many such domains.
There has thus been a concomitant rise in methods to generate
explanations for black-box models. Existing research has
largely focused on explaining models trained over tabular
data, where each feature takes a single value per instance,
instead of explaining temporal models, where the instances
consist of sequences or time series. In this work, we present a
method that advances the state of the art in model explanation
by being specifically focused on temporal models, being
model-agnostic, and providing global explanations.

Most existing explanation methods are designed for tabular,
as opposed to temporal, representations. Ismail et al. (2020)
demonstrate the unreliability and inaccuracy of commonly
used model-agnostic and gradient-based methods when used
to explain temporal models. Some approaches have focused
on interpreting recurrent neural networks (Karpathy, Johnson,
and Fei-Fei 2015; Suresh et al. 2017; Ismail et al. 2019) and
attention-based models (Choi et al. 2016; Zhang et al. 2019),
while others have explored methods to encourage temporal
models during training to be more interpretable using tree
regularization (Wu et al. 2017) and game-theoretic charac-
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terizations (Lee, Alvarez-Melis, and Jaakkola 2018). How-
ever, these approaches require specific model architectures
or training-time alterations, limiting their applicability.

Model-agnostic methods such as LIME (Ribeiro, Singh,
and Guestrin 2016) and SHAP (Lundberg and Lee 2017)
avoid this limitation by treating models as black-boxes but
are designed for tabular representations. Recent work has
begun to address model-agnostic explanation for temporal
models. Tonekaboni et al. (2020) propose FIT, a method
to assign importance scores for sequence-sequence models,
and Bento et al. (2020) propose TimeSHAP, an extension
of SHAP to temporal models. Importantly, all these meth-
ods focus on local interpretability, which seeks to explain
individual predictions in terms of their important features,
rather than global interpretability, which seeks to characterize
a model’s decisions across a population of instances.

Whereas most work in explanation methods has focused on
local explanations, we focus on global explanations because
they are important for clinical and many scientific domains.
In clinical domains, it is important to provide an overall de-
scription of what a model does before it is deployed, not just
be able to explain individual predictions after deployment.
Moreover, global explanations offer the possibility of iden-
tifying previously unrecognized risk or protective factors,
and important windows of exposure for a given condition.
While local explanations may be used to justify specific deci-
sions, global explanations are often advantageous for model
diagnostics, feature engineering, bias detection, trust, and
discovery (Doshi-Velez and Kim 2017; Ibrahim et al. 2019).

Our approach falls under the class of perturbation or
removal-based methods for model explanation (Covert, Lund-
berg, and Lee 2020a). This class includes other model-
agnostic and global methods such as Feature Occlusion
(FO) (Zeiler and Fergus 2014) and CXPlain (Schwab and
Karlen 2019), which perturb features by setting their values
to zero but which are focused on tabular data, with a few
exceptions (Suresh et al. 2017; Tonekaboni et al. 2020). Our
approach is most similar to permutation-based feature impor-
tance methods. Breiman (2001) uses permutations to identify
important features in random forests, and many variants of
feature importance using permutations have since been stud-
ied (Strobl et al. 2008; Ojala and Garriga 2010; Altmann
et al. 2010; Gregorutti, Michel, and Saint-Pierre 2015; Fisher,
Rudin, and Dominici 2019; Zhou and Hooker 2020). The
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Figure 1: (a) Time series for positive (green) and negative (red) instances for four different features, illustrating temporal
properties of the features that a learned model may capture. (b) A trained binary classification model over the four time-varying
features, whose underlying function uses the features’ temporal properties to capture the target concept. xA is not used by the
model; all timesteps for xB are equally important; the model focuses on windows [c1, c2] and [d1, d2] for xC and xD respectively;
the ordering of values is important only for xD. (c) The output of TIME, showing for each feature (i) its overall importance to
the model, (ii) the most important window that the model focuses on, and (iii) whether the ordering of the values within the
window is important to the model.

simplicity and generality of permutations makes them at-
tractive as a tool for model-agnostic explanation. Whereas
existing methods focus on permutations of features as part of
a tabular representation, we extend permutation-based feature
importance to temporal models.

