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Abstract

The goal of Approximate Query Processing (AQP) is to pro-
vide very fast but “accurate enough” results for costly aggre-
gate queries thereby improving user experience in interactive
exploration of large datasets. Recently proposed Machine-
Learning-based AQP techniques can provide very low latency
as query execution only involves model inference as com-
pared to traditional query processing on database clusters.
However, with increase in the number of filtering predicates
(WHERE clauses), the approximation error significantly in-
creases for these methods. Analysts often use queries with
a large number of predicates for insights discovery. Thus,
maintaining low approximation error is important to prevent
analysts from drawing misleading conclusions. In this paper,
we propose ELECTRA, a predicate-aware AQP system that
can answer analytics-style queries with a large number of
predicates with much smaller approximation errors. ELEC-
TRA uses a conditional generative model that learns the con-
ditional distribution of the data and at run-time generates a
small (= 1000 rows) but representative sample, on which
the query is executed to compute the approximate result. Our
evaluations with four different baselines on three real-world
datasets show that ELECTRA provides lower AQP error for
large number of predicates compared to baselines.

Introduction

Interactive exploration and visualization tools, such as
Tableau, Microsoft Power BI, Qlik, Polaris (Stolte, Tang,
and Hanrahan 2002), and Vizdom (Crotty et al. 2015) have
gained popularity amongst data-analysts. One of the desir-
able properties of these tools is that the speed of interac-
tion with the data, i.e., the queries and the corresponding
visualizations must complete at “human speed” (Crotty
et al. 2016) or at “rates resonant with the pace of human
thought” (Liu and Heer 2014).

To reduce the latency of such interactions, Approximate
Query Processing (AQP) techniques that can provide fast
but “accurate enough” results for queries with aggregates
(AVG, SUM, COUNT) on numerical attributes on a large
dataset, have recently gained popularity (Hilprecht et al.
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Figure 1: Median relative error vs. no. of predicates. Base-
lines have high error for important high-predicate queries.

2020; Thirumuruganathan et al. 2020; Ma and Triantafillou
2019). Prior AQP systems mainly relied on sampling-based
methods. For example, BlinkDB (Agarwal et al. 2013) and
recently proposed VerdictDB (Park et al. 2018b), first create
uniform/stratified samples and store them. Then at run-time,
they execute the queries against these stored samples thus
reducing query latency. In order to reduce error for differ-
ent set of queries — using different columns for filters and
groupings — they need to create not one, but multiple sets of
stratified samples of the same dataset. This results in a sig-
nificant storage overhead. Recently, following the promising
results (Mondal, Sheoran, and Mitra 2021; Mirhoseini et al.
2017; Kraska et al. 2018) of using Machine Learning (ML)
to solve several systems problems, few ML-based AQP tech-
niques have been proposed. These use either special data-
structures (DeepDB (Hilprecht et al. 2020)) or simple gen-
erative models (VAE-AQP (Thirumuruganathan et al. 2020))
to answer queries with lower latency.

However, a key drawback of these techniques is that as
the number of predicates (i.e. WHERE conditions) in the
query increases, the approximation error significantly in-
creases (Fig. 1 for Flights dataset). ELECTRA is our tech-
nique shown in blue. The importance of the queries con-
taining such large number of predicates is disproportionally
high. This is because, as expert analysts drill down for in-
sights, they progressively use more and more predicates to
filter the data to arrive at the desired subset and breakdowns
where some interesting patterns might be present. Therefore,



lowering the approximation error for such high-predicate
queries can prevent wrong conclusions, after laborious dis-
section of data in search of insights. As shown in Fig. 1, all
baselines fail to achieve this goal and therefore can be detri-
mental for complex insight discovery tasks.

