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Abstract

It is important to estimate the local average treatment effect
(LATE) when compliance with a treatment assignment is in-
complete. The previously proposed methods for LATE esti-
mation required all relevant variables to be jointly observed
in a single dataset; however, it is sometimes difficult or even
impossible to collect such data in many real-world problems
for technical or privacy reasons. We consider a novel prob-
lem setting in which LATE, as a function of covariates, is
nonparametrically identified from the combination of sepa-
rately observed datasets. For estimation, we show that the di-
rect least squares method, which was originally developed for
estimating the average treatment effect under complete com-
pliance, is applicable to our setting. However, model selection
and hyperparameter tuning for the direct least squares esti-
mator can be unstable in practice since it is defined as a so-
lution to the minimax problem. We then propose a weighted
least squares estimator that enables simpler model selection
by avoiding the minimax objective formulation. Unlike the
inverse probability weighted (IPW) estimator, the proposed
estimator directly uses the pre-estimated weight without in-
version, avoiding the problems caused by the IPW methods.
We demonstrate the effectiveness of our method through ex-
periments using synthetic and real-world datasets.

Introduction
Estimating the causal effects of treatment on an outcome of
interest is central to optimal decision making in many real-
world problems, such as policymaking, epidemiology, ed-
ucation, and marketing (Skovron and Titiunik 2015; Wood
et al. 2008; Oreopoulos 2006; Varian 2016). However, the
identification and estimation of treatment effects usually re-
lies on the untestable assumption referred to as unconfound-
edness, namely, independence between the treatment sta-
tus and potential outcomes (Imbens and Rubin 2015). Vi-
olations of unconfoundedness may occur not only in ob-
servational studies, but also in randomized controlled trials
(RCTs) when compliance to the assigned treatment is not
complete. For example, even if a coupon is distributed ran-
domly to measure its effect on sales, the probability of us-
ing the coupon is likely to depend on the unobserved nature
of the individuals. Moreover, noncompliance can also occur
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regardless of the individual’s intentions. In online advertise-
ment placement, the probability of watching the ad depends
on the bidding strategy of other companies because ads that
are actually displayed are determined through the real-time-
bidding even if one tries to randomly place the ad.

In such cases, it is well known that the local average treat-
ment effect (LATE) can be identified and estimated using the
treatment assignment as an instrumental variable (IV) and
conditions milder than unconfoundedness (Imbens and An-
grist 1994; Angrist, Imbens, and Rubin 1996; Frölich 2007).
LATE is the treatment effect measured for the subpopula-
tion of compliers, individuals who always follow the given
assignment.

We suppose that we cannot observe all relevant variables
in a single dataset for technical or privacy reasons. For exam-
ple, in online-to-offline (O2O) marketing, where treatments
are implemented online and outcomes are observed offline,
it is often difficult to match the records of the same individu-
als observed separately online and offline. Additionally, with
the global anti-tracking movement gaining momentum, it
may become more difficult to combine multiple pieces of in-
formation online as well. Although causal inference by data
combination has been actively studied (Ridder and Moffitt
2007; Bareinboim and Pearl 2016; Lee, Correa, and Barein-
boim 2020), LATE estimation using multiple datasets has
not received much attention despite its practical importance.
We extend the problem setting considered in (Yamane et al.
2018), where two different treatment regimes are available,
to allow for the existence of noncompliance.

For the estimation, we show that the direct estimation
method originally developed for the average treatment effect
(ATE) under the complete compliance (Yamane et al. 2018)
can be applied to the LATE estimation in our setting. How-
ever, their method has a practical issue in that model selec-
tion and hyperparameter tuning can be unstable owing to its
minimax objective formulation. We then propose a weighted
least squares estimator to avoid the minimax objective, and
improve the stability in practice. Unlike the inverse prob-
ability weighted (IPW) estimator (Wooldridge 2002, 2007;
Seaman and White 2013), which is often employed to esti-
mate treatment effects, the proposed estimator directly uses
the estimated propensity-score-difference (PSD) as a weight
without inversion. Therefore, our method can also avoid the
common issue in the IPW methods, that is, high variance at
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points with a propensity score extremely close to zero.
The contributions of this study lie in the following three

parts. First, we show that LATE is identified even when an
outcome and treatment status cannot be observed simulta-
neously in a single dataset, and the treatment assignment is
completely missing. Second, we find that the positivity as-
sumption, which is necessary in the standard setting with
one regime, can be omitted in our setting. We show this
relaxation of the conditions further facilitates data collec-
tion. Third, we develop a novel estimator that enables sim-
pler model selection while maintaining the essence of direct
estimation as much as possible.

