
ApproxIFER: A Model-Agnostic Approach to
Resilient and Robust Prediction Serving Systems

Mahdi Soleymani1, Ramy E. Ali2, Hessam Mahdavifar1, A. Salman Avestimehr2

1 University of Michigan - Ann Arbor
2 University of Southern California (USC)

mahdy@umich.edu, reali@usc.edu, hessam@umich.edu, avestime@usc.edu

Abstract

Due to the surge of cloud-assisted AI services, the problem of
designing resilient prediction serving systems that can effec-
tively cope with stragglers and minimize response delays has
attracted much interest. The common approach for tackling
this problem is replication which assigns the same prediction
task to multiple workers. This approach, however, is inef-
ficient and incurs significant resource overheads. Hence, a
learning-based approach known as parity model (ParM) has
been recently proposed which learns models that can gener-
ate “parities” for a group of predictions to reconstruct the
predictions of the slow/failed workers. While this learning-
based approach is more resource-efficient than replication, it
is tailored to the specific model hosted by the cloud and is
particularly suitable for a small number of queries (typically
less than four) and tolerating very few stragglers (mostly one).
Moreover, ParM does not handle Byzantine adversarial work-
ers. We propose a different approach, named Approximate
Coded Inference (ApproxIFER), that does not require training
any parity models, hence it is agnostic to the model hosted
by the cloud and can be readily applied to different data do-
mains and model architectures. Compared with earlier works,
ApproxIFER can handle a general number of stragglers and
scales significantly better with the number of queries. Fur-
thermore, ApproxIFER is robust against Byzantine workers.
Our extensive experiments on a large number of datasets and
model architectures show significant degraded mode accuracy
improvement by up to 58% over ParM.

Introduction
Machine learning as a service (MLaS) paradigms allow inca-
pable clients to outsource their computationally-demanding
tasks such as neural network inference tasks to powerful
clouds (Amazon 2021; Microsoft 2021; Google 2021). More
specifically, prediction serving systems host complex ma-
chine learning models and respond to the inference queries
by the corresponding predictions with low latency. To ensure
a fast response to the different queries in the presence of
stragglers, prediction serving systems distribute these queries
on multiple workers in the system each having an instance
of the deployed model (Crankshaw et al. 2017). Such sys-
tems mitigate stragglers through replication which assigns
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the same task to multiple workers, either proactively or reac-
tively, in order to reduce the tail latency of the computations
(Suresh et al. 2015; Dean and Barroso 2013; Shah, Lee, and
Ramchandran 2015; Gardner et al. 2015; Chaubey and Saule
2015). Replication, however, entails significant overhead as
a result of assigning the same task to multiple workers.

Erasure coding is known to be more resource-efficient
compared to replication and has been recently leveraged to
speed up distributed computing and learning systems (Lee
et al. 2017; Yu et al. 2019; Yu, Maddah-Ali, and Avestimehr
2017; Narra et al. 2019; Muralee Krishnan, Hosseini, and
Khisti 2020; Soto, Li, and Fan 2019). The traditional coding-
theoretic approaches, known as the coded computing ap-
proaches, are limited to polynomial computations and require
a large number of workers that depends on the desired com-
putation. Hence, such techniques cannot be directly applied
in prediction serving systems.

To overcome the limitations of the traditional coding-
theoretic approaches, a learning-based approach known as
ParM was proposed in (Kosaian, Rashmi, and Venkataraman
2019). In ParM, the prediction queries are encoded using an
erasure code. These coded queries are then transformed into
coded predictions by learning parity models to provide strag-
gler resiliency. The desired predictions are then reconstructed
from the fastest workers as shown in Fig. 1. By doing this,
ParM can be applied to non-polynomial computations with a
number of workers that is independent of the computations.