In this paper, we present ELECTRA, a predicate-aware
AQP system that can answer analytics-style queries having
a large number of predicates with much lower approxima-
tion errors compared to the state-of-the-art techniques. The
key novelty of ELECTRA comes from the use of a predicate-
aware generative model for AQP and associated training
methodology to capture accurate conditional distribution of
the data even for highly selective queries. ELECTRA then
uses the conditional generative model (Sohn, Lee, and Yan
2015) to generate a few representative samples at runtime
for providing an accurate enough answer.

The attributes (columns) in a tabular dataset can have cat-
egories (groups) that are rare. Moreover, when a large num-
ber of predicates are used to filter the data, the number of
rows in the original data satisfying such conditions can be
very small. If we cannot faithfully generate such rare cat-
egories with proper statistical characteristics, AQP results
would either have large errors or even miss entire groups
for queries using a GROUP BY. To overcome this problem,
we propose a stratified masking strategy while training the
CVAE and an associated modification of the CVAE loss-
function to help it learn predicate-aware targeted generation
of samples. Specifically, using this proposed masking strat-
egy, we help the model to learn rare groups or categories in
the data. Our empirical evaluations on real-world datasets
show that, our stratified masking strategy helps ELECTRA to
learn the conditional distribution among different attributes,
in a query-agnostic manner and can provide an average 12%
improvement in accuracy (Fig. 5a) compared to random
masking strategy proposed by prior work (Ivanov, Figurnov,
and Vetrov 2019) (albeit, not for AQP systems but for image
generation). Our major contributions in this paper are:

* We propose a novel and low-error approximate query
processing technique using predicate-aware generative
models. Even for queries with a large number of pred-
icates, our technique can provide effective answers by
generating a few representative samples, at the client-
side.

* We propose a novel stratified-masking technique that en-
ables training the generative model to learn better condi-
tional distribution and support predicate-aware AQP re-
sulting in a significant performance improvement on low
selectivity queries.

* We present the end-to-end design and implementation
details of our AQP system called ELECTRA. We present
detailed evaluation and ablation study with real-world
datasets and compare with state-of-the-art baselines. Our
technique reduces AQP error by 36.6% on average com-
pared to previously proposed generative-model-based
AQP technique on production workloads.
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Overview of ELECTRA
Target Query Structure

The commonly used queries for interactive data exploration
and visual analytics have the following structure:
SELECT V¥, AGG(N) as a FROM 7T WHERE 0
BY C] [ORDER BY fj]

Aggregate AGG (AVG, SUM etc.) is applied to a numeri-

cal attribute N, on rows satisfying predicate §. GROUP BY
is optionally applied on categorical attributes C. One such
query example is shown in Fig. 2b. Here an analyst might
be exploring what are the average checkout values made
by users from a certain demographic (Age “Senior” using
“i0S” and “Chrome” Browser) from an e-commerce site
across different months. Insights like these helps organiza-
tions to understand trends, optimize website performance
or to place effective advertisements. ELECTRA can handle
a much diverse set of queries including queries with mul-
tiple predicates by - breaking down the query into multi-
ple queries; using inclusion-exclusion principle or convert-
ing the query’s predicates to Disjunctive Normal Form.
Predicates: Predicates are condition expressions (e.g.,
WHERE) evaluating to a boolean value used to filter rows on
which an aggregate function like AVG, SUM and COUNT is
to be evaluated. A compound predicate consists of multiple
(ANDs) or (ORs) of predicates.
Query Selectivity: The selectivity of a query with predicate
7 is defined as sel (7) = |z € T: 7 (z) = 1|/|T. It indi-
cates what fraction of rows passed the filtering criteria used
in the predicates.

[GROUP

Design of ELECTRA

Fig. 2a shows the major components of ELECTRA (marked
in green). At a high-level, it has primarily two compo-
nents: 6 an on-line AQP runtime at the client-side and,
@ an offline server-side ETL (Extraction, Transformation,

and Loading) component. The runtime component o is
responsible for answering the live queries from the user-
interactions using the pre-trained ML-models. It pulls these
models asynchronously from a repository (Model-DB) and
caches them locally. ELECTRA is designed to handle the
most frequent-type of queries for exploratory data analyt-
ics (Refer § ). Unsupported query-formats are redirected to
a backend query-processor.