Problem Setting
Unlike the standard causal inference studies, we consider
a setting where there are two different assignment regimes
(Yamane et al. 2018), which we term as the two-regime de-
sign (2RD). The concept is quiet general that it only requires
two observational studies, two RCTs or a combination of the
two. We have to be assured that the treatment assignment is
done based on different regimes, i.e. different probabilities
(see Assumption 1.2).

We define our problem using the potential outcome frame-
work (Rubin 1974; Imbens and Rubin 2015). Let K ∈
{0, 1} be a regime indicator, and we use a superscript k =
0, 1 to specify the regime which the variables come from. Let
Y (k) ∈ Y ⊂ R be an outcome of interest, D(k) ∈ {0, 1} be
a binary treatment indicator, Z(k) ∈ {0, 1} be an assignment
indicator and X(k) ∈ X ⊂ Rqx be a qx-dimensional vector
of covariates. D(k)

z is the potential treatment status realized
only when Z(k) = z, and Y (k)

d is the potential outcome re-
alized only when D(k) = d, where z, d ∈ {0, 1}. Using this
notation, we implicitly assume that Z(k) does not have a di-
rect effect on Y (k), but affects Y (k) indirectly through D(k).
This condition, often referred to as the exclusion restriction,
is necessary for Z(k) to be a valid IV. Let Y1, Y0,D1,D0 and
X be the potential variables and covariates in the population
of interest, and we suppose that the iid samples from P (X)
can be obtained as test samples.

Basic Setting
First, we make the following assumption on the relation be-
tween the two regimes.
Assumption 1.

1. P (Y (1)
1 , Y

(1)
0 , D

(1)
1 , D

(1)
0 ,X(1))

= P (Y
(0)
1 , Y

(0)
0 , D

(0)
1 , D

(0)
0 ,X(0))

= P (Y1, Y0, D1, D0,X).
2. P (Z(1) = 1|X(1) = x) ̸= P (Z(0) = 1|X(0) = x) for

any x ∈ X .
By Assumption 1.1, we suppose that the joint distribution

of the potential variables and covariates in each assignment
regime is invariant to each other, and equal to the joint dis-
tribution in the population of interest. This means that the
participants in each regime are random draws from the pop-
ulation of interest. We can still identify LATE even if we
weaken Assumption 1.1 to its conditional version, but the
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Figure 1: Overview of the 2RD.

direct estimation is no longer possible. See Appendix A in
the supplementary material1 for more discussion. Assump-
tion 1.2 indicates that the assignment regimes are different
to each other for any level of the covariates.

Additionally, we make the following assumption neces-
sary for the identification of LATE. Here, A ⊥⊥ B|C means
A and B are conditionally independent given C.

Assumption 2. For k = 0, 1,

1. Y (k)
1 , Y

(k)
0 , D

(k)
1 , D

(k)
0 ⊥⊥ Z(k)|X(k).

2. D(k) = Z(k)D
(k)
1 + (1 − Z(k))D

(k)
0 and Y (k) =

D(k)Y
(k)
1 + (1−D(k))Y

(k)
0 .

3. P (D(k)
1 ≥ D

(k)
0 |X(k)) = 1.

4. P (D(k)
1 = 1|X(k)) ̸= P (D

(k)
0 = 1|X(k)).

Assumption 2.1 states that Z(k) are randomly assigned
within a subpopulation sharing the same level of the co-
variates. The mean independence between the potential vari-
ables and the treatment assignment conditional on covariates
is sufficient for identifying LATE, but we maintain Assump-
tion 2.1 as it is typical to assume the full conditional inde-
pendence in the causal inference literature. Assumption 2.2
relates the potential variables to their realized counterparts.
Assumption 2.3 excludes defiers, those who never follow the
given treatment assignment, from our analysis. Assumption
2.4 is necessary for Z(k) to be a valid IV of D(k). Figure 1
illustrates the data generating process under the 2RD.

Assumption 2 is the direct extension of the standard as-
sumptions used for the LATE estimation (Abadie 2003;
Frölich 2007; Tan 2006; Ogburn, Rotnitzky, and Robins
2015) to the 2RD. However, we omit the condition referred
to as positivity 0 < P (Z(k) = 1|X(k)) < 1 as it is
unnecessary in the 2RD. Therefore, it is possible to set
P (Z(0) = 1|X(0)) = 0 as long as Assumption 1.2 is sat-
isfied. We term the design with P (Z(1) = 1|X(1)) > 0 for
any X(1) and P (Z(0) = 1|X(0)) = 0 for any X(0) as the
one-experiment 2RD (1E2RD) since an experiment is con-
ducted only for those with k = 1, and a natural state without
any intervention is observed for those with k = 0.