In this work, we propose Temporal Importance Model Ex-
planation (TIME), a method for explaining temporal black-
box models. Our approach is model-agnostic, produces global
explanations, and elicits specific properties of temporal mod-
els. It takes as input a learned model over features represent-
ing sequences or time-series, and a test data set, and does
the following global analyses: (i) it identifies features that
are important for the model’s predictions across the distribu-
tion of instances, (ii) for each such feature, it identifies the
most important temporal window that the model focuses on,
(iii) it determines whether the model’s predictions are depen-
dent on the ordering of the values within the window, (iv)
it uses hypothesis testing and a false discovery rate control

methodology to identify important features and their tempo-
ral properties with statistical rigor, and (v) it treats the model
as a black-box and thus may be used to analyze a variety
of temporal model types. There are many applications that
match the setting we address, such as numerous clinical risk
assessment approaches that make predictions relative to an
index time: these include hospital readmission, inpatient de-
terioration, post-hospitalization complications, post-surgery
complications, and asthma exacerbations, among others (Ash-
faq et al. 2019; Mayampurath et al. 2019; Kawaler et al. 2012;
Xue et al. 2021; Cobian et al. 2020). Figure 1 illustrates the
setting and our approach.

Methods
Identifying Important Features/Timesteps
Non-temporal models. We first outline the case of a model
trained on a tabular data set where each feature takes a sin-
gle value per instance. Consider a model f over D features,
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trained to predict a target y. We are interested in examining
the importance of a given feature j for the model in predict-
ing y. We assume that a test set comprising M instances is
available to analyze the model’s generalization performance.
Let (x(i), y(i)) be the ith instance-target pair, and L be a loss
function linking the model output f(x) to the target y. The
perturbed output of the model for instance i w.r.t feature j
and another instance l 6= i is given by:

f
(
x

(i,l)
j

)
= f

(
x

(i)
1 , x

(i)
2 , . . . , x

(l)
j , . . . , x

(i)
D

)
(1)

where the value of feature j has been replaced by its corre-
sponding value from instance l, as shown in Figure 2a. Then,
we can compute the change in loss between the perturbed
and original losses as:

∆L(i,l)
j = L

[
y(i), f

(
x

(i,l)
j

)]
− L

[
y(i), f

(
x(i)
)]
. (2)

Let Π = 〈π1, π2, . . . , πM 〉 be a permutation of the data set
sampled from a set of permutations Pj , so that feature j is
sampled from instance l = πi for each instance i. Averaging
over all instances i = 1 . . .M and |Pj | permutations of the
data set, we compute the importance score of feature j as:

I (f, j) =
1

|Pj |
∑

Π∈Pj

[
1

M

M∑
i=1

∆L(i,πi)
j

]
. (3)

A model includes many features, all of which may have some
effect on the model’s output, but only some of which may
be useful in predicting the target. Equation 3 characterizes
a feature as important if the model’s performance degrades
on average when the feature is perturbed via permutation,
as captured by the effect of the perturbation on the model
loss rather than the model output (Covert, Lundberg, and Lee
2020a). We use hypothesis testing to test the significance of
this degradation, as outlined in a subsequent section.

Temporal models. We extend the idea of permuting fea-
tures to assess their importance to temporal models. Here,
we assume that each feature is represented by a time se-
ries of length L, so that the data is represented by an
M × D × L tensor, with instance i represented by a ma-
trix X(i) and feature j of instance i by a time series x(i)

j =〈
x

(i)
j,1, x

(i)
j,2, . . . , x

(i)
j,k, . . . x

(i)
j,L

〉
.