Fig. 2b shows more details of the runtime component.
ELECTRA first parses the query to extract individual pred-
icates, GROUP BY attributes, and the aggregate function. If
the aggregate is either a SUM or an AVG, ELECTRA feeds the
predicates and the GROUP BY information to its predicate-
aware ML-model (0) and generates a small number of
representative samples. For queries with AVG as an aggre-
gate, ELECTRA can directly calculate the result by applying
the query logic on these generated samples (@). For SUM
queries, ELECTRA needs to calibrate the result using an ap-
propriate scale-up or denormalizing factor. ELECTRA calcu-
lates this factor by feeding the filtering predicates to a selec-
tivity estimator (9). For COUNT queries, ELECTRA directly
uses the selectivity estimator to calculate the query result.



The server-side ETL component (@ in Fig. 2a) operates
asynchronously. For a new dataset, it trains two types of
models — a conditional generative model and a selectivity
estimator model — and stores them into the Model-DB.
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Figure 2: Design of ELECTRA

Conditional Sample Generation

In this section, we describe how ELECTRA attempts to make
conditional sample generation process accurate, even for
queries with large number of predicates, so that the resulting
approximation error on these samples becomes very small.

Problem Description

Let T be a relation with K = |A] attributes where A =
Apn U Ac. Ay denotes the numerical attributes and A de-
notes the categorical attributes. Our aim is to learn a model
that can generate a predicate-aware representative sample of
T at runtime. This problem can be divided into two sub-
problems — first, learning the conditional distributions of the
form P(A,|A.) where A,, is a subset of Ay and A, is a
subset of A¢ and second, generating representative samples
using the learned conditional distributions. With respect to
the example query in Fig. 2b, the attribute Value belongs to
Ap. The attributes Browser, 0S, Age and Month used in
the predicates are categorical attributes and belongs to A¢.

ELECTRA targets to support queries with arbitrary num-
ber of predicate combinations over the attributes A¢ using
only a single model. This requires the learning technique to
be query-agnostic (but yet, sample generation to be guery-
predicate specific).

ELECTRA’s Model Design

We are the first to propose the use of Conditional Varia-
tional Auto-encoders (CVAE) (Sohn, Lee, and Yan 2015)
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along with a query-agnostic training methodology involving
a novel masking strategy to reduce the AQP error.

Consider a K-dimensional vector a with numerical and
categorical values representing a row of data. Let m &

{0,1} be a binary mask denoting the set of unobserved
(m; = 1) and observed attributes (m; = 0). Applying this
mask on the vector a gives us a,, = {@;.m,=1} as the set
of unobserved attributes and a1, = {a@;.m,—0} as the set
of observed attributes. Our goal is to model the conditional
distribution of the unobserved a,, given the mask m and the
observed attributes aq_,,, i.e. approximate the true distribu-
tion p(am ‘al—mv m)

Along with providing full support over the domain of m
(arbitrary conditions), we need to ensure that the samples
that are generated represent rows from the original dataset.
For example: given a set of observed attributes a; —,, whose
combination does not exist in the data, the model should not
generate samples of data satisfying a1, (since a false pos-
itive). To avoid this, we learn to generate complete a (both
am and aq_,,) by learning the distribution p(alai—m,,m)
instead of just learning p(a,, |a1—,, m) and hence avoiding
generating false positives.

