
HoD-Net: High-Order Differentiable Deep Neural Networks and Applications

Siyuan Shen1, Tianjia Shao1*, Kun Zhou1, Chenfanfu Jiang2, Feng Luo3, Yin Yang3

1State Key Lab of CAD&CG, Zhejiang University
2Department of Mathematics, University of California, Los Angeles

3School of Computing, Clemson University
{shensiyuan|tjshao|kunzhou}@zju.edu.cn, cffjiang@math.ucla.edu, {luofeng|yin5}@clemson.edu

Abstract

We introduce a deep architecture named HoD-Net to en-
able high-order differentiability for deep learning. HoD-Net
is based on and generalizes the complex-step finite differ-
ence (CSFD) method. While similar to classic finite differ-
ence, CSFD approaches the derivative of a function from a
higher-dimension complex domain, leading to highly accu-
rate and robust differentiation computation without numeri-
cal stability issues. This method can be coupled with back-
propagation and adjoint perturbation methods for an efficient
calculation of high-order derivatives. We show how this nu-
merical scheme can be leveraged in challenging deep learning
problems, such as high-order network training, deep learning-
based physics simulation, and neural differential equations.

Introduction
The prosperity of deep learning (DL) is unlikely without the
development of underlying differentiation methods. Indeed,
the concept of neural networks has a long history dated back
to WW2, which was originally designed as a computational
modality for logical calculus (McCulloch and Pitts 1943).
However, the actual deployment of the deep neural net-
work or DNN for machine learning is neither common nor
feasible until differentiation techniques, i.e., the automatic
differentiation (AD) method (Baydin et al. 2018; Rall and
Corliss 1996; Bücker et al. 2006), become fledged. A multi-
layer net is then treated as a compositional function, and we
can practically calculate its gradient via the backpropagation
(BP) (Hecht-Nielsen 1992; Rumelhart et al. 1995), which is
a dedicated implementation of reverse AD.

AD computes the analytic derivative of a function, us-
ing “exact formulas along with floating-point values” (Nei-
dinger 2010). When higher-order differentiation is needed,
the computation complexity along the chain rule escalates at
a super-polynomial rate (w.r.t. the order of differentiation)
bringing practical difficulties in AD implementations (Mar-
gossian 2018). As a result, many existing AD packages (e.g.,
Adept (Hogan 2014)) only deals with the first-order deriva-
tive. While one may perform first-order differentiation mul-
tiple times to obtain a high-order derivative, it has been ar-
gued that recursive AD leads to inefficient and numerically

*Corresponding author
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

unstable code (Margossian 2018; Betancourt 2018). High-
order AD is often not well supported or could be much
slower (like JAX (Schoenholz and Cubuk 2019)), which
stands as a major technical obstacle in many applications.

We propose a new set of differentiation toolkit named
HoD-Net to close the gap of high-order differentiability
of DL. Our method is based on complex-step finite differ-
ence method or CSFD (Squire and Trapp 1998). Unlike the
classic finite difference method (Morton and Mayers 2005),
CSFD lifts differentiation computations to the complex do-
main. This strategy avoids the notorious numerical issue of
subtraction cancellation (Muller et al. 2018). As a result
CSFD computes differentiations highly accurately albeit be-
ing a numerical method. Based on CSFD, we approach high-
order differentiable deep networks by generalizing regular
complex arithmetic to multicomplex domains, designing an
efficient adjoint perturbation scheme, and showing its appli-
cations in several learning problems.

To make the paper self-contained, we start with a brief re-
view of classic finite difference method, its numerical issue,
and CSFD alternatives. Related literatures will be discussed
when introducing the relevant topics.

Background
Evaluating the differentiation of a function is often through
inferring the exact form of its derivative. While it is
possible to automatically obtain the analytic derivative
formulation with symbolic differentiation packages like
Mathematica (Wolfram et al. 1996) and Maple (Maple
1994), AD is more widely used in practice. AD decomposes
a general computation procedure into multiple basic steps,
and each step corresponds to a node on its computation
graph. AD analytically computes the derivative of each step
either using source code transformation (Utke et al. 2008;
van Merrienboer, Moldovan, and Wiltschko 2018) or oper-
ator overloading (Phipps and Pawlowski 2012). The latter
option is natively supported by most modern programming
languages like C++ and Python (e.g., see (Hogan 2014)).
Following the differentiation chain rule, it is possible to ac-
cumulate the final result in two directions, namely the for-
ward mode and backward/reverse mode (Linnainmaa 1976;
Griewank 2012). Being widely used in DL, BP is essentially
AD of the reverse mode.