Although (Yamane et al. 2018) does not mention anything
on this point, it is of great practical importance since the
1E2RD is much easier to implement than the general 2RD,
and extends the plausibility of our setting. In the 1E2RD,

1https://github.com/kazushino/AAAI22
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we only have to conduct one experiment or collect one set
of observational data just like the standard setting for causal
inference. All we need in addition is a dataset collected from
those without any intervention. Such data may be available
at no additional cost, for example, when there is appropriate
open data published by the government.

Hereafter, we abuse the notation by omitting the super-
script on the potential variables and covariates unless this
causes confusion.

Identification
The parameter of our interest is LATE as a function of co-
variatesX , defined as

µ(X) := E[Y1 − Y0|D1 > D0,X].

It measures how covariates X affect the average treatment
effect within the subpopulation of compliers. The following
theorem shows that µ(X) is nonparametrically identified in
an unusual form in our setting.
Theorem 1. Under Assumption 1 and 2,

µ(X) =
E[Y (1) − Y (0)|X]

E[D(1) −D(0)|X]
. (1)

The proof can be found in Appendix B in the supplemen-
tary material. Notably, this form coincides with the identifi-
cation result of ATE in (Yamane et al. 2018), which means
that we can also estimate µ(X) from the same combination
of datasets proposed in (Yamane et al. 2018) under appropri-
ate assumptions. This is a rather powerful result in practice
sinceZ(k) is not required despite the presence of noncompli-
ance. Moreover, it is obvious that p(k)d := P (D(k) = 1) and
P (X|D(k) = 1) are sufficient to identify the denominator

of (1) sinceE[D(k)|X] can be identified as P (X|D(k)=1)p
(k)
d

P (X)

by applying the Bayes’ theorem.
The point is that we can identify µ(X) as a combina-

tion of functions depending only on covariates X in our
setting. This property allows us to use a direct estimation
method for µ(X). We can identify LATE as µ(X) =
E[Y |Z=1,X]−E[Y |Z=0,X]
E[D|Z=1,X]−E[D|Z=0,X] under the standard assumptions
(Abadie 2003; Frölich 2007; Tan 2006; Ogburn, Rotnitzky,
and Robins 2015), but we cannot rewrite it as a combination
of functions depending only on covariates (see Appendix A).

Theorem 1 also suggests the usefulness of the 1E2RD.
We can simplify (1) when we implement the 1E2RD under
one-sided noncompliance, where individuals assigned to the
control group never receive treatment, but they have a choice
if assigned to the treatment group.

Corollary 1. Assume P (Z(0) = 1|X) = 0 (1E2RD) and
P (D0 = 1|X) = 0 (one-sided noncompliance) in addition
to Assumption 1 and 2. Then, E[Y (0)|X] = E[Y0|X] and

µ(X) =
E[Y (1) − Y (0)|X]

E[D(1)|X]
.

This corollary shows that we can reduce the number of
necessary datasets in the 1E2RD under one-sided noncom-
pliance. This fact not only facilitates the data collection,

but also benefits the estimation since the denominator is
now just a propensity score, thus estimable accurately by,
for example, the Positive-Unlabeled (PU) learning (Elkan
and Noto 2008; du Plessis, Niu, and Sugiyama 2014, 2015;
Kiryo et al. 2017) with the logistic loss.

Although one-sided noncompliance is often associated
with RCTs, some observational studies also fit with the
framework (Frölich and Melly 2013; Kennedy 2020). In the
case of one-sided noncompliance, we can also consider our
problem as the estimation of the average treatment effect on
the treated (ATT) since LATE is equal to ATT under one-
sided noncompliance and the other standard assumptions
(Frölich and Melly 2013; Donald, Hsu, and Lieli 2014).

Data Collection Scheme
We assume that the joint samples of (Y (k), D(k), Z(k),X)
are not available. By Theorem 1, the following separate
datasets and the estimate of p(k)d are sufficient for estimat-
ing µ(X):

{x(k)
di }

n
(k)
d

i=1

iid∼ P (X|D(k)
= 1), {(y(k)

i ,x
(k)
i )}n(k)

i=1
iid∼ P (Y

(k)
,X),

for k = 0, 1. This setting is much easier to apply to real-
world situations than the standard setting where the joint
samples are required for every individual.

We can interpret this data collection scheme in two ways.
First, it can be regarded as a version of the repeated cross-
sectional (RCS) design (Moretti 2004; Athey and Imbens
2006; Güell and Hu 2006; Ridder and Moffitt 2007; Lebo
and Weber 2015) with k = 0, 1 representing the time points
before and after the assignment regime switches, respec-
tively. The 1E2RD is also possible in this case by setting
P (Z(0) = 1|X(0)) = 0. This means collecting data for
k = 0 at some point before an experiment is conducted.
Generally, although panel data are advantageous for statisti-
cal analyses because they follow the same individuals over
multiple time periods, RCS data have some advantages over
panel data. RCS data are easier and cheaper to collect in
many cases. Consequently, they are often more representa-
tive of the population of interest and larger in sample size
than panel data.