Note that the generative models based on
VAE(s) (Kingma and Welling 2014) allows us to gen-
erate random samples by generating latent vector z and
then sampling from posterior py(x|z). But, we do not have
any control on the data generation process. Conditional
Variational Auto-encoder models (CVAE) (Sohn, Lee, and
Yan 2015) counter this by conditioning the latent variable
and data generation on a control variable. In terms of the
table attributes a, the control variable a;_,, and the mask
m, the training objective for our model thus becomes:

LELecTRA = —KL(q¢(Z|a, m)||p¢(z\a1_m, m))+

Ergy(zla,m) [log(po(alz))] - (1)

The loss function is a combination of two terms: (1) KL-
divergence of the posterior and the conditional distribution
of the latent space i.e. how well is your conditional latent
space generation and (2) Reconstruction error for the at-
tributes i.e. how well is your actual sample generation.

The generative process of our model thus becomes: (1)
generate latent vector conditioned on the mask and the ob-
served attributes: py(z|ai—n,, m) and (2) generate sample
vector a from the latent variable z: py(alz), thus inducing
the following distribution:

pwﬁ(a|a1—mv m) = EzNPu,(Z\al_m,m)p@(a‘Z)

(€5

Since a,, and aj_,, can be variable length vectors de-
pending on m, inspired from (Ivanov, Figurnov, and Vetrov
2019), we consider a,,, = aom i.e. the element-wise product
of a and m. Similarly, a1_,, = ao (1 —m).

In terms of a query, the observed attributes are the pred-
icates present in the query. E.g. for the query in Fig. 2b,
for attributes A = {Month, Value, Browser, OS,
Age}, mis {1,1,0,0,0} and the observed attributes vector
a1—mis{-, -, "Chrome", "iOS", "Senior"}.

Model Architecture: ELECTRA’s CVAE model consists
of three networks - (1) Encoder: to approximate the true



posterior distribution, (2) Prior: to approximate the condi-
tional latent space distribution, and (3) Decoder: to gener-
ate synthetic samples based on the latent vector z. We use a
Gaussian distribution over z with parameters (pg,04) and
(g, 0y) for the encoder and prior network respectively.
Fig. 3a shows the model architecture. All the three networks
are used during training, whereas during runtime, only the
prior and decoder networks are used. Fig. 3b shows the in-
puts to these networks during training, corresponding to our
example dataset mentioned in Fig. 2b. The input to the Prior
network is masked using a novel masking strategy. Fig. 3c il-
lustrates the runtime inputs to ELECTRA’s generative model
for our example query. It also illustrates the generated sam-
ples as obtained from the Decoder network, corresponding
to the input query. After generation of such targeted samples
that preserve the conditional distribution of the original data
in the context of the query received at runtime, ELECTRA
simply executes the original query on this very small sample
to calculate an answer.

Stratified Masking

The efficiency of learned conditional distributions depends
on the set of masks M = {m} used during the training.
During each epoch, a mask my, is generated for a batch of
data. This mask is applied to the input data to generate the
set of observed attributes, for which the samples are gener-
ated and the loss function evaluated. In case of m = 0%
i.e. no masking and all the attributes are observed, the prior
network would learn to generate latent vectors correspond-
ing to all observed attributes. But at runtime, only a partial
set of attributes are observed (as predicates) and hence it
would lead to a poor performance. In case of m = 1% ie.
a masking rate of 100% and all the features are unobserved,
the behavior would be similar to that of a VAE. Since the
vector aj_,, = {¢}, the conditioning of the latent vector
would have no effect on the learning. Thus, again this would
perform poorly on queries with predicates.

In order to counter these and make the training query-
agnostic, a random masking strategy (Ivanov, Figurnov, and
Vetrov 2019) can be used where a certain fraction of the
rows are masked corresponding to each of the input features.
However, such random masking does not provide any mech-
anism to help the model learn better the conditional distri-
bution for rare groups to improve performance for queries
with large number of predicates. There are more subtleties.
By masking more number of rows for an attribute, the train-
ing helps the model to learn better the generation of repre-
sentative values for that attribute. Whereas, by keeping more
unmasked rows, the model can learn better conditional dis-
tribution conditioned on those attributes.