These parity models, however, depend on the model hosted
by the cloud and are suitable for tolerating one straggler and
handling a small number of queries (typically less than 4).
Moreover, they require retraining whenever they are used
with a new hosted model. In this work, we take a different ap-
proach leveraging approximate coded computing techniques
(Jahani-Nezhad and Maddah-ali 2022) to design scalable,
straggler-resilient and Byzantine-robust prediction serving
systems. Our approach relies on rational interpolation tech-
niques (Berrut 1988) to estimate the predictions of the slow
and erroneous workers from the predictions of the other work-
ers. Our contributions in this work are summarized as follows.

1. We propose ApproxIFER, a model-agnostic inference
framework that leverages approximate computing tech-
niques. In ApproxIFER, all workers deploy instances of
the model hosted by the cloud and no additional models
are required as shown in Fig. 2. Furthermore, the encod-
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Figure 1: An example of ParM is illustrated with K = 2
queries denoted by X0 and X1. The goal is to compute the
predictions Y0 = f(X0) and Y1 = f(X1). In this example,
the system is designed to tolerate one straggler. Worker 1
and worker 2 have the model deployed by the prediction
serving system denoted by f . Worker 3 has the parity model
fP which is trained with the ideal goal that fP (X0 +X1) =
f(X0)+ f(X1). In this scenario, the first worker is slow and
f(X0) is estimated from f(X1) and fP (X0 +X1).
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Figure 2: An example of ApproxIFER is illustrated with
K = 2 queries and S = 1 straggler. Unlike ParM, all work-
ers in ApproxIFER have the same model f which is the
model hosted by the cloud. In this scenario, the first worker
is slow and f(X0) and f(X1) are estimated from Ỹ1 and
Ỹ2. The key idea of ApproxIFER is that it carefully chooses
the coefficients while encoding the queries such that it can
estimate the desired predictions from the coded predictions
of the fast workers through interpolation.

ing and the decoding procedures of ApproxIFER do not
depend on the hosted model. This enables ApproxIFER
to be easily applied to any neural network architecture.

2. ApproxIFER is also robust to erroneous workers that re-
turn incorrect predictions either unintentionally or adver-
sarially. To do so, we have proposed an algebraic interpo-
lation algorithm to decode the desired predictions from
the erroneous coded predictions.
ApproxIFER requires a significantly smaller number of
workers than the conventional replication method. More
specifically, to handle K prediction queries while tolerat-
ing up to E Byzantine adversarial workers, ApproxIFER
requires only 2K + 2E workers whereas the replication-
based schemes require (2E + 1)K workers. Moreover,
ApproxIFER can be set to tolerate any number of strag-
glers S and errors E efficiently while scaling well with
the number of queriesK, whereas the prior works focused
on the case where S = 1, E = 0 and K = 2, 3, 4.

3. We run extensive experiments on the MNIST, Fashion-
MNIST, CIFAR-10 and ImageNet datasets on the VGG,
ResNet, DenseNet, and GoogLeNet architectures which
show that ApproxIFER improves the degraded mode ac-
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Figure 3: Comparison of the base model test accuracy with
the accuracy of ApproxIFER and the degraded mode accuracy
of ParM for ResNet-18 and K = 10, S = 1 and E = 0.

curacy by up to 58% compared to the prior approaches
for large K. The results of one of our experiments on
ResNet are shown in Fig. 3, but we later report extensive
experiments on those datasets and architectures showing
a consistent significant accuracy improvement over the
prior works.

Problem Setting
System Architecture. We consider a prediction serving sys-
tem with N workers. The prediction serving system is host-
ing a machine learning model denoted by f . We refer to
this model as the hosted or the deployed model. Unlike
ParM (Kosaian, Rashmi, and Venkataraman 2019), all work-
ers have the same model f in our work as shown in Fig.
4. The input queries are grouped such that each group has
K queries. We denote the set of K queries in a group by
X0,X1, · · · ,XK−1.
Goal. The goal is to compute the predictions Y0 =
f(X0),Y1 = f(X1), · · · ,YK−1 = f(XK−1) while tol-
erating up to S stragglers and up to E Byzantine workers.
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Figure 4: In ApproxIFER, all workers have the model de-
ployed by the system f , no parity models are required and
only an encoder and a decoder are added on top of the con-
ventional replication-based prediction serving systems. The
K input queries X0, · · · ,XK−1 are first encoded. The pre-
dictions are then performed on the coded queries. Finally, the
approximate predictions Ŷ0, · · · , ŶK−1 are recovered from
the fastest workers.