By unrolling in time, this may be viewed as tabular data
consisting of M instances and D · L features, so that permu-
tations of individual features in the tabular setting correspond
to permutations of individual timesteps in the temporal set-
ting. However, doing so ignores the temporal structure of the
data and correlations within time series. Thus, we consider
joint permutations of contiguous regions, i.e., windows, in
time. Given a time window [k1, k2], the perturbed output of
the model for instance i w.r.t. feature j is given by:

f
(
X

(i,l)
j,[k1,k2]

)
= f

(
x

(i)
1 ,x

(i)
2 , . . . ,x

(i,l)
j,[k1,k2], . . . ,x

(i)
D

)
(4)

where x
(i,l)
j,[k1,k2] is the time series for instance i and feature j

with timesteps in the window [k1, k2] replaced by the corre-
sponding window from another instance l 6= i, as shown in

Figure 2b.

x
(i,l)
j,[k1,k2] =

〈
x

(i)
j,1, x

(i)
j,2, . . . , x
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(i)
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〉
.

(5)
We compute the perturbed loss L

[
y(i), f

(
X

(i,l)
j,[k1,k2]

)]
and

the change in loss (Equation 2) for instance i. We average
this over all instances i = 1 . . .M and |Pj | permutations of
the data set to compute the importance score corresponding
to the window [k1, k2] for feature j:

I (f, j, [k1, k2]) =
1

|Pj |
∑

Π∈Pj

[
1

M

M∑
i=1

∆L(i,πi)
j,[k1,k2]

]
. (6)

The overall importance I (f, j, [1, L]) of feature j is com-
puted by selecting k1 = 1 and k2 = L.

Identifying Important Windows
Given that the features have an explicit temporal structure, we
want to localize the timesteps that the model may be focusing
on across the distribution of instances. We assume that for a
given feature j, there exists an underlying contiguous time
window W ∗ = [k1, k2] : 1 ≤ k1 < k2 ≤ L, so that most
of the effect of perturbing j derives from W ∗. Specifically,
we consider a partitioning of the sequence into three win-
dows: prior window WP = [1, k1 − 1], important window
W ∗ = [k1, k2], and subsequent window WS = [k2 + 1, L]
where WP are WS both have low importance and a size
of zero or more timesteps. In order to pin down the most
salient timesteps, we want to find the largest WP and WS

that satisfy:

I(f, j, W̃ ) <

(
1− γ

2

)
I (f, j, [1, L]) (7)

where γ : 0 < γ < 1 controls the degree to which the
model focuses on W ∗ and affects the size of the identified
windows. γ may be tuned by the user based on the desired
conciseness of the generated explanations. We use a binary
search algorithm to identify WP and WS , and by exclusion,
identify the important window W ∗. We start with an initial
estimate ŴP = [1, k̂1] with k̂1 = L

2 . We then perturb ŴP

and observe its importance score I(f, j, ŴP ). If ŴP con-
tains important timesteps, its importance score is likely to
be inflated due to the breakage of correlations between all
timesteps of the important window, i.e., predictors strongly
associated with the response (Nicodemus et al. 2010), lead-
ing the search algorithm to contract ŴP to exclude these
timesteps. On the other hand, if ŴP has a low importance
score that satisfies Equation 7, we expand it unless doing
so would violate this condition. We expand or contract ŴP

by updating k̂1 and repeat the perturbation until we find the
largest ŴP that satisfies Equation 7, and set k1 = |ŴP |+ 1.

Similarly, to identify k2, we start from an initial estimate
ŴS = [k̂2, L] with k̂2 = k1 + 1, measure its importance
score, and iteratively expand or contract it under the con-
straint k̂2 > k1, until we identify the largest ŴS that satisfies
Equation 7. We select the final boundary estimates k1 and
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Figure 2: Perturbation for instance i and feature j to compute feature importance. (a) Data matrix showing the replacement of the
value of feature j in instance i from instance l. (b) Data tensor showing the replacement of a window of feature j in instance i
from the corresponding window of instance l . (c) Time series x(i)

j showing the exchange of feature values at two timesteps.

k2 = L − |ŴS | to characterize the important window W ∗.
We then compute its importance score using Equation 6 and
use hypothesis testing to test its significance. We note that
importance scores are not additive in general, and W ∗ is not
guaranteed to satisfy I(f, j,W ∗) > γI(f, j, [1, L]).

