
EqGNN: Equalized Node Opportunity in Graphs

Uriel Singer, Kira Radinsky
Technion, Israel Institute of Technology

urielsinger@cs.technion.ac.il, kirar@cs.technion.ac.il

Abstract

Graph neural networks (GNNs), has been widely used for
supervised learning tasks in graphs reaching state-of-the-art
results. However, little work was dedicated to creating un-
biased GNNs, i.e., where the classification is uncorrelated
with sensitive attributes, such as race or gender. Some ignore
the sensitive attributes or optimize for the criteria of statisti-
cal parity for fairness. However, it has been shown that nei-
ther approaches ensure fairness, but rather cripple the util-
ity of the prediction task. In this work, we present a GNN
framework that allows optimizing representations for the no-
tion of Equalized Odds fairness criteria. The architecture is
composed of three components: (1) a GNN classifier predict-
ing the utility class, (2) a sampler learning the distribution
of the sensitive attributes of the nodes given their labels. It
generates samples fed into a (3) discriminator that discrim-
inates between true and sampled sensitive attributes using a
novel “permutation loss” function. Using these components,
we train a model to neglect information regarding the sen-
sitive attribute only with respect to its label. To the best of
our knowledge, we are the first to optimize GNNs for the
equalized odds criteria. We evaluate our classifier over sev-
eral graph datasets and sensitive attributes and show our al-
gorithm reaches state-of-the-art results.

1 Introduction
Supervised learning was shown to exhibit bias depending
on the data it was trained on (Pedreshi, Ruggieri, and Turini
2008). This problem is further amplified in graphs, where the
graph topology was shown to exhibit different biases (Kang,
Lijffijt, and Bie 2019; Singer, Radinsky, and Horvitz 2020).
Many popular supervised-learning graph algorithms, such
as graph neural networks (GNNs), employ message-passing
with features aggregated from neighbors; which might fur-
ther intensify this bias. For example, in social networks,
communities are usually more connected between them-
selves. As GNNs aggregate information from neighbors, it
makes it even harder for a classifier to realize the potential
of an individual from a discriminated community.

Despite their success (Wu et al. 2020), little work has been
dedicated to creating unbiased GNNs, where the classifica-
tion is uncorrelated with sensitive attributes, such as race

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or gender. The little existing work, focused on ignoring the
sensitive attributes (Obermeyer et al. 2019). However, “fair-
ness through unawareness” has already been shown to pre-
dict sensitive attributes from other features (Barocas, Hardt,
and Narayanan 2019). Others (Bose and Hamilton 2019; Dai
and Wang 2021; Buyl and De Bie 2020; Rahman et al. 2019)
focused on the criteria of Statistical Parity (SP) for fairness
when training node embeddings, defined as follows:

Definition 1 (Statistical parity). A predictor Ŷ satisfies sta-
tistical parity with respect to a sensitive attribute A, if Ŷ
and A are independent:

Ŷ ⊥⊥ A (1)

Recently, Dwork et al. (2012) showed that SP does not
ensure fairness and might actually cripple the utility of the
prediction task. Consider the task of recommending a job
to a person given their social network. Given a sensitive at-
tribute of gender, SP will require the same amount of men
and women per job. However, it allows accepting qualified
applicants in one gender, but unqualified in another, as long
as the percentages of acceptance match. This is not ideal be-
cause it does not consider the qualification of the person to
a job. Lately, the notion of Equalized Odds (EO) was pre-
sented as an alternative fairness criteria (Hardt, Price, and
Srebro 2016). Unlike SP, EO allows dependence on the sen-
sitive attribute A but only through the target variable Y :

Definition 2 (Equalized odds). A predictor Ŷ satisfies
equalized odds with respect to a sensitive attribute A, if Ŷ
and A are independent conditional on the true label Y:

Ŷ ⊥⊥ A | Y (2)

The definition encourages the use of features that allow
to directly predict Y, while not allowing to leverage A as
a proxy for Y. Consider our job acceptance example. For
the outcome of Y=Accept, we require Ŷ to have similar
true and false positive rates across both genders. Notice that,
Ŷ = Y aligns with the EO constraint, but we enforce that
the accuracy is equally high in both genders, and penalize
models that have good performance on only one gender.

In this work, we present an architecture that optimizes
graph classification for the EO criteria. Given a GNN classi-
fier predicting a target class, we expand it with an EO regu-
larization using a sampler and a discriminator components.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8333

The goal of the sampler component is to learn the distribu-
tion of the sensitive attributes of the nodes given their labels.
The sampler generates examples that are then fed into a dis-
criminator. The goal of the latter is to discriminate between
true and sampled sensitive attributes. We present a novel loss
function the discriminator minimizes – the permutation loss.
Unlike cross-entropy loss, that compares two independent or
unrelated groups, the permutation loss compares items un-
der two separate scenarios – with sensitive attribute or with
a generated balanced sensitive attribute.

We start by pretraining the sampler, and then train the dis-
criminator along with the GNN classifier using adversarial
training. This joint training allows the model to neglect in-
formation regarding the sensitive attribute only with respect
to its label, as requested by the equalized odds fairness cri-
teria. To the best of our knowledge, our work is the first to
optimize GNNs for the equalized odds criteria.