8343



ApproxIFER Algorithm
In this section, we present our proposed protocol based on
leveraging approximate coded computing (Jahani-Nezhad
and Maddah-ali 2022). The encoder and the decoder of Ap-
proxIFER are based on rational functions and rational in-
terpolation. Most coding-theoretic approaches for designing
straggler-resilient and Byzantine-robust distributed systems
rely on polynomial encoders and polynomial interpolation
for decoding. Polynomial interpolation, however, is known
to be unstable (Berrut and Klein 2014). On the other hand,
rational interpolation is known to be extremely stable and can
lead to faster convergence compared to polynomial interpola-
tion (Berrut 1988). This motivated a recent work to leverage
rational functions rather than polynomials to design straggler-
resilient distributed training algorithms (Jahani-Nezhad and
Maddah-ali 2022). While (Jahani-Nezhad and Maddah-ali
2022) only handles stragglers, ApproxIFER jointly handles
both stragglers and Byzantine workers. We provide a very
brief background about rational functions next.
Rational Interpolation Background. Consider a function
f , n distinct points a ≤ x0 < x1, · · · < xn−1 ≤ b and the
corresponding evaluations of f at these points denoted by
f0, f1, · · · , fn−1. Berrut’s rational interpolant of f is then
defined as follows (Berrut 1988):

r(x)
def
=

n−1∑
i=0

fi`i(x), (1)

where `i(x), for i ∈ [n − 1], where [n]
def
= {0, 1, 2, . . . , n},

are the basis functions defined as follows

`i(x)
def
=

(−1)i

(x− xi)
/ n−1∑
i=0

(−1)i

(x− xi)
, (2)

for i ∈ [n]. Berrut’s rational interpolant has several useful
properties as it has no pole on the real line (Berrut 1988)
and it is extremely well-conditioned (Bos, De Marchi, and
Hormann 2011; Bos et al. 2013).
Rational Interpolation with Erroneous Evaluations. We
now provide our proposed error-locator algorithm for ratio-
nal interpolation in the presence of Byzantine errors. All the
details on how this method works along with the theoretical
guarantee and proofs are moved to the Appendix A due to
space limitations. Let Aavl denote the set of indices corre-
sponding to N − S available evaluations of r(x) over xi’s
for some S that denotes the number of stragglers. Let Aadv,
with |Aadv| ≤ E, denotes the set of indices corresponding
to erroneous evaluations. For i ∈ Aavl, let also yi denote the
available and possibly erroneous evaluation of r(x) at xi.
Then we have yi = r(xi), for at least N − S − E indices
i ∈ Aavl. The proposed algorithm is mainly inspired by the
well-known Berlekamp–Welch (BW) decoding algorithm for
Reed-Solomon codes in coding theory (Blahut 2008). We
tailor the BW algorithm to get a practical algorithm for ra-
tional functions that overcomes the numerical issues arising
from inevitable round-off errors in the implementation. This
algorithm is provided next.

Note that the equations in Step 1 of Algorithm 1 form a
homogeneous system of linear equations with 2(K + E)

Algorithm 1: Error-locator algorithm.
Input: xi’s, yi’s for i ∈ Aavl, E and K.
Output: Error locations.

Step 1: Find polynomials P (x)
def
=

K+E−1∑
i=0

Pix
i,

Q(x)
def
=

K+E−1∑
i=0

Qix
i by solving the following system

of linear equations

P (xi) = yiQ(xi), ∀i ∈ Aavl.