Identifying the Importance of Feature Ordering
To examine how a feature’s ordering affects the model’s
performance, we consider permutations of timesteps within
its time series. To determine the importance of the ordering
of a feature j within a window [k1, k2], we permute its values
within the window, as illustrated in Figure 2c, and average
across instances. Let Π[k1,k2] = 〈πk1 , πk1+1, . . . , πk2〉 be a
permutation over timesteps within the window. The perturbed
model output is given by:

f
(
X

(i)
j,Π[k1,k2]

)
= f

(
x

(i)
1 ,x

(i)
2 , . . . ,x

(i)
j,Π[k1,k2]

, . . . ,x
(i)
D

)
(8)

over the permuted time series for instance i and feature j:

x
(i)
j,Π[k1,k2]

= 〈x(i)
j,1, . . . , x

(i)
j,πk1

, . . . , x
(i)
j,πk2

, . . . x
(i)
j,L〉. (9)

As before, we compute the average change between the per-
turbed and original losses over all instances i and multiple
permutations Π[k1,k2], and use hypothesis testing to test the
significance of the change.

Hypothesis Testing and False Discovery Rate
Control
Existing work has leveraged hypothesis testing in conjunction
with permutations (Golland et al. 2005; Ojala and Garriga
2010; Lee, Sood, and Craven 2019; Burns, Thomason, and
Tansey 2020) to examine feature importance for models with
tabular representations. We extend this approach to temporal
models by using permutation tests, a type of widely used non-
parametric statistical test, to test the significance of important
sequences, windows, as well as time series ordering.

We use importance scores to quantify the degree to which
permuting features degrades the model’s performance, and
use hypothesis testing to test the statistical significance of
this degradation. Specifically, we use the formulation of per-
mutation tests in Ojala and Garriga (2010), using the mean
loss as the test statistic. The one-sided empirical p-value for
feature j is given by:

p̂ =
|
{

Π ∈ Pj : L̄Π ≤ L̄
}
|+ 1

|Pj |+ 1
. (10)

where Pj is a set of permutations of the original data with
feature j permuted in some way, L̄ is the mean loss for the
original data, and L̄Π is the mean loss for permuted data.
By repeatedly permuting the data, we generate the empirical
null distribution of the test statistic (mean loss). The null
hypothesis is that the effect of the feature on the model’s
loss is zero when averaged across instances, so that the test
statistic on the original data set comes from this distribution.
When the one-sided p-value is sufficiently small, we conclude
that permuting the feature degrades the model’s performance.
This approach may also be used to detect overfitted features
by reversing the inequality in Equation 10.

Depending on the permuted quantity, we can use Equa-
tion 10 to test the overall importance, window importance,
and ordering importance of feature j. These tests may be
organized as a hierarchy, as shown in Figure 3a, so that a
test is performed only if its parent test returns a significant
p-value.

The multiplicity of hypothesis tests for a given feature and
across the set of features leads to a multiple comparisons
problem. We address this by using a hierarchical false discov-
ery rate (FDR) control methodology (Yekutieli 2008), with
the FDR for sibling tests controlled using the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995). This
approach also readily extends to features arranged in a hier-
archy in order to interpret models in terms of feature groups,
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(b)

Figure 3: (a) A hierarchy of tests used to check a given
feature for its (i) overall importance, (ii) important window
and (iii) the importance of ordering within the window. (b) A
hierarchy over the features, where each node is tested using
the hierarchy shown in (a). Feature groups are tested via joint
permutations of their constituent features. Hierarchical FDR
control is used for multiple testing correction, and subtrees
rooted at nodes with p-values above a threshold are pruned.

as shown in Figure 3b and detailed in Lee, Sood, and Craven
(2019).