Numerical differentiation is another differentiation tech-

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8249

nique, where one needs to neither derive the analytic for-
mula of the differentiation nor to apply the chain rule over
the computation graph. Given a function f with a small per-
turbation h applied, the forward finite difference (FFD) ap-
proximates the derivative as the ratio between the function
variation and perturbation size:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

=
f(x0 + h)− f(x0)

h
+ O(h). (1)

It appears that the smaller h is, the better approximation
Eq. (1) delivers. However, we are not allowed to make h
arbitrarily small to improve the precision of Eq. (1). This
is because the subtraction between two nearly equal num-
bers (i.e., f(x0 + h) − f(x0)) eliminates many of their
significant digits and contaminates the result. This numer-
ical issue is known as the subtraction cancellation (Muller
et al. 2018). For instance, with a simple four-digit deci-
mal floating-point system, a real number a = 1999.99 is
encoded as ã = 1.999 × 103 i.e., only a four-digit man-
tissa. Here, we use (̃·) to denote a digitized number in
this floating-point system. We simply choose the round-by-
chop rule that discards all the out-of-precision digits. The
corresponding round-off error is Eround = |a− ã|/|a| =
|1999.99− 1.999× 103|/|1999.99| ≈ 4.95 × 10−4. Next,
let b = 1998.88, which is represented as b̃ = 1.998 × 103.
The error of calculating a − b becomes Esubtraction =

|(ã− b̃)− (a− b)|/|a− b| ≈ 0.1, a thousandfold increase!
Clearly, the rounding loses the least important significant
digit, and it only yields an error at the order of the floating-
point precision (10−4). However, the subtraction between
ã and b̃ eliminates three leading significant digits, which
yields a much more substantial error. This is why the can-
cellation of subtracting numbers of similar magnitude is
also called catastrophic cancellation. Some numerical lit-
erature (e.g., see (Nocedal and Wright 2006) considers that
the central finite difference method (CFD) in the form of:
f(x0) = 2(f(x0 + h)− f(x0 − h))/h+O(h2), has higher
accuracy. This conclusion is only valid when the subtractive
cancellation does not occur. In reality, CFD could be even
more sensitive to a smaller h because of its faster conver-
gent rate (Fig. 1).

CSFD and Generalization
The subtractive cancellation can be avoided by
CSFD (Squire and Trapp 1998; Lyness 1968; Martins,
Sturdza, and Alonso 2003). Let (·)∗ denote a complex
variable, and suppose f∗ : C → C is differentiable around
x0 + 0i. Setting the perturbation hi imaginary, f∗ can be
expanded via the complex Taylor expansion as:

f∗(x0+hi) = f∗(x0)+f∗
′
·hi+ 1

2
f∗

′′
·(hi)2+O(h3). (2)

Any elementary function can be “promoted” to be a
complex-value one by allowing complex inputs while re-
taining its original computation. As long as the input of f∗

is real, f∗ overlaps with f such that f∗(x0) = f(x0) ∈
R and f∗

′
(x0) = f ′(x0) ∈ R, etc. Extracting imagi-

nary parts of both sides of Eq. (2) yields: Im(f∗(x0 +

hi)) = Im
(
f∗(x0) + f∗

′ · hi+ 1
2f
∗′′ · (hi)2 + O(h3)

)
,

and we then have the first-order CSFD approximation:

f ′(x0) =
Im(f∗(x0 + hi))

h
+ O(h2). (3)

Comparing with Eq. (1), Eq. (3) does not have a subtractive
numerator suggesting it only has the round-off error regard-
less of the size of the perturbation. In addition, the oper-
ation of Im(·) removes the (hi)2 term in the complex Tay-
lor expansion suppressing the approximation error to O(h2).
We know that any floating-point computation could induce a
rounding error ε a.k.a. machine epsilon. For the double pre-
cision under IEEE 754 (IEEE 1985), ε ≈ 1.11 × 10−16.
CSFD approximation error reaches the order of ε if h ≤

√
ε.

An example is plotted in Fig. 1, where we compare the rel-
ative error of numerical derivatives of f(x) = ex/(x2 + 1)
using FFD, CFD, and CSFD with its analytic derivative at
x = 10. The numerical behavior of FFD and CFD is con-
sistent with our analysis: when h decreases, CFD converges
faster than FFD initially. Both soon hit the threshold of sub-
tractive cancellation. After that, the relative error bounces
back. CSFD lowers the error as quickly as CFD does, and
the relative error stably remains at the order of ε.