Step 2: Set ai = Q(xi), ∀i ∈ Aavl.
Step 3: Sort ai’s with respect to their absolute values, i.e.,
|ai1 | ≤ |ai2 | ≤ · · · ≤ |aiN−S

|.
Return: i1, · · · , iE .

unknown variables where the number of equations is N − S.
In order to guarantee the existence of a non-trivial solution,
we must have

N ≥ 2K + 2E + S. (3)
This guarantees the existence of a solution to P (x) and Q(x).

Next, the encoding and decoding algorithms of Approx-
IFER are discussed in detail.
ApproxIFER Encoding. The K input queries Xj , for j ∈
[K − 1], are first encoded into N coded queries, denoted by
X̃i, for i ∈ [N − 1], each given to a worker. As mentioned
earlier, the aim is to provide resilience against any S straggler
workers and robustness against any E Byzantine adversarial
workers. When E = 0, we assume that N = K + S which
corresponds to an overhead of K+S

K . Otherwise, N = 2(K +

E) + S which corresponds to an overhead of 2(K+E)+S
K . In

general, the overhead is defined as the number of workers
divided by the number of queries.

To encode the queries, we leverage Berrut’s rational inter-
polant discussed as follows (Jahani-Nezhad and Maddah-ali
2022). First, a rational function u is computed in such a way
that it passes through the queries. More specifically,

u(z) =
∑

j∈[K−1]

Xj`j(z), (4)

where `j(x), for j ∈ [K − 1], are the basis functions defined
as follows

`j(z) =
(−1)j

(z − αj)
/ ∑
j∈[K−1]

(−1)j

(z − αj)
, (5)

and αj is selected as a Chebyshev point of the first kind as

αj = cos
(2j + 1)π

2K
(6)

for all j ∈ [K − 1]. The queries are then encoded using this
rational function as follows

X̃i
def
=u(βi), (7)

where βi is selected as a Chebyshev point of the second kind
as follows

βi = cos
iπ

N − 1
, (8)
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Algorithm 2: ApproxIFER error-locator algorithm.

Input: f(X̃i)’s for i ∈ Aavl, βi’s as specified in (8), K, C
and E.
Output: The set of indices Aadv corresponding to malicious
workers.

Set I = [0]C×E .
For l = 1, · · · , C

Step 1: Set P (x)
def
=

K+E−1∑
j=0

Pjx
j , and

Q(x)
def
=

K+E−1∑
j=1

Qjx
j + 1.

Step 2: Solve the system of linear equations provided by

P (βi) = fj(X̃i)Q(βi), ∀i ∈ Aavl.

to find the coefficients Pj’s and Qj’s.
Step 3: Set ai = Q(βi), ∀i ∈ Aavl.
Step 4: Sort ai’s increasingly with respect to their abso-

lute values, i.e., |ai1 | ≤ · · · ≤ |aiN−S
|.

Step 5: Set I[l, :] = [i1, · · · , iE ].
end
Return: Aadv: The set of E most-frequent elements of I.

for i ∈ [N−1]. The i-th worker then computes the prediction
on the coded query X̃i. That is, the i-th worker computes

Ỹi
def
= f(X̃i) = f(u(βi)), (9)

where i ∈ [N − 1].