Proposed masking strategy: With the above observation,
ELECTRA uses a novel masking strategy tailored for AQP.
It consists of the following: (a) We completely mask the nu-
merical attributes. (b) For the categorical attributes on which
conditions can be used in the predicates, we use a stratified
masking strategy. In the stratified masking we alter the ran-
dom masking strategy based on the size of the strata (i.e.
groups or categories) to disproportionately reduce the prob-
ability of masking for the rare groups. Thus, the ability of
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Algorithm 1: Stratified Masking Strategy
Input: Batch { B}, Masking Factor r, Strata Size
S

Output: Binary mask m for the Input Batch B
m 4 Opxk
num_cols + numerical _cols(k)
cat_cols < categorical_cols(k)
for i in num_cols do
‘ {mm,y ?ﬂz 1
end
for ¢ € cat_cols do
values < {B, ,}V
weights < {S;[values,]}$
batch_indices
random.sample({x}%, r * b, weights)
for j € batch_indices do
‘ mj i < 1
end

o 0 N AW N =

—
=

11
12
13
14

end
return m;

the model to learn better conditional distribution improves.
We apply this masking strategy in a batch-wise manner dur-
ing training. In the Evaluation section, we show (Fig. 5a)
that our masking strategy drastically reduces the approxi-
mation error compared to no-masking or random masking
strategies.

Algorithm 1 describes the masking strategy where we in-
put a batch of data B of dimension b X k: b denotes the batch
size and k denotes the number of attributes. The numerical
columns are completely masked. The strata size for each cat-
egorical column 7 (5;), contains for each value that the col-
umn 7 can take, the fraction of rows in the data where the
column takes this value. Using the weights obtained from
S;i[value] as the sampling probability and r as the masking
factor, we sample r x b rows and mask their column ¢. Mask-
ing factor r controls the overall masking rate of the batch. A
higher masking factor simulates queries with less observed
attributes i.e. less number of predicates and a lower masking
factor simulates queries with more observed attributes i.e.
more number of predicates.

Implementation Details

Data Transformation. ELECTRA applies a set of data pre-
processing steps including label encoding for categorical at-
tributes and mode-specific normalization for numerical at-
tributes. For normalization, weights for the Gaussian mix-
ture are calculated through a variational inference algorithm
using sklearn’s BayesianGaussianMixture method.
The parameters specified are the number of modes (iden-
tified earlier) and a maximum iteration of 1000. To avoid
mixture components with close to zero weights, we limit the
number of modes to less than or equal to 3.

Conditional Density Estimator. The conditional density
estimator model is implemented in PyTorch. We build upon
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Figure 3: Model architecture and inputs

the code ! provided by Ivanov et al. The density estimator is
trained to minimize the combination of KL-divergence loss
and reconstruction loss. To select a suitable set of hyperpa-
rameters, we performed a grid search. We varied the depth
(d) of the prior and proposal networks in the range [2,4,6,8]
and the latent dimension (L) in the range [32,64,128,256].
For Flights data we use d = 8, L = 64, for Housing d = 8§,
L = 64, and for Beijing PM2.5 we use d = 6, L = 32.
Note that, the depth of the networks and the latent dimen-
sion contribute significantly to the model size. Hence, de-
pending on the size constraints (if any), one can choose a
simpler model. We used a masking factor () of 0.5. The
model was trained with an Adam Optimizer with a learning
rate of 0.0001 (larger learning rates gave unstable variational
lower bound(s)).

Selectivity Estimator. We use NARU’s publicly available
implementation 2. The model is trained with the ResMADE
architecture with a batch size of 512, an initial warm-up of
10000 rounds, with 5 layers each of hidden dimension 256.
In order to account for the impact of column ordering, we
tried various different random orderings and chose the one
with the best performance.