The contributions of this work are fourfold: (1) We pro-
pose EqGNN, an algorithm with equalized odds regulation
for graph classification tasks. (2) We propose a novel per-
mutation loss which allows us to compare pairs. We use this
loss in the special case of nodes in two different scenarios
– one under the bias sensitive distribution, and the other un-
der the generated unbiased distribution. (3) We empirically
evaluate EqGNN on several real-world datasets and show
superior performance to several baselines both in utility and
in bias reduction. (4) We empirically evaluate the permuta-
tion loss over real-world datasets and show the importance
of leveraging the pair information.

2 Related Work
Supervised learning in graphs has been applied in many
applications, such as protein-protein interaction prediction
(Grover and Leskovec 2016; Singer, Guy, and Radinsky
2019), human movement prediction (Yan, Xiong, and Lin
2018), traffic forecasting (Yu, Yin, and Zhu 2018; Cui
et al. 2019) and other urban dynamics (Wang and Li 2017).
Many supervised learning algorithms have been suggested
for those tasks on graphs, including matrix factorization ap-
proaches (Belkin and Niyogi 2001; Tenenbaum, De Silva,
and Langford 2000; Yan et al. 2006; Roweis and Saul 2000),
random walks approaches (Perozzi, Al-Rfou, and Skiena
2014; Grover and Leskovec 2016) and graph neural network,
which recently showed state-of-the-art results on many tasks
(Wu et al. 2020). The latter is an adaptation of neural net-
works to the graph domain. GNNs create different differen-
tial layers that can be added to many different architectures
and tasks. GNNs utilize the graph structure by propagat-
ing information through the edges and nodes. For instance,
GCN (Kipf and Welling 2017) and graphSAGE (Hamilton,
Ying, and Leskovec 2017) update the nodes representation
by averaging over the representations of all neighbors, while
Veličković et al. (2017) proposed an attention mechanism to
learn the importance of each specific neighbor.

Fairness in graphs was mostly studied in the context of
group fairness, by optimizing the SP fairness criteria. Rah-
man et al. (2019) creates fair random walks by first sampling
a sensitive attribute and only then sampling a neighbor from
those who hold that specific sensitive attribute. For instance,

if most nodes represent men while the minority represent
women, the fair random walk promises that the presence of
men and women in the random walks will be equal. Buyl and
De Bie (2020) proposed a Bayesian method for learning em-
beddings by using a biased prior. Others, focus on unbiasing
the graph prediction task itself rather than the node embed-
dings. For example, Bose and Hamilton (2019) use a set of
adversarial filters to remove information about predefined
sensitive attributes. It is learned in a self supervised way by
using a graph-auto-encoder to reconstruct the graph edges.
Dai and Wang (2021) offer a discriminator that discriminates
between the nodes sensitive attributes. In their setup, not all
nodes sensitive attributes are known, and therefore, they add
an additional component that predicts the missing attributes.
Kang et al. (2020) tackle the challenge of individual fair-
ness in graphs. In this work, we propose a GNN framework
optimizing the EO fairness criteria. To the best of our knowl-
edge, our work is the first to study fairness in graphs in the
context of EO fairness.

3 Equalized-Odds Fair GNN

ሚ𝐴𝑌

Sensitive Attribute Sampler

𝑋
ℎ 𝑌 𝑌

𝐴

…

GCN layers

…

Classifier

FC

Bayes’
rule

concatenate

EO Regularization

GCN layers

Figure 1: The full EqGNN architecture. The blue box represents
the sampler model that given a label, samples a dummy sensitive
attribute (Section 3.1 for details). This model is pretrained inde-
pendently. The green box represents the classifier, which given a
graph and node features, tries to predict its label. The red box repre-
sents the discriminator, which minimizes a permutation loss (Sec-
tion 3.2). Purple arrows represent loss functions while the magic
box represents a random bit (0 or 1), which is used for shuffling
the sensitive attribute with its dummy.

Let G = (V,E) be a graph, where E is the list of edges,
V the list of nodes, Y the labels, and A the sensitive at-
tributes. Each node is represented via n features. We denote
X |V |×n as the feature matrix for the nodes in V. Our goal
is to learn a function F (·) with parameters θF , that given a
graph G, maps a node v ∈ V represented by a feature vec-
tor, to its label. In this work, we present an architecture that
can leverage any graph neural network classifier. For sim-
plicity, we consider a simple GNN architecture for F (·) as
suggested by Kipf and Welling (2017): we define F (·) to be
two GCN layers, outputting a hidden representation h for
each node. This representation then enters a fully connected
layer that outputs Ŷ. The GNN optimization goal is to mini-
mize the distance between Ŷ and Y using a loss function `. `

8334

can be categorical cross-entropy (CCE) for multi-class clas-
sification, binary cross-entropy (BCE) for binary classifica-
tion, or mean square error (L2) for regression problems. We
extend the optimization to minθF Ltask = `(Ŷ,Y) while
satisfying Eq. 2 for fair prediction.

We propose a method, EqGNN1, that trains a GNN model
to neglect information regarding the sensitive attribute only
with respect to its label. The full architecture of EqGNN is
depicted in Figure 1. Our method pretrains a sampler (Sec-
tion 3.1), to learn the distribution PA|Y of the sensitive at-
tributes of the nodes given their labels (marked in blue in
Figure 1). We train a GNN classifier F (marked in green
in Figure 1), while regularizing it with a discriminator that
discriminates between true and sampled sensitive attributes
(marked in red in Figure 1) . Section 3.2 presents the EO
regularization. The regularization is done using a novel loss
function – the “permutation loss”, which is capable of com-
paring paired samples. For the unique setup of adversarial
learning over graphs, we show that incorporating the permu-
tation loss in a discriminator, brings performance gains both
in utility and in EO. Section 3.3 presents the full EqGNN
model optimization procedure.