ApproxIFER Decoding. When E = 0, the decoder waits
for the results of the fastest K workers before decoding. Oth-
erwise, in the presence of Byzantine workers, i.e., E > 0, the
decoder waits for the results of the fastest 2(K+E) workers.
After receiving the sufficient number of coded predictions,
the decoding approach proceeds with the following two steps.
1. Locating Adversarial Workers. In presence of Byzan-

tine workers that return erroneous predictions aiming at
altering the inference results or even unintentionally, we
utilize Algorithm 2 provided below to locate them. The
predictions corresponding to these workers can be then
excluded in the decoding step. Algorithm 2 runs our pro-
posed error-locator algorithm for rational interpolation in
presence of errors provided in Algorithm 1 several times,
each time associated to one of the soft labels in the predic-
tions on the coded queries, i.e., f(X̃i)’s. At the end, we
decide the error locations based on a majority vote on all
estimates of the error locations. In Algorithm 2, fj(X̃i)

denotes the j’th coordinate of f(X̃i) which is the soft
label corresponding to class j in the prediction on the
coded query f(X̃i). Also, C denotes the total number of
classes which is equal to the size of f(X̃i)’s.

2. Decoding. After excluding the erroneous workers, the
approximate predictions can be then recovered from the
results of the workers who returned correct coded pre-
dictions whose indices are denoted by F . Specifically, a

rational function r is first constructed as follows

r(z) =
1∑

i∈F

(−1)i
(z−βi)

∑
i∈F

(−1)i

(z − βi)
f(X̃i), (10)

where |F| = K when E = 0 and |F| = 2K +
2E otherwise. The approximate predictions denoted by
Ŷ0, · · · , ŶK−1 then are recovered as follows

Ŷj = r(αj), (11)

for all j ∈ [K − 1].

Experiments
In this section, we present extensive experiments to show
the effectiveness of ApproxIFER. The experiments are run
using PyTorch (Paszke et al. 2019). The latency evaluation
experiments are written with MPI4py (Dalcin et al. 2011)
and performed on Amazon AWS c5.xlarge instances.

Experiment Setup
We perform extensive experiments on the following datasets
and architectures.
Datasets. We run experiments on MNIST (LeCun et al.
1998), Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017), CI-
FAR (Krizhevsky, Hinton et al. 2009) and ImageNet (Deng
et al. 2009) datasets.
Architectures. We consider the following architectures:
VGG-16 (Simonyan and Zisserman 2014), DenseNet-161
(Huang et al. 2017), ResNet-18, ResNet-50, ResNet-152 (He
et al. 2016) and GoogLeNet (Szegedy et al. 2015).

Some of these architectures such as ResNet-18 and VGG-
11 have been considered to evaluate the performance of ear-
lier works for distributed inference tasks. However, the un-
derlying parity model parameters considered in such works
are model-specific, i.e., they are required to be trained from
the scratch every time one considers a different base model.
This imposes a significant burden on the applicability of such
approaches in practice due to their compute-intense training
requirements, especially for cases where more parity mod-
els are needed. In comparison, ApproxIFER is agnostic to
the underlying model, and its encoder and decoder do not
depend on the employed network architecture as well as the
scheme overhead. This enables us to extend our experiments
to more complex state-of-the-art models such as ResNet-50,
ResNet-152, DenseNet-161, and GoogLeNet.
Baselines. We compare ApproxIFER with the ParM frame-
work (Kosaian, Rashmi, and Venkataraman 2019) in case
of tolerating stragglers only. Since we are not aware of any
baseline that can handle Byzantine workers in prediction
serving systems other than the straightforward replication
approach, we compare the performance of ApproxIFER with
the replication scheme. Since the accuracy of the replication
approach is the same as the base model, we compare the test
accuracy of ApproxIFER with that of the base model.
Encoding and Decoding. We employ the encoding algo-
rithm introduced in Section . In the case of stragglers only,
the decoding algorithm in Section is used. Otherwise, when
some of the workers are Byzantine and return erroneous
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results, we first locate such workers by utilizing the error-
locator algorithm provided in Algorithm 2, exclude their pre-
dictions, and then apply the decoding algorithm in Section
to the correct returned results.
Performance Metric. We compare the accuracy of Approx-
IFER with the base model accuracy on the test dataset. In
the case of stragglers only, we also compare our results with
the degraded mode accuracy of ParM. In the second part, we
compare the end-to-end latency of ApproxIFER with that of
ParM.