However, there is a concern regarding the validity of As-
sumption 1.1 when we use RCS data since the potential vari-
ables may change over time. We need some sort of side in-
formation to be confident about the use of RCS data in our
setting as we cannot directly test whether the potential vari-
ables remain unchanged.

The second interpretation is to collect data with k = 0, 1
at the same time by randomly splitting the population of in-
terest. If an experimenter is able to surely perform random
splitting, this approach is favorable since we do not have to
worry about the validity of Assumption 1.1. The implemen-
tation of random splitting is easy in the case of RCTs.

One specific example of our setting is O2O marketing.
To measure the effect of an online ads on sales in physical
stores, we usually cannot link the data of those who watched
the ads with that of those who shopped at the stores. How-
ever, it is relatively easy to separately collect data from those
who watch the ads and the purchasers. In this case, data can
be collected by either RCS design or random splitting.
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Another example is when estimating the effect of a treat-
ment that takes a certain period of time to take effect. For in-
stance, it is desirable to use panel data to estimate the effect
of job training on future earnings. However, individuals may
gradually drop out of the survey, and the probability of the
attrition can depend on unobserved variables (Hirano et al.
2001; Nevo 2003). Therefore, it is easier to collect RCS data
than to construct balanced panel data. Because we do not
need to observe the outcome and treatment status simultane-
ously, we are more likely to be able to collect even larger and
more representative data than with a normal RCS design.

Related Works
There have been many proposals for the estimation of µ(X)
from the joint samples (Little and Yau 1998; Hirano et al.
2000; Abadie 2003; Tan 2006; Okui et al. 2012; Ogburn,
Rotnitzky, and Robins 2015; Wang et al. 2021). These in-
clude estimation via the parametric specification of the lo-
cal average response function E[Yd|D1 > D0,X] (Abadie
2003), doubly robust estimators (Okui et al. 2012; Ogburn,
Rotnitzky, and Robins 2015) and estimation with a binary
outcome (Wang et al. 2021), to name a few. However, the es-
timation of µ(X) by data combination has rarely been con-
sidered in the literature.

The 2RD has a similar structure to that of the instru-
mented difference-in-differences (IDID) (Ye et al. 2021).
The main differences between them are: the conditional in-
dependence assumption in IDID is strictly milder than our
Assumption 2.1, but IDID requires Z, and the direct esti-
mation is not possible. Which setting is more plausible and
practical depends on an actual situation.

Our problem setting is also closely related to the two-
sample IV (TSIV) estimation (Angrist and Krueger 1992; In-
oue and Solon 2010; Pacini and Windmeijer 2016; Choi, Gu,
and Shen 2018; Buchinsky, Li, and Liao 2021), where the
outcome, IVs, and covariates are not jointly observed in a
single dataset. Furthermore, the idea of using moments sepa-
rately estimated from different datasets can be dated back to
at least (Klevmarken 1982). Although estimands in the TSIV
estimation are not limited to causal parameters, there have
been some studies on the causal inference in the setting re-
lated to TSIV. They include ATE estimation from samples of
(Y,Z,X) and (D,Z,X) with the existence of unmeasured
confounders (Sun and Miao 2022) and causal inference us-
ing samples from heterogeneous populations (Zhao et al.
2019; Shu and Tan 2020). Our setting differs from theirs in
that we have to observe D only when D = 1, and we do
not need Z at all. Particularly, it is of great practical benefit
since samples of those who do not receive treatment are of-
ten rather difficult to observe. Although our setting requires
two regimes, it rather opens up the possibility of LATE esti-
mation in the real world since the 1E2RD is possible.

Another approach for the causal inference from separately
observed samples is the partial identification (Manski 2003;
Tamer 2010; Molinari 2020), that is, deriving bounds for
the treatment effects rather than imposing strong assump-
tions sufficient for the point identification. In (Fan, Sherman,
and Shum 2014, 2016), the moment inequality proposed in
(Cambanis, Simons, and Stout 1976) was applied to derive

the sharp bounds for ATE when only samples of (Y,D) and
(D,X) are available. The difficulty of applying their ap-
proach to the estimation of a treatment effect conditional on
covariates is that it requires conditional distribution func-
tions or conditional quantile functions, which are usually
difficult to estimate accurately. Moreover, it is sometimes
difficult to derive informative bounds for treatment effects
without imposing strong assumptions depending on the data
generating process (Molinari 2020).