Evaluation
Experimental Environment

All the experiments were performed on a 32 core Intel(R)
Xeon(R) CPU E5-2686 with 4 Tesla V100-SXM2 GPU(s).
Datasets: We use three real-world datasets: Flights (Bureau
of Transportation Statistics), Housing (Qiu 2018) and Bei-
jing PM2.5 (Chen 2017). The Flights dataset consists of ar-
rival and departure data (e.g. carrier, origin, destination, de-
lay) for domestic flights in the USA. The Housing dataset
consists of housing price records (e.g. price, area, rooms)
obtained from a real-estate company. The Beijing PM2.5
dataset consists of hourly records of PM2.5 concentration.
All these datasets have a combination of both categorical
and numerical attributes.

Synthetic Query Workload: We create a synthetic work-
load to evaluate the impact of the number of predicates in
the query. For each dataset, we generated queries with # of
predicates (k) ranging from 1 to | A¢|. For a given k, we first
randomly sample 100 combinations (with repetitions) from

'"VAEAC code available at https://github.com/tigvarts/vaeac
2NARU code available at https://github.com/naru-project/naru/
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the set of all possible k-attribute selections. Then, for each
of these selected k-attributes, we create the WHERE condi-
tion by assigning values based on a randomly chosen tuple
from the dataset. Then, we use AVG as the aggregate func-
tion for each of the numerical attributes. The synthetic work-
load thus contains a total of 100 % |A¢| * |A x| queries.

Production Query Workload: We also evaluate ELECTRA
using real production queries from five Fortune 500 compa-
nies over a period of two months on a large data exploration
platform. First, we select queries whose query structure is
supported by ELECTRA. We filter out the repeated queries.
While we were able to extract the queries, we did not have
access to the actual customer data corresponding to those
queries. Hence, we use the following methodology to cre-
ate an equivalent query set for our evaluation. We replace
each predicate in the WHERE clause by a random categorical
attribute and a random value corresponding to that attribute.
All attributes that were used in GROUP BY were replaced by
random categorical attributes from our evaluation datasets.
Then, we generate two workloads, one with AVG and one
with SUM as the aggregate function on a random numerical
attribute. Thus, we preserve real characteristics of the use of
predicates and the grouping logic in our modified workload.

Baselines: We evaluate against four recent baselines.
VAE-AQP (Thirumuruganathan et al. 2020) is a generative
model-based technique that does not use any predicate in-
formation. The code was obtained from the authors. In our
evaluations, we generated 100K samples from VAE-AQP for
all 3 datasets. Note that this is well over the 1% sampling
rate specified by the VAE-AQP authors for these datasets.
CTGAN (Xu et al. 2019) is a conditional generative model.
However, the CTGAN technique as described in the paper
(Xu et al. 2019) and the associated code (CTGAN code),
only support at most one condition for generation. Hence,
when using CTGAN as a baseline in our evaluation, we ran-
domly select one of the input predicates as the condition for
generating the samples. We keep the generated sample size
per query same as ELECTRA.

DeepDB (Hilprecht et al. 2020) builds a relational sum-
product-network (SPN) based on the input data. For any in-
coming query, it evaluates the query on the obtained SPN
network. We keep the default parameters for DeepDB code
obtained from (DeepDB code).

VerdictDB (Park et al. 2018b) is a sampling-based approach



Electra DeepDB VerdictDB CTGAN VAE-AQP

0 20

Electra DeepDB VerdictDB CTGAN VAE-AQP

2.0

SMAPE

100 98 100 100 100 100 100 100 100 100

%é&é%

Housing

100 100 100 100 100
|__mmm| 2.0

wl5
o
<
=10

0.5

Nl

Flights

Beijing PM2.5

5t | _ | = I E N -:I:I:I
1.5
Number of Predicates

(a) Flights

©

(d) Production workload - AVG queries

I 0I0 00 000 00 00 @00 @I

Electra DeepDB VerdictDB CTGAN VAE-AQP ‘

100 98 100 100 100

7"

100 100 100 100 100

*

100 100 100 100 100

'