Results
We evaluate TIME by analyzing synthetic data sets and
models where the ground truth pertaining to relevant fea-
tures and their temporal properties is known, and by ana-
lyzing a long short term memory (LSTM) model (Hochre-
iter and Schmidhuber 1997) trained to predict in-hospital
mortality from intensive care unit (ICU) data. Software as
well as supplementary material for TIME are available at
https://github.com/Craven-Biostat-Lab/anamod.

Synthetic Data Sets and Models
We create synthetic time-series data where we control the
generating processes for different features. A set of feature
functions operate on windows for each feature and are used to
generate targets for each instance. These include a mixture of
linear, non-linear, ordering-insensitive and ordering-sensitive
operators. We also create synthetic models that approximate
these functions and serve as the models to be analyzed. We
control the features that are relevant to the models, as well
as the temporal properties of the models, including relevant
windows and dependence on ordering for each feature. We
then analyze these models and evaluate the results in terms of
power (the fraction of relevant features correctly identified)
and FDR (the fraction of features estimated to be important,
but not truly relevant in the underlying function). More details
of the synthetic data and models along with software are
available at https://github.com/Craven-Biostat-Lab/synmod.

Baseline comparisons. We compare TIME against several
model-agnostic baseline methods, covering a range of alter-
native methodologies: global vs. local, loss vs. output-based,
reference value vs. permutation-based. We also attempted to
include methods that address model-agnostic interpretability
of temporal models, namely, TimeSHAP (Bento et al. 2020)
and FIT (Tonekaboni et al. 2020), but were unable to do so
due to the lack of a public implementation for TimeSHAP
and impractically slow performance of FIT. Acronyms used
to refer to variants of a given method are indicated in paren-
theses.
• LIME (Ribeiro, Singh, and Guestrin 2016): a method for

local explanations. We aggregate local feature importance
scores to generate global ones, based on the submodular
pick algorithm described by the authors. We include LIME
due to its popularity as an explanation method, and as a
representative of other methods that focus on the model
output rather than loss and generate local explanations.

• Feature Occlusion (Zeiler and Fergus 2014): a
perturbation-based method that focuses on the model out-
put and perturbs features by replacing them with zero refer-
ence values (FO-z). Suresh et al. (2017) use a variant that
uses reference values sampled from a uniform distribution
to analyze LSTM models (FO-u).

• CXPlain (Schwab and Karlen 2019): a global method that
trains a surrogate explanation model and perturbs features
using reference values to calculate importance scores.

• SAGE (Covert, Lundberg, and Lee 2020b): a Shapley
value-based method that generalizes SHAP (Lundberg and
Lee 2017) to global explanations. SAGE is intractable
to compute exactly, so we use two approximations: sam-
pling held-out features from (i) their marginal distributions
(SAGE), or (ii) reference values, namely mean (SAGE-m)
or zero (SAGE-z) values.

• PERM: a method that uses conventional permutations
of individual timesteps rather than sequences to compute
importance scores. We also test a variant that performs
hypothesis testing and FDR control using permutation tests
and the BH-procedure (Benjamini and Hochberg 1995)
over all timesteps (PERM-f).

Since the baseline methods are designed for tabular feature
representations, we unroll the temporal data comprising D
features and L timesteps into tabular data withD×L features.
To avoid confusion with temporal features, we refer to tabular
features simply as ‘timesteps’ in the context of evaluation,
since each tabular feature corresponds to a single feature-
timestep pair in the original representation.

For TIME, we set γ to 0.99 and control FDR at the 0.1 level.
We sample |Pj | = 50 permutations to compute importance
scores and p-values for each feature j.

We generate data sets with 1,000 instances, 10 features and
20 timesteps per feature. Five features are randomly selected
as relevant. We create a synthetic model for each data set,
tuned to yield a 90% accuracy (for classification models)
or an R2 value of 0.9 (for regression models). We evaluate
the methods by examining power and FDR for identifying
relevant features as well as timesteps, and average the results
over 100 data sets and models.