Existing Methods
Although the LATE estimation in our specific setting has
not been studied before, some existing methods can be ap-
plied. We discuss the advantages and disadvantages of these
methods especially in terms of accuracy and model selec-
tion. Since the true value of treatment effects is not observ-
able by the fundamental problem of causal inference (Hol-
land 1986), model selection and hyperparameter tuning are
substantial issues in practice (Rolling and Yang 2014; Alaa
and van der Schaar 2018; Saito and Yasui 2020).

Separate Estimation
A naive estimation method for µ(X) is to separately esti-
mate the components and combine them as

µ̂sep(x) =
Ê[Y (1)|X = x]− Ê[Y (0)|X = x]

Ê[D(1)|X = x]− Ê[D(0)|X = x]
, (2)

where a hat denotes an estimator. E[D(k)|X] can be esti-
mated by the PU learning (Elkan and Noto 2008; du Plessis,
Niu, and Sugiyama 2014, 2015; Kiryo et al. 2017) with the

logistic loss by using {x(k)
di }

n
(k)
d

i=1 as positive data, and the
covariates in {(y(1)i ,x

(1)
i )}n(1)

i=1 and {(y(0)i ,x
(0)
i )}n(0)

i=1 as un-
labeled data. Separate estimation is easy to implement, but
usually does not provide a good estimate since it has four
possible sources of error.

One advantage of the separate estimation is that the model
selection can also be naively performed by choosing the
best model for each component. We can easily calculate
the model selection criteria, such as the mean squared er-
ror (MSE) for each component from the separately observed
datasets. However, the resulting µ̂sep may perform poorly
because it does not necessarily minimize the model selection
criterion in terms of the true µ (Rolling and Yang 2014).

We can alleviate the drawback of the separate estima-
tion by directly estimating the numerator and denomina-
tor in (2). Let T := KD(1) − (1 − K)D(0) and U :=
KY (1)−(1−K)Y (0) be the auxiliary variables for the nota-
tional and computational convenience, and assume P (K =
1|X) = 0.5 without loss of generality. Then, we can rewrite
the expression in Theorem 1 as µ(X) = ν(X)/π(X),
where ν(X) := E[U |X] and π(X) := E[T |X]. To esti-
mate ν(X) and π(X), we can construct combined datasets

{(ti,xti, rti)}nt
i=1 :=

{(
(−1)

1−k
,x

(k)
di ,

p̂
(k)
d (n

(1)
d + n

(0)
d )

2n
(k)
d

)}n
(k)
d

,1

i=1,k=0

{(ui,xui, rui)}nu
i=1 :=

{(
(−1)

1−k
y
(k)
i ,x

(k)
i ,

n(1) + n(0)

2n(k)

)}n(k),1

i=1,k=0
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from {x(k)
di }

n
(k)
d

i=1 and {(y(k)i ,x
(k)
i )}n(k)

i=1 , respectively, where
nt := n

(1)
d + n

(0)
d and nu := n(1) + n(0).

We can approximate the expectation of a product of any
function f ofX and T or U by the simple sample average:

1

nt

nt∑
i=1

rtitif(xti),
1

nu

nu∑
i=1

ruiuif(xui).

An estimator of ν(X) can be obtained by any regression
method using the above combined dataset, while we need
a little twist to obtain an estimator of the π(X). See Ap-
pendix C in the supplementary material for the direct esti-
mation methods for the PSD.

Direct Least Squares Estimation
We can apply the direct least squares (DLS) method (Ya-
mane et al. 2018) originally proposed for ATE estimation
under complete compliance. Motivated by the drawbacks of
the separate estimation, the DLS directly estimates µ(X),
which is advantageous not only in performance but also
in computational efficiency. The following theorem corre-
sponds to Theorem 1 in (Yamane et al. 2018).

Theorem 2. Assume ν ∈ L2, where L2 := {f : X 7→
R|E[f(X)2] <∞} in addition to Assumption 1 and 2. Fur-
thermore, define Hf (X) := π(X)f(X)− ν(X). Then,

µ(X) = argmin
f∈L2

E
[
Hf (X)2

]
. (3)

Theorem 2 immediately follows from Theorem 1. In
what follows, we show that the minimizer of the prob-
lem (3) can be estimated without going through the esti-
mation of ν and π. Since (Hf (X)− g(X))

2 ≥ 0 for any
square integrable function g ∈ L2, we have Hf (X)2 ≥
2Hf (X)g(X)−g(X)2 by expanding the square. The equal-
ity holds at g(X) = Hf (X) for any f , which maximizes
2Hf (X)g(X)− g(X)2 with respect to g. Hence,

µ(X) = argmin
f∈L2

max
g∈L2

J(f, g), (4)

where J(f, g) := E
[
2Hf (X)g(X)− g(X)2

]
. Rewriting

J(f, g) yields

J(f, g) = 2E[Tf(X)g(X)]− 2E[Ug(X)]− E[g(X)2]. (5)

While the objective functional in (3) requires the conditional
mean estimators, this form can be estimated based on the
sample averages as

Ĵ(f, g) =
2

nt

nt∑
i=1

rtitif(xti)g(xti)−
2

nu

nu∑
i=1

ruiuig(xui)

− 1

nu

nu∑
i=1

ruig(xui)
2.