2.0

wl5
o

AAAﬁﬁﬁﬁé

Number of Predlcates

(b) Housing

k| Iy

Flights

Housing Beijing PM2.5

(e) Production workload - SUM queries

4
Number of Predicates

(c) Beijing PM2.5

Dataset | Sample size

7500 | 1000 | 1500 | 2000
Flights 15.15 | 1493 | 14.70 | 14.60
Housing 596 | 591 | 592 | 592
Beijing PM2.5 | 15.98 | 15.79 | 15.77 | 15.64

(f) Median R.E. vs # of Samples Generated

Figure 4: (a), (b) and (c) denote AQP error vs. # predicates. The color on top shows the % of queries answered. For (d) and (e),

the number on top shows the % of queries answered.

that runs at the server-side. It extracts and stores samples
(called SCRAMBLE) from the original data and uses it to
answer the incoming queries. We keep the default parame-
ters in the code obtained from (VerdictDB code).

AQP Error Measures: For a query (), with an exact
ground truth result g and an approximate result a, we mea-
sure the approximation error by computing the Relative Er-
ror (R.E.). Since R.E. is an unbounded measure and can be-
come very large, we use a bounded measure called Symmet-
ric Mean Absolute Percentage Error (SMAPE) to visualize
the approximation errors. SMAPE lies between 0 and 2 and
provides a better visualization compared to R.E..

lg—al
SMAPE(Q) = 2 %
gl + lal

Performance w.r.t. Number of Predicates

Fig. 4a, 4b and 4c shows the distribution of approximation
error (as SMAPE) w.r.t. the number of predicates in the syn-
thetic workload queries. A lower approximation error is bet-
ter. All the queries could not be successfully evaluated to
produce an approximate result because the technique could
not match for the used predicates either in the generated data
(ELECTRA, CTGAN, VAE-AQP) or in the available samples
(VerdictDB) or in the stored metadata (DeepDB). The dis-
tribution of the AQP errors in the box-plots were calculated
only over the queries that the corresponding technique could
support. The heat-map colors over the box-plots show what
percentages of the queries were supported by different tech-
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Figure 5: Design Components

niques. A technique supporting large fraction of queries is
better. It is worthwhile to note, only ELECTRA and DeepDB
could answer the queries with 90 — 100% coverage across
all the different predicate settings.

Note, the median approximation error is almost always
the lowest for ELECTRA (shown in green), as the number of
predicates in the queries are increased. The other two gen-
erative baselines, CTGAN and VAE-AQP perform poorly in
this aspect. DeepDB’s performance is great for median ap-
proximation comparison, but error at the tail is often quite
large for DeepDB, compared to ELECTRA. For one predi-
cate, almost all the techniques can maintain very low AQP
error (making any of those practically useful) and ELEC-
TRA often does not provide the lowest error in the relative
terms. However, ELECTRA is the overall best solution when
we look at the whole spectrum of predicates.
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Performance on Production Workload

Fig. 4d and 4e shows the comparisons of the AQP error (as
SMAPE) distribution for our production query workload for
the three real-world datasets shown separately for AVG and
SUM as the aggregate functions. For AVG as the aggregate
function (Fig. 4d), ELECTRA provides the lowest approxi-
mation error for both Housing and Beijing-PM-2.5 dataset.
For Flights dataset, even though the median error is com-
parable to DeepDB, VerdictDB and VAE-AQP, the tail er-
ror is larger. Please note: since these plots were calculated
over the production queries, 70% of the queries had two or
fewer predicates. Thus, the benefit of ELECTRA in handling
large number of predicates is less visible. The percentages
of queries that different techniques were able to successfully
answer, are shown over the box-plots.