For the baseline methods, we estimate a feature’s impor-
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Method Features Timesteps Windows Runtime
(seconds)Power FDR Power FDR

TIME 0.930± 0.111 0.037± 0.080 0.923± 0.138 0.054± 0.124 4.87± 0.76 371± 116
TIME-n 0.922± 0.113 0.018± 0.058 0.914± 0.141 0.021± 0.071 4.83± 0.75 371± 116
LIME 0.710± 0.122 0.290± 0.122 0.692± 0.146 0.308± 0.146 8.49± 2.03 572± 585
FO-u 0.644± 0.135 0.356± 0.135 0.637± 0.167 0.363± 0.167 7.17± 1.99 292± 88
FO-z 0.676± 0.155 0.324± 0.155 0.666± 0.169 0.334± 0.169 8.05± 1.87 29± 8
CXPlain 0.686± 0.156 0.314± 0.156 0.661± 0.157 0.339± 0.157 8.36± 2.21 45± 21
SAGE 0.806± 0.129 0.194± 0.129 0.786± 0.128 0.214± 0.128 11.05± 3.47 15384± 12695
SAGE-m 0.758± 0.140 0.242± 0.140 0.731± 0.153 0.269± 0.153 10.26± 3.54 128± 125
SAGE-z 0.656± 0.142 0.344± 0.142 0.648± 0.163 0.352± 0.163 8.21± 2.19 44± 96
PERM 0.836± 0.127 0.164± 0.127 0.818± 0.135 0.182± 0.135 9.28± 2.87 1478± 663
PERM-f 0.326± 0.451 0.024± 0.071 0.312± 0.430 0.008± 0.022 2.71± 3.92 1478± 663

Table 1: Comparison between different explanation methods on synthetic data, indicating the average power and FDR for
detecting relevant features and timesteps, the average number of windows, and the median runtime.

(a) (b) (c)

Figure 4: Heat maps showing (a) relevant features, windows and ordering for the ground truth model, (b) TIME importance
scores, indicating important features, windows and ordering, and (c) SAGE importance scores. Hatched textures indicate features
sensitive to ordering. Darker shades indicate higher scores.

tance by averaging non-zero importance scores across the
timesteps belonging to the feature. We sort timesteps in de-
creasing order of importance scores and report the n features
or timesteps with the highest scores, where n is determined by
the number of relevant features and timesteps in the ground
truth model. Since TIME identifies statistical significance in
addition to scores for important features and windows, we
evaluate it based on two metrics: (i) using all the features
and timesteps it identifies as important, and (ii) using up to
n timesteps with the highest non-zero scores, as we do with
the other baselines. We refer to these as TIME and TIME-n
respectively.

Table 1 shows results from this comparison, averaged
across 100 data sets and classification models. Both TIME
and TIME-n significantly outperform all baselines in terms
of average power and FDR for both features and timesteps,
and the average FDR is well-controlled at the 0.1 level. We
also include the average number of windows as a measure of
the interpretability of the resulting explanations. Each ground
truth model has five windows (one per relevant feature), so
values closer to five are better. By this metric, TIME and
TIME-n are advantaged in the sense that they identify one
window per feature, though the high performance of TIME
rests on its ability to distinguish relevant and irrelevant fea-

tures accurately. In contrast, most baseline methods identify a
much larger number of windows, leading to more fragmented
and less interpretable explanations.

Figure 4 illustrates feature importance explanations for a
single model. It shows a set of heat maps indicating relevant
timesteps for the ground truth model along with the impor-
tance scores returned by TIME and SAGE. For the ground
truth model, boxes corresponding to relevant timesteps are
shown in a uniform color. For the explanation methods, col-
ored boxes indicate non-zero importance scores, with higher
scores shown in darker shades. Hatched textures are used to
show features for which ordering is relevant (ground truth)
or identified as important (TIME), but they are not shown
for SAGE since it is not able to detect the significance of
ordering. TIME assigns importance scores to windows for
each feature, while SAGE, as well as other baseline methods,
assign importance scores to each timestep, since they operate
on a tabular representation. For this model, TIME identifies
all the relevant features, timesteps and their ordering cor-
rectly. SAGE assigns non-zero importance scores to all the
relevant timesteps, but in some cases, irrelevant timesteps
are ranked above relevant ones, adversely affecting its power
and FDR for detecting important features. It also produces
more fragmented explanations due to the larger number of
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(a) (b)