We can implement the DLS estimation of µwith an arbitrary
regularization term Ω in practice:

µ̂dls(x) = argmin
f∈F

max
g∈G

Ĵ(f, g) + Ω(f, g),

where F and G are model classes for f and g, respectively.

Although any model can be trained by optimizing the
model parameters to minimize the above objective func-
tional, a practically useful choice is a linear-in-parameter
model. Set F = {fα : x 7→ α⊤ϕ(x)|α ∈ Rqf } and
G = {gβ : x 7→ β⊤ψ(x)|β ∈ Rqg}, where ϕ and ψ are
qf - and qg-dimensional basis functions, respectively. Also,
define ϕi := ϕ(xi) and ψ(xi) := ψ(xi). Using the ℓ2-
regularizer, we have

Ĵ(f, g) + Ω(f, g) = 2α⊤Aβ − 2β⊤b− β⊤Cβ

+ λfα
⊤α+ λgβ

⊤β,

where

A :=
1

nt

nt∑
i=1

rtitiϕtiψ
⊤
ti , b :=

1

nu

nu∑
i=1

ruiuiψui,

C :=
1

nu

nu∑
i=1

ruiψuiψ
⊤
ui,

and λf and λg are some positive constants. The advantage
of this formulation with the linear-in-parameter models and
ℓ2-regularizer is that we have an analytical solution. The so-
lution to the inner maximization is given by

β̂ = (C + λgIqg )
−1(A⊤α− b),

where Iqg denotes the qg × qg identity matrix. We can then
obtain the DLS estimator ofα by substituting β̂ and solving
the outer minimization:

α̂dls =
{
A(C + λgIqg )

−1
A

⊤
+ λfIqf

}−1
A(C + λgIqg )

−1
b.

For the model selection, we can choose a model that
minimizes Ĵ(f̂ , ĝ) evaluated on a validation set. However,
as pointed out in (Yamane et al. 2018), one cannot tell if
Ĵ(f̂ , ĝ) is small because f̂ is a good solution to the outer
minimization, or ĝ is a poor solution to the inner maximiza-
tion. For this reason, µ̂dls(x) := α̂⊤

dlsϕ(x) can be unstable,
and one cannot be confident about which model is the best.
The increased dimensionality of the search space because
of the need to simultaneously select models for f and g can
also make the model selection based on Ĵ(f̂ , ĝ) challenging.

Proposed Method
We propose a novel estimator that enables simpler model
selection than the DLS estimation while maintaining the
essence of direct estimation as much as possible. We avoid
the minimax formulation of the objective functional as in (4)
by estimating µ as a solution to the weighted least squares
problem derived from the original problem (3). It can be con-
structed based on the sample averages from the separately
observed samples like the DLS estimator, except we need to
estimate π(X) as a weight. We term the proposed estima-
tor as the directly weighted least squares (DWLS) estimator
since the pre-estimated PSD directly appears without inver-
sion in the objective unlike the IPW estimators (Wooldridge
2002, 2007; Seaman and White 2013).

Consider the following weighted least squares problem:

min
f∈L2

E

[
w(X)

π(X)
Hf (X)2

]
=: Q0(f |w), (6)
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Shape n qx DWLS IWLS SEP DLS
1 0.65 ± 1.54 5.04 ± 16.5 1.80 ± 2.38 0.15 ± 0.20

10K 5 0.40 ± 0.91 1.30 ± 3.21 3.46 ± 2.71 0.93 ± 1.17

hcon
10 0.65 ± 1.00 4.96 ± 14.4 4.18 ± 3.81 1.81 ± 2.82
1 0.22 ± 0.46 53.5 ± 372 1.04 ± 0.93 0.08 ± 0.13

50K 5 0.06 ± 0.07 0.35 ± 0.88 2.13 ± 2.00 0.41 ± 0.67
10 0.10 ± 0.11 1.22 ± 6.07 3.52 ± 1.92 0.41 ± 0.52
1 0.09 ± 0.15 0.51 ± 1.25 0.25 ± 0.30 0.39 ± 0.30