1.0E-16
1.0E-13
1.0E-10
1.0E-07
1.0E-04
1.0E-01
1.0E+02
1.0E+05
1.0E+08
1.0E+11
1.0E+14 1st CSFD

1st FFD
1st CFD
2nd CSFD
2nd FFD
2nd CFD

Figure 1: Relative error of different numerical differentiation
schemes for f(x) = ex/(x2 + 1) at x = 10.

It is mentionable that analytic differentiation of basic op-
erators can also be obtained via dual number (Revels, Lubin,
and Papamarkou 2016). The concept of dual number is simi-
lar to complex number but the imaginary part of a dual num-
ber vanishes at the second order (i.e., i2 = 0 for dual num-
bers whereas i2 = −1 for complex numbers). This specifi-
cation automatically eliminates high-order terms in the Tay-
lor expansion of f∗ (Eq. (2)), and dual number thus gives
the exact differentiation formulation. From this perspective,
dual number is more a man-crafted algebraic rule. Unlike
complex numbers, generalizing dual number arithmetic to
trigonometric, exponential, or logarithmic functions is ill-
defined.

High-Order Complex-Step Finite Difference
There are several generalizations of complex arithmetics.
A well-known one is quaternion (Hamilton 1848), which

8250

is often used to represent 3D rotations. Another extension
is commonly named as multicomplex number. It has been
studied in detail numerical textbooks such as (Price 2018)
and could be regarded as an implementation of Clifford al-
gebra (Garling 2011).

The multicomplex number is defined recursively: its base
cases are the real set C0 = R, and the regular complex set
C1 = C. C1 extends the real set (C0) by adding an imag-
inary unit i as: C1 = {x + yi|x, y ∈ C0}. The multi-
complex number up to an order of n is defined as: Cn =
{z1 + z2in|z1, z2 ∈ Cn−1}. Under this generalization, the
multicomplex Taylor expansion becomes:

f?(x0 + hi1 + · · ·+ hin) = f?(x0) + f?
′
h

n∑
j=1

ij

+
f?

′′

2
h2(

n∑
j=1

ij)
2

+ · · ·+ f?(k)

k!
hk(

n∑
j=1

ij)
k · · · . (4)

Here, (
∑
ij)

k can be computed following the multinomial
theorem (Bolton 1968), and it contains products of mixed
k imaginary directions for k-order terms. Based on Eq. (4),
derivative of an arbitrary order can be conveniently obtained
by extracting the coefficient at the corresponding imaginary
direction. For instance, the second-order CSFD formulation
can be obtained from Eq. (4) as:

∂2f(x, y)

∂x2
≈ Im(1,2)(f(x+ hi1 + hi2, y))

h2
,

∂2f(x, y)

∂x∂y
≈ Im(1,2)(f(x+ hi1, y + hi2))

h2
,

(5)

where Im(1,2) picks the mixed imaginary direction of i1i2.
One can easily tell from Eq. (5) that high-order CSFD is also
free of subtractive cancellation making it as robust/accurate
as the first-order case (e.g., see Fig. 1). Its recursive defini-
tion also greatly eases the implementation.

HoD-Net: High-Order Differentiable DNNs
With CSFD, it becomes straightforward to build HoD-Nets.
Basically, one can promote network inputs or parameters to
the complex domain and obtain its high-order differentia-
tion by extracting the imaginary part of the output. Some-
times, the network already involves complex or multi-value
neurons (Hirose and Yoshida 2012; Aizenberg, Aizenberg,
and Krivosheev 1996). Its differentiability should be enabled
with higher-order CSFD. Unfortunately, such naïve strategy
could be inefficient making HoD-Net less useful in practice.
Recently, Shen and colleagues (2021) give a paradigm of
differentiating network input with CSFD for finite element
simulation. We show that this idea could be generalized to
enable efficient, scalable, and convenient HoD-Net scheme.

CSFD-BP for More Effective Perturbation
For a function f : RN → RM , CSFD is more effective if
M > N . In this setting, an argument perturbation yields
an M -dimension differentiation vector (i.e., one column of

∇f ∈ RM×N). We suspect this is why CSFD is some-
what overlooked, since many DL applications map high-
dimension inputs (e.g., an image) into a lower-dimension
space (e.g., a classification label). When N � M , BP is
a more efficient solution for the first-order derivative. How-
ever, if high-order derivatives are needed, how can we lever-
age CSFD with maximized efficiency?