Figure 5: Average power and FDR for detecting (a) relevant features and timesteps, and (b) ordering relevance for features
and windows, as a function of test set size. The bands represent 95% confidence intervals, and the dotted black horizontal line
represents the 0.1 level at which FDR is controlled.

identified windows.

Performance vs. test set size. In addition to baseline com-
parisons, we examine the performance of our method as a
function of the size of the test set used to analyze the model.
We generate data sets with 6,400 instances, 30 features and
50 timesteps per feature, and increase the size of the test
set available to the model in multiples of two. Ten features
are randomly selected as relevant. For each test set size, we
aggregate the results over 100 different models.

Figure 5 shows the results of this analysis for regression
models. Figure 5a shows average power and FDR for relevant
features and timesteps as a function of test set size. The
power increases as the test set size increases and has high
terminal values, indicating that our approach is successful at
identifying most of the relevant features and windows. The
average FDRs are well-controlled at the 0.1 level.

Figure 5b shows average power and FDR for detecting
features and windows for which the ordering of values is im-
portant. Feature ordering refers to the ordering of a feature’s
values across its entire sequence. Since the distribution of
values inside the window is different from that outside the
window, the model is sensitive to the overall ordering of all
features having windows smaller than the sequence length.
However, the model is sensitive to the ordering of values
within the window only for certain feature functions. At the
largest test set size, TIME is able to detect ordering with high
accuracy while FDRs are well-controlled at the 0.1 level. We
detect window ordering with lower power compared to fea-
ture ordering due to the greater difficulty of the task, and the
fact that relevant features that are not detected as important
are not assessed for important windows or their ordering.

MIMIC-III Benchmark LSTM Model
To consider a challenging, real-world task, we analyze an
LSTM trained on MIMIC-III, a publicly available critical
care database consisting of records of 58,976 intensive care
unit (ICU) admissions (Johnson et al. 2016). The model is
one of several proposed as part of a benchmark suite for four
different clinical prediction tasks over MIMIC-III (Harutyun-
yan et al. 2017), trained to predict in-hospital mortality of
patients given the first 48 hours of their ICU stay observa-

Method AUROC Windows

Original 0.838 -
TIME 0.835 31
Random 0.801 ± 0.015 31
LIME 0.784 38
FO-u 0.805 61
FO-z 0.818 61
CXPlain 0.834 85
SAGE-m 0.840 101
SAGE-z 0.834 135
PERM 0.837 225

Table 2: Comparison of baseline methods for MIMIC-III
LSTM models retrained after feature selection, using the top-
scoring features and timesteps. SAGE is not included since
it failed to converge in a reasonable amount of time, and
PERM-f is not included since it did not report any important
features after performing FDR control.

tions. The data comprises training, validation and test sets of
14,682, 3,221 and 3,236 stays respectively, with 13.23% of
the labels being positive. There are 76 features, each repre-
sented by a sequence of length 48. The features are derived
from chart and laboratory measurements, and include ‘mask’
features indicating interpolated values. Further details on the
model and features may be found in the benchmarking paper
(Harutyunyan et al. 2017).