3.1 Sensitive Attribute Sampler

To comply with the SP criteria (Eq. 1), given a sample i, we
wish the prediction of the classifier, Ŷi, to be independent
of the sample’s sensitive attribute Ai. In order to check if
this criteria is kept, we can sample a fake attribute out of
PA (e.g., in case of equal sized groups, a random attribute),
and check if Ŷi can predict the true or fake attribute. If it is
not able to predict, this means that Ŷi is independent of Ai

and the SP criteria is kept. As all information of Ŷi is also
represented in the hidden representation hi, one can simply
train a discriminator to predict the sensitive attribute given
the hidden representation hi. A similar idea was suggested
by Dai and Wang (2021); Bose and Hamilton (2019).

To comply with the EO criteria (Eq. 2), the classifier
should not be able to separate between an example with a
real sensitive attribute Ai and an example with an attribute
sampled from the conditional distribution PA|Y(Ai | Yi).
Therefore, we jointly train the classifier with a discriminator
that learns to separate between the two examples. Formally,
given a sample i, we would want the prediction of the clas-
sifier, Ŷi, to be independent of the attribute Ai only given
its label Yi. Thus, instead of sampling the fake attribute out
of PA we sample the fake attribute out of PA|Y.

We continue describing the sensitive attribute distribution
learning process, PA|Y, and then present how the model
samples dummy sensitive attributes that will be used as
“negative” examples for the discriminator.

Sensitive Attribute Distribution Learning Our goal is to
learn the distribution PA|Y. For a specific sensitive attribute
a and label y, the probability can be expressed using Bayes’

1GitHub repository with appendix, code, baselines, and data:
https://github.com/urielsinger/EqGNN

rule as:
PA|Y(A = a | Y = y) =

P(Y = y | A = a)P(A = a)∑
a′∈A P(Y = y | A = a′)P(A = a′)

(3)

The term P(Y = y | A = a) can be derived from the
data by counting the number of samples that are both with
label y and sensitive attribute a, divided by the number of
samples with sensitive attribute a. Similarly, P(A = a) is
calculated as the number of samples with sensitive attribute
a, divided by the total number of samples. In a regression
setup, these can be approximated using a linear kernel den-
sity estimation.

Fair Dummy Attributes During training of the end-to-
end model (Section 3.3), the sampler receives a training
example (Xi,Yi,Ai) and generates a dummy attribute by
sampling Ãi ∼ PA|Y(Ai | Yi). Notice that Ai and
Ãi are equally distributed given Yi. This ensures that if
the classifier satisfies the EO criteria, then (Xi,Yi,Ai)

and (Xi,Yi, Ãi) will receive an identical classification,
whereas otherwise it will result in different classifications.
See Section 3.2 for further explanation of the optimization
process that utilizes the dummy attributes for regularizing
the classifier for EO.

3.2 EO Regularization
A GNN classifier without regularization might learn to pre-
dict biased node labels based on their sensitive attributes.
To satisfy EO, the classifier should be unable to distin-
guish between real examples and generated examples with
dummy sensitive attributes. Therefore, we utilize an adver-
sarial learning process and add a discriminator that learns
to distinguish between real and fake examples with dummy
sensitive attributes.

The discriminator receives two types of examples: (1)
real examples (Yi,Ai, Ŷi) and (2) negative examples
(Yi, Ãi, Ŷi), where Ãi ∼ PA|Y(Ai | Yi) is generated by
the pretrained sampler. The discriminator learns a function
D(·) with parameters θD, that given a sample, classifies it
to be true or fake. The classifier in its turn tries to “fool” it.
This ensures the classifier doesn’t hold bias towards specific
labels and sensitive attributes and keeps the EO criterion. In-
tuitively, as the classifier tries to fool the discriminator, one
might consider hi, the last hidden layer of the classifier F (·),
as the unbiased representation of node i. Therefore, we con-
catenate the unbiased representation of the node, hi, to the
samples the discriminator receives.

As a result, the formal adversarial loss is defined as:
min
θF

max
θD

Ladv = E [log(D(Y || A || F (X,G) || h))]

+ EÃ∼PA|Y(A|Y)

[
log(1−D(Y || Ã || F (X,G) || h))

] (4)

where E is the expected value, and || represents the concate-
nation operator. The discriminator tries to maximize Ladv to
distinguish between true and fake samples, while the classi-
fier tries to minimize it, in order to “fool” him. In our imple-
mentation, D(·) is a GNN with two GCN layers outputting
the probability of being a true sample.

8335

We observe that true and fake attributes are paired (the
same node, with a real sensitive attribute or a dummy at-
tribute). A binary loss as defined in Eq. 4 holds for unpaired
examples, and does not take advantage of knowing the fake
and true attributes are paired. Therefore, we upgrade the loss
to handle paired nodes by utilizing the permutation loss. We
first formally define and explain the permutation loss in the
following section, and then continue discussing its imple-
mentation details in our architecture.

Permutation Loss In this section, we formally define the
new permutation loss test presented in this work. Let us as-
sume X1 and X2 are two groups of subjects. Many appli-
cations are interested of learning and understanding the dif-
ference between the two. For example, in the case where
X1 represents test results of students in one class, while X2

represents test results of a different class, it will be interest-
ing to check if the two classes are equally distributed (i.e.,
P(X1) ∼ P(X2)).
Definition 3 (T-test). Given two groups X1,X2 ⊂ R, the
statistical difference can be measured by the t-statistic:

t =
X̄1 − X̄2√
s21
n1

+
s22
n2

where X̄i, si, and ni are the means, variances, and group
sizes respectively.