10K 5 0.14 ± 0.08 1.32 ± 6.72 0.58 ± 0.41 0.88 ± 0.52

hlin
10 0.61 ± 0.27 4.73 ± 22.4 1.39 ± 0.65 1.53 ± 0.75
1 0.02 ± 0.03 6.79 ± 53.1 0.11 ± 0.11 0.36 ± 0.33

50K 5 0.04 ± 0.03 0.12 ± 0.16 0.36 ± 0.24 1.04 ± 0.53
10 0.32 ± 0.10 11.9 ± 112 0.76 ± 0.26 1.61 ± 0.89
1 0.19 ± 0.26 0.72 ± 1.82 0.30 ± 0.31 0.32 ± 0.29

10K 5 0.29 ± 0.23 12.1 ± 113 0.58 ± 0.40 0.97 ± 0.56

hlog
10 0.72 ± 0.31 2.76 ± 7.65 1.11 ± 0.49 1.40 ± 0.72
1 0.06 ± 0.08 0.30 ± 0.88 0.22 ± 0.16 0.32 ± 0.30

50K 5 0.10 ± 0.04 0.18 ± 0.13 0.56 ± 0.31 0.75 ± 0.62
10 0.30 ± 0.10 55.3 ± 550 0.86 ± 0.28 1.20 ± 0.99

Table 1: The mean and standard deviation of the MSE over 100 trials. The results are multiplied by 100 (constant), 10 (linear)
and 10 (logistic), respectively. The bold face denotes the best and comparative results according to the two-sided Wilcoxon
signed-rank test at the significance level of 5%.

wherew(X) is some weight depending onX . Rewriting the
objective yields

Q0(f |w) = E[Tw(X)f(X)
2
] − 2E [Uw(X)f(X)] + E[S], (7)

where S := w(X)
π(X) ν(X)2 is a constant and can therefore

be safely ignored in the optimization. Choosing w = π
clearly reduces the problem (6) to (3). Therefore, we can
plug-in the pre-estimated π(X) as a weight in practice to
find a minimizer of the problem (3). However, π(X) may
not be the proper weight since it takes a negative value when
P (Z(1) = 1|X) < P (Z(0) = 1|X). We can estimate
Q(f |π̂) := Q0(f |π̂) − E[S] based on the sample averages
using the separately observed samples as

Q̂(f |π̂) =
1

nt

nt∑
i=1

rtitiπ̂(xti)f(xti)
2 −

2

nu

nu∑
i=1

ruiuiπ̂(xui)f(xui).

Using the linear-in-parameter model for f and the ℓ2-
regularizer as in the previous section, we have

Q̂(f |π̂) + Ω(f) = α⊤Ãα− 2α⊤b̃+ λfα
⊤α,

where

Ã :=
1

nt

nt∑
i=1

rtitiπ̂(xti)ϕtiϕ
⊤
ti, b̃ :=

1

nu

nu∑
i=1

ruiuiπ̂(xui)ϕui.

The solution to minf∈F Q̂(f |π̂) + Ω(f) can be obtained as
µ̂dwls(x) := α̂

⊤
dwlsϕ(x), where α̂dwls = (Ã+ λfIqf )

−1b̃.
Although the DWLS objective is no longer the MSE,

Q̂(f̂ |π̂) is still a sufficient measure for model selection be-
cause µ̂dwls minimizing this objective is also a good estima-
tor in terms of the true MSE as long as π̂ is sufficiently accu-
rate. Since the DWLS involves only a single minimization,
the model selection is easier than in the DLS estimation.

Remark on the objective formulation We can consider
the following least squares problem instead of (6):

min
f∈L2

E

[
π(X)

w(X)
(f(X)− µ(X))2

]
=: Q′

0(f |w). (8)

This can also be evaluated without ν:

Q′
0(f |w) = E

[
Tf(X)2

w(X)

]
− 2E

[
Uf(X)

w(X)

]
+

π(X)

w(X)
µ(X)2.

We refer to the estimator based on this objective as the
inverse weighted least squares (IWLS) estimator. This es-
timator tends to be imprecise when the PSD is extremely
close to zero, which is a common issue among the IPW esti-
mators (Wooldridge 2002, 2007; Seaman and White 2013).
Although the performance of such estimators can be im-
proved by trimming small probabilities, determining the op-
timal threshold is nontrivial (Lee, Lessler, and Stuart 2011).

Selecting the threshold is more complicated in the case
of the IWLS as the PSD can be negative. At points where
the PSD is close to zero, the absolute value of the weights
increases while the sign errors are more likely to occur. As
a result, a small estimation error in the PSD tends to have
a large impact on the IWLS. On the other hand, the impact
of the estimation error of the PSD on the DWLS estimator
is limited since the absolute value of the weights is small
when a sign error occurs in the PSD estimation. The weight
in the proposed method is confined to [−0.5, 0.5], whereas
the weight in the IWLS is not bounded at all.