We use the validation set to examine the LSTM and iden-
tify important features and windows, and whether or not their
ordering is important to the model. We set γ as 0.9 and con-
trol FDR at the 0.1 level. We sample 200 permutations to
compute importance scores and p-values. Figure 6 shows the
results of this analysis. TIME identifies a set of 31 features
that are important for the model’s predictions, as well as
important windows for these features. The windows almost
always focus on the more recent part of the patients’ histo-
ries, which is unsurprising since death is more likely to be
predicted by abnormalities in the later stages of the ICU stay.
We also note that the ordering of timesteps is found to be
important for some features, suggesting that the model may
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Figure 6: Heat map showing the TIME analysis of a MIMIC-III LSTM model trained to predict in-hospital mortality. Out of a
total of 76 features, 31 were identified as important and are shown in decreasing order of their importance scores. Each row
corresponds to a single feature and shows the window corresponding to important timesteps in color. The importance score is
indicated by the color bar, and hatched textures show windows that were found to be significant in relation to ordering.

be picking up on trends for these features.
Since ground truth is not available for this data, we cannot

compute power and FDR. Instead, to validate that our anal-
ysis has identified truly important factors, we use the set of
features and windows estimated to be important to perform
feature selection. We prune the features that are not estimated
to be important and set the out-of-window timesteps for im-
portant features to zero. We then retrain the LSTM on the
pruned data set and compare its area under the ROC curve
(AUROC) to the original model on the held-aside test set. We
repeat this pruning and retraining procedure for the baseline
methods, while limiting the number of features and timesteps
to the numbers reported by TIME (since the baselines report
non-zero importance scores for every feature and timestep).
We also train and test 20 feature-selected models with 31
features and windows chosen at random.

Table 2 shows the results of this comparison. The AUROC
for the retrained model pruned using TIME is close to that of
the original model but significantly higher than the models
using randomly selected features, suggesting that TIME is
able to identify a salient subset of features and windows for
this model. Baseline methods are advantaged in this evalu-
ation since they assign non-zero importance scores to each
timestep, whereas TIME is constrained to select features as
important after performing FDR control and hence affected
by the chosen FDR control rate. While AUROC serves as
an imperfect surrogate of the performance of the methods
in identifying important features and timesteps, it does not
assess the interpretability of the resulting explanations, which
is better represented by the number of contiguous windows

identified. The results show that TIME performs compet-
itively with the best-performing baselines while reporting
significantly fewer contiguous windows, leading to concise
yet accurate explanations.

Conclusions
We have presented TIME, a method to explain black-box
models having an explicit sequential or temporal structure.
TIME identifies the set of important features and their degree
of importance, and for each important feature, it identifies
the window that the model focuses on and the significance
of ordering within the window. It uses hypothesis testing and
an FDR control methodology to detect these with statistical
rigor. Our experiments show that on synthetic data, TIME
performs significantly better than baseline methods at identi-
fying relevant features and timesteps, and is potentially more
interpretable, since it identifies important features in terms
of contiguous windows rather than isolated timesteps. Like
other marginal permutation-based feature importance meth-
ods, TIME is fairly efficient to compute (Gregorutti, Michel,
and Saint-Pierre 2015). We apply TIME to an LSTM trained
to predict risk of in-hospital mortality from ICU data, and we
identify salient features, windows and ordering in patients’
clinical histories that the model focuses on. We show that
a model trained using features and timesteps selected using
this analysis performs nearly as well as the original model,
and produces more concise explanations than comparable
baseline methods.

We plan to address some limitations of TIME in future
work. Our approach for permutation across sequences cur-
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rently assumes regularly sampled, time-aligned and fixed-
length sequences. We can extend the approach to consider
windows that are aligned in other ways, such as on an abso-
lute scale (e.g., dates on the calendar) or a relative scale (e.g.,
patient age). We assume that there exists a single contiguous
window that is important, which could be generalized. How-
ever, we note that that if the model actually focuses on multi-
ple windows, TIME will degrade gracefully by identifying a
single important window that subsumes multiple windows.
Like many other explanation methods, TIME may perform
out-of-distribution perturbations (Kumar et al. 2020), leading
to an inflation of importance scores for correlated features.
One approach to ameliorate this problem is by perturbing
groups of correlated features together, which is supported
by TIME. We also plan to explore the use of conditional
permutations (Strobl et al. 2008) for this purpose.
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