While this test assumes X1,X2 are scalars that are nor-
mally distributed, Lopez-Paz and Oquab (2017) proposed a
method called C2ST that handles cases where X1,X2 ⊂ Rd
for d ≥ 1. They proposed a classifier that is trained to pre-
dict the correct group of a given sample, which belongs to
either X1 or X2. By doing so, given a test-set, they are able
to calculate the t-statistic by simply checking the number of
correct predictions:

Definition 4 (C2ST). Given two groups X1,X2 ⊂ Rd (la-
beled 0 and 1 respectively), the statistical difference can be
measured by the t-statistic (Lopez-Paz and Oquab 2017):

t =
1

N

N∑
i=1

I
[
I
(
f(xi) >

1

2

)
= yi

]
where xi ∈ X1 ∪X2, yi is xi’s original group label, N =
|X1| + |X2| is the number of samples in the test-set, and f
is a trained classifier outputting the probability a sample is
sampled from group 1.

Intuitively, the test assumes that if a classifier isn’t able
to predict the group of a given sample, then the groups are
equality distributed. Mathematically, the t-statistic is calcu-
lated by the number of correct samples of the classifier.

However, the C2ST criterion is not optimal when the sam-
ples are paired (Xi

1 and Xi
2 represent the same subject),

as it doesn’t leverage the paired information. Consider the
following example: assuming the pairs follow the following
rule: X1 ∼ Nd(0, 1) and Xi

2 = Xi
1 + ε ∀Xi

2 ∈ X2. As
the two Gaussians overlap, a simple linear classifier will not
be able to detect any significant difference between the two
groups, while we hold the information that there is a sig-
nificant difference (Xi

1 is always smaller in ε from its pair

Xi
2). Therefore, it is necessary to define a new test that can

manage paired examples.
Definition 5 (Paired T-test). Given two paired groups
X1,X2 ⊂ R, and XD = X1 − X2, the statistical differ-
ence can be measured by the t-statistic:

t = X̄D/
sD√
n

where X̄D, sD are the mean and standard deviation of XD,
and n = |XD| is the number of pairs.

Again, this Paired T-test assumes X1,X2 are scalars that
are normally distributed. A naive adaptation of Lopez-Paz
and Oquab (2017) for paired data with d ≥ 1, would be to
first map the pairs into scalars and then calculate their dif-
ferences (as known in the paired student t-test for d = 1).
This approach also assumes the samples are normally dis-
tributed, and therefore is not robust enough. An alternative
to the paired t-test is the permutation test (Odén, Wedel
et al. 1975), which has no assumptions on the distribution. It
checks how different the t-statistic of a specific permutation
is from many (or all) other random permutations t-statistics.
By doing so, it is able to calculate the p-value of that specific
permutation. We suggest a differential version of the permu-
tation test. This is done by using a neural network archi-
tecture that receives either a real permutation or a shuffled,
and tries to predict the true permutation. We draw the reader
attention that other unpaired distribution distances, e.g. KL-
divergence or Wasserstein, are not applicable for our prob-
lem. Those distances are calculated over distributions and
not over pair of values.

The permutation phase consists of four steps: (1) For
each pair, Xi

1,X
i
2 each of size d, sample a random number

li ∈ {0, 1} . (2) If li = 0, concatenate the pair in the original
order: [Xi

1,X
i
2], while if li = 1, concatenate in the permuted

order: [Xi
2,X

i
1]. This resolves us with a vector of size 2d .

(3) This sample enters a classifier that tries to predict li using
binary-cross-entropy . (4) We update the classifier weights,
and return to step 1 until convergence. Assuming X1 and
X2 are exchangeable, the classifier will not be able to dis-
tinguish if a permutation was performed or not. The idea
behind this test is that if a classifier is not able to predict
the true ordering of the pairs, it means that there is no sig-
nificant difference between this specific permutation or any
other permutation. Mathematically, similarly to C2ST, the
t-statistic can be calculated by the number of correct sam-
ples of the classifier. See the Appendixfor the full differen-
tial permutation loss algorithm. While this is similar to the
motivation of the naive permutation test (Odén, Wedel et al.
1975), we offer additional benefits: (1) The test is differen-
tial, meaning we can represent it using a neural network as
a layer (see Section 3.2). (2) The test can handle d ≥ 1.
(3) Given a use-case, we do not need to define a specific t-
statistic as required by the naive permutation test, but rather
the classifier checks for any possible signal.

As a real life example that explains the power of the loss,
assume a person is given a real coin and fake coin. While
she observes each one separately, her confidence of which
is which, will be much less if she would rather receive them
together. This real life example demonstrates the important

8336

difference between C2ST and the permutation loss (see the
Appendixfor experiments for this example and other experi-
ments over synthetic data).