Performance Evaluation
Our experiments consist of two parts as follows.
Straggler-Resiliency. In the first part, we consider the case
where some of the workers are stragglers and there are no
Byzantine workers. We compare our results with the base-
line (ParM) and illustrate that our approach outperforms the
baseline results for K = 8, 10, 12 and S = 1. Furthermore,
we also illustrate that ApproxIFER can handle multiple strag-
glers as well by demonstrating its accuracy for S = 2, 3. We
then showcase the performance of ApproxIFER over several
other more complex architectures for S = 1 and K = 121

To generate the results shown in Figure 5 and Figure 6, we
used pretrained models on CIFAR-10 dataset2.

In Figure 5 and Figure 6, we compare the performance of
ApproxIFER with the base model, i.e., with one worker node
and no straggler/Byzantine workers which is also called the
best case, as well as with ParM for K = 8 and K = 12,
respectively, over the test dataset. We considered the ResNet-
18 network and observed 19%, 7% and 51% improvement in
the degraded mode accuracy compared to ParM for MNIST,
Fashion-MNIST and CIFAR-10 datasets, respectively for
K = 8. For K = 12, the accuracy improves by 36%, 17%
and 58%, respectively.

We then extend our experiments by considering more
stragglers, e.g., S = 2, 3, as illustrated in Figure 7. The
accuracy loss compared with the best case, i.e., no strag-
gler/Byzantine, is not more than 9.4%, 8% and 4.4% for
MNIST, Fashion-MNIST and CIFAR-10 datasets, respec-
tively. Figure 8 demonstrates the performance of Approx-
IFER on CIFAR-10 over various state-of-the-art architectures.
The accuracy loss for S = 1 compared with the best case
is 14%, 12%, 14%, 13% and 16% for VGG-16, ResNet-34,
ResNet-50, DenseNet-161 and GoogLeNet, respectively.

We also evaluate the accuracy of ApproxIFER over
datasets with 100 and 1000 number of classes, namely,
CIFAR-100 and ImageNet datasets. We report the top-5 ac-
curacy for these datasets in Figure 9, as in (Kosaian, Rashmi,
and Venkataraman 2019), to have a fair comparison.

More recently, a framework known as Coded-InvNet (Dinh
and Lee 2021) has been proposed to mitigate stragglers for
prediction serving systems based on invertible neural net-
works (Behrmann et al. 2019) with focus on ResNets. We
provide an overview of this work along with the comparison

1The results of ParM are obtained using the codes available at
https://github.com/thesys-lab/parity-models.

2The pretrained models are available at
https://github.com/huyvnphan/PyTorch_CIFAR10.

with ApproxIFER in Appendix D, which illustrates that Ap-
proxIFER scales better with K compared to Coded-InvNet.
Byzantine-Robustness. In the second part, we provide our
experimental results on the performance of ApproxIFER in
the presence of Byzantine workers. We include several results
for K = 12 and E = 1, 2, 3. In our experiments, we select
the indices of Byzantine workers at random. These workers
add a noise that is drawn from a zero-mean normal Gaussian
distribution. Lastly, we illustrate that our algorithm performs
well for a wide range of standard deviation σ, namely σ =
1, 10, 100, thereby demonstrating that our proposed error-
locator algorithm performs as promised by the theoretical
result regardless of the range of the error values. Moreover,
we have also provided experimental results on the accuracy
of ApproxIFER under other attack models. The results of
these experiments are included in Appendix B.