Although the unweighted subsampling method has been
recently studied to circumvents weighting samples with the
inverse probability (Wang et al. 2020), it cannot be directly
applied in this case because it requires the denominator to
be a sampling probability.
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Figure 2: Relation between the squared error (Y-axis) and
the PSD (X-axis) for linear µ(X), qx = 5 and n = 10000.
Each point is coloured according to the spatial density.

Performance Evaluation
We test the performance of the proposed method with syn-
thetic and real-world datasets. The details of the datasets and
other setups can be found in Appendix D in the supplemen-
tary material. We denote the separate estimation as SEP.

Synthetic Experiment
We generated synthetic data with the different shapes of µ,
the covariates’ dimension qx, and the size of training sam-
ples. The mean and standard deviation of the MSE over
100 trials are summarized in Table 1. We conducted the
Wilcoxon signed-rank test since the IWLS was highly un-
stable, which made it difficult to use the t-test.

Although we did not trim the PSD for the DWLS estima-
tor, its performance was sufficiently stable to outperform the
others in almost all the cases. The DWLS had larger errors
than the DLS only when µ was constant and qx = 1. This
may be because the benefit of direct estimation outweighed
the difficulties of hyperparameter tuning of the DLS since
the one-dimensional constant µ is the easiest to learn. This
result supports the effectiveness of our approach: avoiding
the minimax formulation but without the inverse PSD.

On the other hand, the IWLS estimator often worked terri-
bly poorly even with the weight trimming. The IWLS might
be affected by the small PSD most severely since it uses the
inverse PSD both in the estimation and hyperparameter tun-
ing. The performance of the DLS was not as poor, but it had
a larger MSE than SEP in many cases, indicating that hyper-
parameter tuning did not work as well as the DWLS.

Figure 2 shows the relation between the squared error
of each estimator and the PSD for the linear µ(X) when
qx = 5 and n = 10000. The area with a dense plot is colored
in light. The squared error of the DWLS shown in Figure 2a
is kept very small except it is slightly larger when the PSD
is close to zero. This result demonstrates the robustness of
our method against the near-zero PSD, whereas the perfor-

RMSE Mean Max Min
DR - 1778 1837 1648

DWLS 252 ± 141 1528 1838 1013
IWLS 222 ± 145 1559 1924 977
SEP 280 ± 119 1538 2200 919
DLS 946 ± 663 937 7966 -1814

Table 2: The results for the real data analysis.

mance of the other estimators is affected more severely by
the small PSD. We can observe the instability of the IWLS
again in Figure 2b, which shows the sporadic high errors
over the entire PSD. The squared error of the SEP displays
the similar pattern. In Figure 2d, the light-colored area is at
a high position, indicating that the hyperparameter tuning of
the DLS does not work well.

Real Data Analysis
We used the dataset of the National Job Training Partnership
Act (JTPA) study. This is one of the largest RCT dataset
for job training evaluations in the US with approximately
20000 participants, and it has been used in the several previ-
ous studies on causal inference (Bloom et al. 1997; Abadie,
Angrist, and Imbens 2002; Donald, Hsu, and Lieli 2014).
We used the doubly robust (DR) estimator (Ogburn, Rot-
nitzky, and Robins 2015) trained with all joint samples as
the pseudo true LATE.

The results are summarized in Table 2. We report the
mean, max, and min of µ̂(x) in addition to the root mean
squared error (RMSE) to see the behavior of each estimator.
The IWLS had the smallest RMSE, but the difference from
the DWLS was not statistically significant. The mean, max,
and min of the DWLS and IWLS also indicate they have
similar performance. The stability of the IWLS in contrast
to the synthetic experiment is because there were no sam-
ples with a small PSD. The relatively good performance of
the SEP should be because of the same reason. The perfor-
mance of the DLS was highly unstable, reflecting the diffi-
culty of the model selection based on the DLS objective.

Conclusion
We proposed a novel problem setting for LATE estimation
by data combination. Our setting is plausible enough to ap-
ply to many real-world problems. The leading examples in-
clude O2O marketing and when there is non-random attri-
tion in panel data. We developed a practically useful method
for estimating LATE from the separately observed datasets.
Our method overcomes the issue of the existing method in
model selection by avoiding the minimax formulation of the
objective. Furthermore, our method can also avoid the com-
mon problem of the IPW methods since the PSD directly
appears in our estimator without inversion. Our method dis-
played the promising performance in the experiments on the
synthetic and real-world datasets. However, there are some-
times concerns on the homogeneity of the populations. Ex-
tending the proposed method to account for heterogeneous
samples and time-varying potential variables is an important
future direction to further increase its usefulness in practice.
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