Permutation Loss for EO Regularization Going back to
our discriminator, we observe that true and fake attributes
are paired (the same node, with a real sensitive attribute
or a dummy sensitive attribute). We create paired samples:
(Yi,Ai, Ãi, Ŷi,hi), and at each step we randomly permute
the sensitive attribute and its dummy attribute, creating a
sample labeled as permuted or not. The result of this process
are samples (Yi,Ai, Ãi, Ŷi,hi) with label 0 indicating no
permutation was applied, or (Yi, Ãi,Ai, Ŷi,hi) with label
1 indicating a permutation was applied. The discriminator
therefore receives the samples and predicts the probability
of whether a permutation was applied. We therefore adapt
the adversarial loss of Eq. 4 to:

min
θF

max
θD

Ladv =

EÃ∼PA|Y(A|Y)

[
log(D(Y || Ã || A || F (X,G) || h))

]
+

EÃ∼PA|Y(A|Y)

[
log(1−D(Y || A || Ã || F (X,G) || h))

] (5)

The loss used in the permutation test is binary cross-entropy
and therefore convex. As an additional regularization and
to improve stability of the classifier, similarly to Romano,
Bates, and Candès (2020), we propose to minimize the ab-
solute difference between the covariance of Ŷ and A from
the covariance of Ŷ and Ã:

min
θF

Lcov = ‖cov(Ŷ,A)− cov(Ŷ, Ã)‖2 (6)

3.3 Full EqGNN Architecture
The sampler is pretrained using Eq. 3. We then jointly train
the classifier and discriminator by optimizing the objective:

min
θF

max
θD

Ltask + λ(Ladv + γLcov) (7)

where θF are the parameters of the classifier and θD are
the parameters of the discriminator. λ and γ are hyper-
parameters that are used to tune the different regulations.
This objective is then optimized for θF and θD one step at
a time using the Adam optimizer (Kingma and Ba 2015),
with learning rate 10−3 and weight-decay 10−5. The train-
ing procedure is further detailed in the Appendix.

4 Experimental Setup
4.1 Datasets
Table 1 summarizes the datasets’ characteristics used for our
experiments. Intra-group edges are the edges between sim-
ilar sensitive attributes, while inter-group edges are edges
between different sensitive attributes.

Pokec (Takac and Zabovsky 2012). Pokec is a popu-
lar social network in Slovakia. An anonymized snapshot
of the network was taken in 2012. User profiles include
gender, age, hobbies, interest, education, etc. The original
Pokec dataset contains millions of users. We sampled a sub-
network of the “Zilinsky” province. We create two datasets,
where the sensitive attribute in one is the gender, and region

Dataset Pokec-region Pokec-gender NBA

of nodes 67, 796 67, 796 355
of attributes 276 276 95

of edges 617, 958 617, 958 9, 477
sensitive groups ratio 1.84 1.02 3.08
of inter-group edges 30, 519 339, 461 2, 472
of intra-group edges 587, 439 278, 497 7, 005

Table 1: Datasets’ characteristics.

in the other. The label used for classification is the job of the
user. The job field was grouped in the following way: (1)“ed-
ucation” and “student”, (2)“services & trade” and “construc-
tion”, and (3) “unemployed”.

NBA (Dai and Wang 2021) This dataset was presented in
the FairGNN baseline paper. The NBA Kaggle dataset con-
tains around 400 basketball players with features including
performance statistics, nationality, age, etc. This dataset was
extended in (Dai and Wang 2021) to include the relation-
ships of the NBA basketball players on Twitter. The binary
sensitive attribute is whether a player is a U.S. player or an
overseas player, while the task is to predict whether a salary
of the player is over the median.

4.2 Baselines
In our evaluation, we compare to a classic baseline (GCN),
an EO optimized baseline (Debias), and a SP optimized
baseline (FairGNN):

No-Fairness Optimization Baseline: GCN (Kipf and
Welling 2017) is a classic GNN layer that updates a node
representation by averaging the representations of its neigh-
bors. For fair comparison, we implemented GCN as the
classifier of the EqGNN architecture (i.e., an unregulated
EqGNN model, with the only difference of λ = 0.).

EO Optimization Baseline: Debias (Zhang, Lemoine,
and Mitchell 2018): optimizes EO by using a discriminator
that given Y and Ỹ predicts the sensitive attribute. While
Debias is a non-graph architecture, for fair comparison, we
implemented Debias with the exact architecture as EqGNN.
Unlike EqGNN, Debias’s discriminator receives as input
only Y and Ŷ (without the sensitive attribute or dummy at-
tribute) and predicts the sensitive attribute. As the discrim-
inator receives Y, it neglects the sensitive information with
respect to Y and, therefore optimizes for EO.

SP Optimization Baseline: FairGNN (Dai and Wang
2021) optimizes SP by using a discriminator that, given h,
predicts the sensitive attribute. By doing so, they neglect
the sensitive information from h. As this is without respect
to Y, they optimize SP (further explained in Section 3.1).
FairGNN offers an additional predictor for nodes with un-
known sensitive attributes. As our setup includes all nodes’
sensitive attributes, this predictor is irrelevant. We opted to
use FairGCN for fair comparison. In addition, we general-
ized their architecture to support multi-class classification.

For all baselines, 50% of nodes are used for training, 25%
for validation and 25% for testing. The validation set is used
for choosing the best model for each baseline throughout the

8337

training. As the classifier is the only part of the architecture
used for testing, an early stopping was implemented after its
validation loss (Eq. 7) hasn’t improved for 50 epochs. The
epoch with the best validation loss was then used for testing.
All results are averaged over 20 different train/validation/test
splits for Pokec datasets and 40 for the NBA dataset. For fair
comparison, we implemented grid-search for all baselines
over λ ∈ {0.01, 0.1, 1, 10} for baselines with a discrimina-
tor, and γ ∈ {0, 50} for baselines with a covariance expres-
sion. For both Pokec datasets and for all baselines λ = 1
and γ = 50, while for NBA we end up using λ = 0.1 and
γ = 50 expect for FairGNN with λ = 0.01. All experiments
used a single Nvidia P100 GPU with the average run of 5
minutes per seed for Pokec and 1 minute for NBA.