Performance on GROUP BY Queries

We evaluate ELECTRA’s performance on GROUP BY
queries using slight modification to our synthetic query
workload by randomly choosing one of the attributes to be
used for GROUP BY. We do not use any predicate on that
attribute. Fig. 6 shows the AQP error over queries with all
the different number of predicates. The error for each query
was calculated as an average over the individual errors cor-
responding to each of the individual groups that were both
present in the ground truth results and the approximate re-
sults. The error is computed as the average of the R.E. for
each of the different groups corresponding to the GROUP
BY column. Approximations might result in missing groups.
We use bin-completeness measure as follows:

‘Ggroups ﬂ Agroups |

bin-completeness Corouns]
G groups 15 the set of all the groups that appear in the ground
truth and Ag,ups is the set for the approximate result. This
bin-completeness (§ 15) is an important measure for GROUP
BY queries. Fig. 6 shows the bin-completeness numbers
on top of the box plots. Higher is better. Both ELECTRA
and DeepDB can consistently provide much higher bin-
completeness, compared to other baselines. However, the er-
ror for ELECTRA is much better than DeepDB.

Design Components

Samples Generated per Query. Generating more represen-
tative samples by ELECTRA can potentially improve accu-
racy, but at the cost of larger query latency and memory foot-
print. Figure 4f shows the change in the R.E. for ELECTRA
as we increase the number of generated samples. Generating
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1000 representative samples, from the learned conditional
distribution, is good enough to achieve a low AQP error, and
beyond that the improvement is not significant.

Impact of the Masking Strategy. Fig. 5a quantify the ben-
efit of our proposed masking strategy for Flights dataset. We
compare the proposed method with a No Masking strategy
where only NaN input values, if any, are masked. We also
compare with Random Masking strategy that uses a uniform
random masking, irrespective of the column type (Ivanov,
Figurnov, and Vetrov 2019). We observe that the proposed
stratified masking strategy can significantly reduce the AQP
error compared to the other two alternative, irrespective of
the number of predicates used in the queries.

Masking factor. Fig. 5b shows the sensitivity of ELECTRA
corresponding to the masking factor, across the range of
predicates for the Flights dataset. A masking factor of 0.5
would be the choice, if we want to optimize for queries with
arbitrary number of predicates.

Related Work

Approximate Query Processing has a rich history with the
use of sampling and sketching based approaches (Chaud-
huri, Ding, and Kandula 2017; Cormode 2011; Chaudhuri,
Das, and Narasayya 2007). BlinkDB (Agarwal et al. 2013)
uses offline sampling, but assumes it has access to historical
queries to reduce or optimize for storage overhead. Related
works used as baselines were described in § 15.
Representative Data Generation. With the advancement of
deep-learning, multiple generative methods have been pro-
posed, primarily using GAN(s) (Brock, Donahue, and Si-
monyan 2019) and VAE(s) (Ivanov, Figurnov, and Vetrov
2019). These techniques have been successful in produc-
ing realistic synthetic samples for images, auto-completing
prompts for texts (Radford et al. 2019; Devlin et al. 2018),
generating audio wavelets (Oord et al. 2016). Few works
used GAN(s) (Xu et al. 2019; Park et al. 2018a) for tab-
ular data generation either for providing data-privacy or to
overcome imbalanced data problem.

Selectivity or Cardinality Estimation includes several
classical methods with synopsis structures (e.g., his-
tograms, sketches and wavelets) to provide approximate an-
swers (Cormode et al. 2012). Recently, learned cardinality
estimation methods have become common including using
Deep Autoregressive models to learn density estimates of a
joint data distribution (Yang et al. 2019; Hasan et al. 2020;
Yang et al. 2020), embedding and representation learning
based cost and cardinality estimation (Sun and Li 2019).

Conclusion

We presented a deep neural network based approximate
query processing (AQP) system that can answer queries us-
ing a predicate-aware generative model at client-side, with-
out processing the original data. Our technique learns the
conditional distribution of data and generates targeted sam-
ples based on the conditions specified in the query. The key
contributions of the paper are the use of conditional genera-
tive models for AQP and the techniques to reduce approxi-
mation error for queries with large number of predicates.
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