In Figure 10, we illustrate the accuracy of ApproxIFER
with ResNet-18 as the network architecture and for various
numbers of Byzantine adversary workers. In this part, we
only compare the results with the base model (best case) as
there is no other baseline except the straightforward replica-
tion scheme. Note that the straightforward replication scheme
also attains the best case accuracy, though it requires a signifi-
cantly higher number of workers, i.e., the number of workers
to handle E Byzantine workers in ApproxIFER is 2K + 2E
whereas it is (2E+1)K in the replication scheme. Our exper-
imental results show that the accuracy loss in ApproxIFER
compared with the best case is not more than 6%, 4% and
4.2% for MNIST, Fashion-MNIST and CIFAR-10 dataset, re-
spectively, for up to E = 3 malicious workers. These results
indicate the success of our proposed algorithm for locating
errors in ApproxIFER, as provided in Algorithm 2. Figure 11
demonstrates the accuracy of ApproxIFER in the presence of
E = 2 Byzantine adversaries to perform distributed inference
over several underlying network architectures for the CIFAR-
10 dataset. We observe that the accuracy loss is not more than
5% for VGG-16, ResNet-34, ResNet-50, DenseNet-161 and
GoogLeNet network architectures when E = 2.

Latency Evaluation
Tail Latency. Next, we evaluate the tail latency of Approx-
IFER and compare it to ParM as baseline. All experiments are
run on Amazon EC2. The underlying network architecture
considered is ResNet-18 and the queries are randomly drawn
from the MNIST dataset. We use background load to emulate
network traffic typical of data analytics workloads. In partic-
ular, two workers (EC2 instances) are picked at random to
transfer a packet with random size between 106 − 2 × 106

Bytes to each other. Our cluster consists of a master node,
one client node and N worker nodes. We ran the inference
task on batches of sizeK 10000 times and reported the mean,
median, 99-th, 99.5-th and 99.9-th latency percentiles. We
illustrate the results for K = 7 in Figure 12.

Our results illustrate that the end-to-end 99-th, 99.5-th
and 99.9-th latency of ApproxIFER exceeds that of ParM by
no more than 4.3%, 4.4% and 7%, respectively for K = 7.
We have provided additional comparisons for K = 9, 10 in
Appendix C. While the latency of ApproxIFER is slightly
higher than ParM, ApproxIFER improves the degraded mode
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Figure 5: Accuracy of ApproxIFER compared with the
best case as well as the degraded mode accuracy of ParM
for ResNet-18, K = 8 and S = 1.
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Figure 6: Accuracy of ApproxIFER compared with the
best case as well as the degraded mode accuracy of ParM
for ResNet-18, K = 12 and S = 1.
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Figure 7: Accuracy of ApproxIFER versus the number of
stragglers. The network architecture is ResNet-18, K = 8
and S = 1, 2, 3.
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Figure 8: Accuracy of ApproxIFER on CIFAR-10 and
with various network architectures for K = 8, S = 1.
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Figure 9: Comparison of the accuracy of ApproxIFER with
the degraded mode accuracy of ParM for CIFAR-100 for
K = 2, 3, S = 1 and E = 0, and ImageNet datasets for
K = 2, S = 1 and E = 0. The network architectures
considered are ResNet-50 and ResNet-152 for CIFAR-100
and ImageNet, respectively.

accuracy by up to 58% compared to that of ParM and avoids
the significant cost of training S parity models.

Related Works
Replication is widely used for providing straggler resiliency
and Byzantine robustness in distributed systems. In the proac-
tive replication approaches, to tolerate S stragglers, the same
task is assigned to S+1 workers before starting the computa-
tion. While such approaches reduce the latency significantly,
they incur significant overhead. The reactive replication ap-
proaches (Zaharia et al. 2008; Dean and Barroso 2013) avoid
such overhead by assigning the same task to other workers
only after a deadline is passed as in Hadoop MapReduce
(Hadoop 2021). This approach also incurs a significant la-
tency as it waits before reassigning the tasks.