As the training procedure has not changed drastically
compared to the different baselines (please refer to Section
3.3), the time and memory complexity as compared to the
baselines remains similar.

4.3 Metrics
Fairness Metrics We strive to create a metric for SP (EO).
The definition in Eq. 1 (Eq. 2), can be formally written as:
P(Ŷ = y|A = a1) = P(Ŷ = y|A = a2)

(P(Ŷ = y|Y = y,A = a1) = P(Ŷ = y|Y = y,A = a2))
(8)

Where a1, a2 ∈ A and y ∈ Y. The values of P(Ŷ = y|A =

a) (P(Ŷ = y|Y = y,A = a)) are calculated from the test-
set as follows: given all samples with sensitive attribute a
(and label y), we calculate the proportion of samples that
where labeled y by the model. As we handle a binary sensi-
tive attribute, given a label y ∈ Y, we calculate the absolute
difference between the two sensitive attribute values:

∆SP (y) = |P(Ŷ = y|A = 0)− P(Ŷ = y|A = 1)|
(∆EO(y) =

|P(Ŷ = y|Y = y,A = 0)− P(Ŷ = y|Y = y,A = 1)|)
(9)

According to Eq. 8, our goal is to have both probabilities
equal. Therefore, we desire ∆SP (y) (∆EO(y)) to strive to
0. As in most cases, most classes can be fairly classified, we
are interested in measuring the worst class fairness perfor-
mance, therefore, we aggregate ∆SP (y) (∆EO(y)) for all
labels using the max operator to get a final scalar metric:

∆SP = max({∆SP (y)|y ∈ Y})
(∆EO = max({∆EO(y)|y ∈ Y}))

(10)

As we propose an equalized odds architecture, ∆EO is our
main fairness metric.

Performance Metrics As our main classification metric,
we used the F1 score. We examined both the micro F1 score,
which is computed globally based on the true and false pre-
dictions, and the macro F1 score, computed per each class
and averaged across all classes. For completeness, we also
report the Accuracy (ACC).

5 Experimental Results
In this section, we compare EqGNN to the baselines over
numerous datasets (Section 5.1). We then demonstrate the
importance of λ (Section 5.2) and the permutation loss (Sec-
tion 5.3).For comparison over synthetic datasets and quali-
tative examples see the Appendix.

55 60 65

8

10

=0.01
=0.1
=1.0
=10.0
=100.0

(a) ∆EO(%)

55 60 65
2

4

6

8
=0.01
=0.1
=1.0
=10.0
=100.0

(b) ∆SP (%)

Figure 2: Accuracy for different λ values for the Pokec-
gender dataset. Lower-right is better.

5.1 Main Result

Table 2 reports the results of EqGNN and baselines over the
datasets with respect to the performance and fairness met-
rics. We can notice that, while the performance metrics are
very much similar between all baselines (apart from De-
bias in Pokec-region), EqGNN outperforms all other base-
lines in both fairness metrics. An interesting observation is
that Debias is the second best, after EqGNN, to improve
the EO metric, without harming the performance metrics.
This can be explained as it is the only baseline to opti-
mize with respect to EO. Additionally, Debias has gained
fairness in Pokec-region, but at the cost of performance.
This is a general phenomena: the lower the performance,
the better the fairness. For example, when the performance
is random, surely the algorithm doesn’t prefer any particu-
lar group and therefore is extremely fair. Here, EqGNN is
able to both optimize the fairness metrics while keeping the
performance metrics high. The particularly low performance
demonstrated by FairGNN was also reproduced on the au-
thors original code and datasets using different seeds. Sur-
prisingly, EqGNN outperforms both SP and EO. This can be
explained as while in the binary case there is a trade-off be-
tween the two metrics, there is no theoretical trade-off in the
case of multi-class (Barocas, Hardt, and Narayanan 2019).

5.2 The Discriminator for Bias Reduction

As a second analysis, we demonstrate the importance of the
λ parameter with respect to the performance and fairness
metrics. The λ hyper-parameter serves as a regularization
for task performance as opposed to fairness. High values
of λ cause the discriminator EO regulation on the classifier
to be higher. While EqGNN results reported in this paper
use λ = 1 for Pokec datasets, and λ = 0.1 for NBA, we
show additional results for λ ∈ {0.01, 0.1, 1, 10, 100}. In
Figure 2, we can observe that the selected λs show best re-
sults for Pokec-gender, while similar results where shown
over Pokec-region and NBA and for all metrics. Obviously,
enlarging the λ results in a more fair model but at the cost of
performance. The λ hyper-parameter is an issue of priority:
depending on the task, one should decide what should be the
performance vs. fairness prioritization. Therefore, EqGNN
can be used with any desired λ where we chose λ = 1 as it
is the elbow of the curve.

8338

Dataset Metrics No-Fairness SP Optimization EO Optimization Ablations
GCN FairGNN Debias EqGNN Unpaired Paired Permutation/h

Pokec-
gender

∆EO (%) 12.3± 1.0 13.7± 1.1 11.1± 0.7 9.4± 0.8 10.9± 1.1 10.5± 0.6 11.4± 0.9
∆SP (%) 8.4± 0.6 10.2± 0.4 8.1± 0.6 4.2± 0.3 5.8± 0.8 3.9± 0.4 7.2± 1.1
ACC (%) 65.1± 0.2 65.2± 0.2 65.0± 0.2 65.4± 0.2 65.2± 0.4 62.5± 0.7 66.0± 0.4

F1-macro (%) 61.2± 0.2 61.3± 0.2 61.1± 0.2 61.3± 0.2 61.1± 0.3 58.6± 0.6 61.7± 0.3
F1-micro (%) 66.5± 0.2 66.6± 0.2 66.5± 0.2 66.9± 0.2 66.7± 0.4 63.8± 0.7 67.5± 0.3

Pokec-
region

∆EO (%) 17.3± 1.2 17.2± 1.2 15.8± 1.1 11.2± 1.3 15.5± 2.1 13.5± 2.1 16.5± 1.8
∆SP (%) 8.4± 0.4 8.2± 0.5 7.1± 0.4 4.1± 0.5 6.4± 0.6 4.2± 0.7 7.9± 0.5
ACC (%) 64.9± 0.2 64.1± 0.3 63.1± 0.3 65.1± 0.3 64.2± 0.4 62.9± 0.5 65.2± 0.2

F1-macro (%) 61.0± 0.2 60.4± 0.2 59.6± 0.2 61.3± 0.2 60.3± 0.3 59.3± 0.4 61.2± 0.2
F1-micro (%) 66.4± 0.2 65.4± 0.3 64.4± 0.3 66.5± 0.3 65.6± 0.4 64.2± 0.5 66.7± 0.2

NBA

∆EO (%) 25.9± 2.0 24.9± 1.9 24.0± 1.6 22.1± 2.1 22.7± 1.9 25.1± 1.8 22.4± 1.9
∆SP (%) 9.3± 1.4 8.0± 1.1 8.0± 1.0 7.0± 1.2 7.5± 0.8 7.3± 1.1 7.1± 0.9
ACC (%) 72.9± 0.8 71.6± 1.0 72.9± 0.7 72.7± 0.9 70.9± 1.1 72.7± 0.7 72.0± 0.9

F1-macro (%) 72.7± 0.8 70.6± 1.3 72.3± 0.7 72.2± 0.9 68.8± 1.7 71.9± 0.8 70.9± 1.2
F1-micro (%) 72.8± 0.8 70.8± 1.4 72.6± 0.7 72.4± 0.9 69.2± 1.7 72.2± 0.8 71.2± 1.2

Table 2: Main Fairness and performance results (left), and the comparison of different loss functions (right).

5.3 The Importance of the Permutation Loss
As an ablation study, we compare different loss functions
for the discriminator. We choose to compare the permuta-
tion loss with three different loss functions: (1) Unpaired:
Inspired by Romano, Bates, and Candès (2020), an unpaired
binary cross-entropy loss as presented in Eq. 4. The loss is
estimated by a classifier that predicts if a sample represents a
real sensitive attribute or a dummy. (2) Permutation/h: A per-
mutation loss without concatenating the hidden representa-
tion hi to the discriminator samples, while leaving the sam-
ple to be (Yi,Ai, Ãi, Ŷi). (3) Paired: A paired loss:

min
θF

max
θD

Ladv =

EÃ∼PA|Y(A|Y)[σ(D(Y || A || F (X,G) || h))

− σ(D(Y || Ã || F (X,G) || h))]

(11)

where σ is the Sigmoid activation. This loss is the known
paired student t-test with a neural network version of it (as
demonstrated by Lopez-Paz and Oquab (2017) on the un-
paired t-test). Implementation of this loss when summing
the absolute differences yielded poor results. We therefore,
report a version of this loss with a summation over non ab-
solute differences. The results of the different loss functions
are reported at the right side of Table 2. One can notice that
all loss functions have gained fairness over our baselines (as
reported in the left side of the Table), while the permuta-
tion loss with the hidden representation h, outperforms the
others, and specifically Permutation/h. This implies that the
hidden representation is important. In the Pokec datasets,
the performance metrics of all losses, apart from the paired
loss, are not impacted. We hypothesize this is caused due to
its non-convexity in adversarial settings. Additionally, the
paired loss demonstrates the same phenomena again: the
lower the performance, the better the fairness. In the NBA
dataset we do not see much difference between the loss func-
tions. This can be explained due to the size of the graph.
However, we do see that the permutation loss is the only
one to improve fairness metrics while not hurting the per-
formance metrics. Finally, we can notice that, paired loss
functions (the permutation loss and the paired loss) perform

better than the unpaired loss (apart from NBA, where the
unpaired loss hurts the performance metrics). This can be
explained by our paired problem, where we check for the
difference between two scenarios of a node (real and fake).
This illustrates the general importance of a paired loss func-
tion for paired problems.

6 Conclusions

In this work, we explored fairness in graphs. Unlike previ-
ous work which optimize the statistical parity (SP) fairness
criterion, we present a method that learns to optimize equal-
ized odds (EO). While SP promises equal chances between
groups, it might cripple the utility of the prediction task as
it does not give equalized opportunity as EO. We propose a
method that trains a GNN model to neglect information re-
garding the sensitive attribute only with respect to its label.
Our method pretrains a sampler to learn the distribution of
the sensitive attributes of the nodes given their labels. We
then continue training a GNN classifier while regularizing
it with a discriminator that discriminates between true and
sampled sensitive attributes using a novel loss function – the
“permutation loss”. This loss allows comparison of pairs.
For the unique setup of adversarial learning over graphs, we
show it brings performance gains both in utility and in EO.
While this work uses the loss for the specific case of nodes
in two scenarios: fake and true, this loss is general and can
be used for any paired problem. For future work, we wish
to test the novel loss over additional architectures and tasks.
We draw the reader attention that the C2ST discriminator
is the commonly used discriminator for many architectures
that work over paired data, e.g. the pix2pix architecture. Re-
placing it with a paired discriminator might create a much
powerful architecture.