Recently, coding-theoretic approaches have shown great
success in mitigating stragglers in distributed computing and
machine learning (Lee et al. 2017; Tandon et al. 2017; Yu,
Maddah-Ali, and Avestimehr 2017; Ye and Abbe 2018; Wang,
Charles, and Papailiopoulos 2019; Soto, Li, and Fan 2019;
Narra et al. 2020; Wang, Liu, and Shroff 2019; Soleymani,
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Figure 10: Accuracy of ApproxIFER versus the number of
errors on ResNet-18 for K = 12, S = 0, and E = 1, 2, 3.
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Figure 11: Accuracy of ApproxIFER on CIFAR-10 and
various network architectures for K = 12, S = 0 and
E = 2.
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Figure 12: Comparison of the tail latency of ApproxIFER
with that of ParM for ResNet-18 for K = 7, S = 1 and
E = 0.

Jamali, and Mahdavifar 2021). Such ideas have also been
extended to also provide Byzantine robustness and data pri-
vacy. Specifically, the coded computing paradigm has re-
cently emerged by adapting erasure coding ideas to design
straggler-resilient, Byzantine-robust and private distributed
computing systems often involving polynomial-type com-
putations (Yu et al. 2019; Subramaniam, Heidarzadeh, and
Narayanan 2019; Soleymani et al. 2021; Tang et al. 2021; So,
Guler, and Avestimehr 2020; Sohn et al. 2020; Soleymani,
Mahdavifar, and Avestimehr 2021; So et al. 2021). However,
many applications involve non-polynomial computations as
training and inference of neural networks.

A natural approach to get around the polynomial limita-
tion is to approximate any non-polynomial computations (So,
Guler, and Avestimehr 2020). This idea has been leveraged
to train a logistic regression model in (So, Guler, and Aves-
timehr 2020; Ali, So, and Avestimehr 2020; Soleymani, Mah-
davifar, and Avestimehr 2020). This approximation approach,
however, is not suitable for neural networks as the number of
workers needed is proportional to the degree of the function
being computed. Motivated by these limitations, learning-
based approaches were proposed in (Kosaian, Rashmi, and

Venkataraman 2019, 2020) to tackle these challenges. This
idea provides the same straggler-resilience as that of the
underlying erasure code, and hence decouples the straggler-
resilience guarantee from the computation carried out by
the system. This is achieved by learning parity models that
transform the coded queries to coded predictions.

As discussed, the learning-based approaches do not scale
well. This motivated us in this work to explore a different ap-
proach based on approximate coded computing. Approximate
computing was leveraged before in distributed matrix-matrix
multiplication in (Gupta et al. 2018). Moreover, an approxi-
mate coded computing approach was developed in (Jahani-
Nezhad and Maddah-Ali 2021) for distributed matrix-matrix
multiplication. More recently, a numerically stable straggler-
resilient approximate coded computing approach has been
developed in (Jahani-Nezhad and Maddah-ali 2022). In par-
ticular, this approach can be used to approximately compute
arbitrary functions unlike the conventional coded computing
techniques. One of the key features of this approach is that
it uses rational functions (Berrut and Trefethen 2004) rather
than polynomials to introduce coded redundancy which are
known to be numerically stable. This approach, however,
does not provide robustness against Byzantine workers.

Conclusions
In this paper, we have introduced ApproxIFER, a model-
agnostic straggler-resilient, and Byzantine-robust framework
for prediction serving systems. Unlike the learning-based
approaches, our approach does not require training parity
models and can be set to tolerate any number of stragglers
and Byzantine workers. Our experiments on MNIST, Fashion-
MNIST, CIFAR and ImageNet datasets on various state-of-
the-art architectures such as VGG, ResNet, DenseNet, and
GoogLeNet show that ApproxIFER improves the degraded
mode accuracy by up to 58% compared to the learning-based
approaches. An interesting direction is to extend Approx-
IFER to preserve the privacy of the data potentially by lever-
aging trusted execution environments (TEEs) (Tramer and
Boneh 2018; Niu, Ali, and Avestimehr 2021). Improving the
latency and the accuracy of ApproxIFER through designing
systematic codes is also an interesting direction.
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