We empirically show that our method outperforms base-
lines using fairness-performance metrics, over datasets with
different attributes and sizes. To the best of our knowledge,
we are the first to optimize GNNs for the EO criteria and
hope it will serve as a beacon for works to come.

8339

References
Barocas, S.; Hardt, M.; and Narayanan, A. 2019. Fair-
ness and Machine Learning. fairmlbook.org. http://www.
fairmlbook.org.
Belkin, M.; and Niyogi, P. 2001. Laplacian eigenmaps
and spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems, vol-
ume 14, 585–591.
Bose, A.; and Hamilton, W. 2019. Compositional fairness
constraints for graph embeddings. In International Confer-
ence on Machine Learning, 715–724. PMLR.
Buyl, M.; and De Bie, T. 2020. DeBayes: a Bayesian method
for debiasing network embeddings. In International Confer-
ence on Machine Learning, 1220–1229. PMLR.
Cui, Z.; Henrickson, K.; Ke, R.; and Wang, Y. 2019. Traffic
graph convolutional recurrent neural network: A deep learn-
ing framework for network-scale traffic learning and fore-
casting. IEEE Transactions on Intelligent Transportation
Systems.
Dai, E.; and Wang, S. 2021. Say No to the Discrimination:
Learning Fair Graph Neural Networks with Limited Sensi-
tive Attribute Information. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining,
680–688.
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel,
R. 2012. Fairness through awareness. In Proceedings of the
3rd innovations in theoretical computer science conference,
214–226.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, 855–864.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017. Induc-
tive representation learning on large graphs. In Proceedings
of the 31st International Conference on Neural Information
Processing Systems, 1025–1035.
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of Op-
portunity in Supervised Learning. Advances in Neural In-
formation Processing Systems, 29: 3315–3323.
Kang, B.; Lijffijt, J.; and Bie, T. D. 2019. Conditional Net-
work Embeddings. International Conference on Learning
Representations.
Kang, J.; He, J.; Maciejewski, R.; and Tong, H. 2020. In-
FoRM: Individual Fairness on Graph Mining. In Proceed-
ings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 379–389.
Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. International
Conference on Learning Representations.
Lopez-Paz, D.; and Oquab, M. 2017. Revisiting classifier
two-sample tests. In International Conference on Learning
Representations.

Obermeyer, Z.; Powers, B.; Vogeli, C.; and Mullainathan, S.
2019. Dissecting racial bias in an algorithm used to manage
the health of populations. Science, 366(6464): 447–453.
Odén, A.; Wedel, H.; et al. 1975. Arguments for Fisher’s
permutation test. The Annals of Statistics, 3(2): 518–520.
Pedreshi, D.; Ruggieri, S.; and Turini, F. 2008.
Discrimination-aware data mining. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, 560–568.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 701–710.
Rahman, T. A.; Surma, B.; Backes, M.; and Zhang, Y. 2019.
Fairwalk: Towards Fair Graph Embedding. In Proceedings
of the Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19, 3289–3295.
Romano, Y.; Bates, S.; and Candès, E. J. 2020. Achieving
Equalized Odds by Resampling Sensitive Attributes. Ad-
vances in Neural Information Processing Systems.
Roweis, S. T.; and Saul, L. K. 2000. Nonlinear dimen-
sionality reduction by locally linear embedding. science,
290(5500): 2323–2326.
Singer, U.; Guy, I.; and Radinsky, K. 2019. Node Embed-
ding over Temporal Graphs. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intel-
ligence, IJCAI-19, 4605–4612. International Joint Confer-
ences on Artificial Intelligence Organization.
Singer, U.; Radinsky, K.; and Horvitz, E. 2020. On biases of
attention in scientific discovery. Bioinformatics. Btaa1036.
Takac, L.; and Zabovsky, M. 2012. Data analysis in public
social networks. In International scientific conference and
international workshop present day trends of innovations,
volume 1.
Tenenbaum, J. B.; De Silva, V.; and Langford, J. C. 2000.
A global geometric framework for nonlinear dimensionality
reduction. science, 290(5500): 2319–2323.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. Interna-
tional Conference on Learning Representations.
Wang, H.; and Li, Z. 2017. Region Representation Learning
via Mobility Flow. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, 237–
246.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learn-
ing Systems.
Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial Temporal
Graph Convolutional Networks for Skeleton-Based Action
Recognition. In Proceedings of the AAAI conference on ar-
tificial intelligence, volume 32.
Yan, S.; Xu, D.; Zhang, B.; Zhang, H.-J.; Yang, Q.; and Lin,
S. 2006. Graph embedding and extensions: A general frame-
work for dimensionality reduction. IEEE transactions on
pattern analysis and machine intelligence, 29(1): 40–51.

8340

Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-temporal graph
convolutional networks: a deep learning framework for traf-
fic forecasting. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence, 3634–3640.
Zhang, B. H.; Lemoine, B.; and Mitchell, M. 2018. Mitigat-
ing unwanted biases with adversarial learning. In Proceed-
ings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, 335–340.

8341