Our answer is to integrate CSFD into BP to differenti-
ate along the optimal direction (i.e., forward or backward).
Specifically, we consider BP as a generic function which
maps network inputs to its first-order derivative. As a result,
the second- or higher-differentiation can be obtained by a
CSFD-perturbed BP procedure (CSFD-BP). The perturba-
tion is applied at the beginning of the forward pass. Along
with the forward pass, the perturbation leads to imaginary
values to all the neurons it influences. As h can be under-
stood as the numerical differential of the input parameter, the
imaginary parts at other neurons represent the correspond-
ing (partial) differentials induced by h. During the backward
pass, BP calculates how such differential is changed along
the network, which becomes the second-order derivative of
the parameter.

The choice of CSFD or CSFD-BP should be made based
on the dimensionality of the network input/output i.e.,N and
M . If a network yields a higher-dimension output (e.g., im-
age super-resolution (Zhang et al. 2018; Ledig et al. 2017)),
CSFD should be preferred over CSFD-BP. Both CSFD and
CSFD-BP readily generalize to a higher order with multi-
complex perturbations.

Parallelization Using Cauchy-Riemann Formula

iR 1iR +

O
utput

Input

A
ctivation

Perturbation

iR 1iR +

iI 1iI +

Input

A
ctivation

O
utput

A regular DNN A CSFD-enabled DNN in CR form

Figure 2: CR formula arranges a network with dedi-
cated imaginary layers to avoid complex overloading at
FC/CNN layers, and massive parallelization on GPU be-
comes straightforward under this configuration.

The dominant network modules of DNNs are often
fully connected (FC) layers and convolutional (CNN) lay-
ers, where the inter-layer computation mainly consists of
BLAS operations and can be parallelized on GPU (e.g., via
cuBLAS (Barrachina et al. 2008)). The recent version of
PyTorch (Paszke et al. 2019) and TensorFlow (Abadi
et al. 2016) does include the support of regular complex
operations. However, the complex-based parallelization in
BLAS form still lacks, no to mention the multicomplex gen-
eralization. We show that CSFD and CSFD-BP can be sig-
nificantly accelerated by using a complex-free formulation,
namely the Cauchy-Riemann (CR) formula (Lang 2013).

In CR formula, a multicomplex number can be repre-
sented in the form of a real matrix. Specifically, the recursive
definition of Cn allows us to express a rank-n complex num-

8251

ber in terms of a matrix of lower-rank complex quantities:

zn = zn−1
0 + zn−1

1 in ∈ Cn :=

[
zn−1

0 −zn−1
1

zn−1
1 zn−1

0

]
. (6)

Here, we use the superscript (·)n to denote the order of a
complex number. Each of the 2×2 blocks in Eq. (6) is a (n−
1)-order complex number, which can be further expanded
with (n − 2)-order multicomplex numbers and so on until
all the matrix elements are real.

Based on CR forms, we re-organize the network into a
real and (multiple) imaginary layers so that the imaginary
parts of all the neurons are stored in dedicated layers, and
all the neurons, including the ones in imaginary layers are
all real-value. As shown in Fig. 2, the original network is
“duplicated” with an imaginary copy, which is used to house
the imaginary values of all the neurons. If a high-order dif-
ferentiation is needed, more of such duplicates will be cre-
ated, corresponding to high-order mixed imaginary direc-
tions. The real-to-real computation is identical to the orig-
inal net (i.e., black arrows in the figure). The CR-based net
also handles real-to-imaginary and imaginary-to-imaginary
propagations. They are just Eq. (6) in the matrix form. For
instance, assume Ri and Ri+1 is related by a weight matrix
W as Ri+1 = WRi originally. With CR formula, Ri+1 and
Ii+1 are computed via:[

Ri+1 −Ii+1

Ii+1 Ri+1

]
=

[
W −V
V W

] [
Ri −Ii
Ii Ri

]
⇒ Ri+1 = WRi, Ii+1 = V Ri +WIi.

(7)

V stores possible imaginary perturbations at network param-
eters. Therefore, V Ii is O(h2) and truncated in Eq. (7). In
other words, the real portion of HoD-Net is always identical
to the original network. If V = 0, computations at R and
I are fully independent, indicating the linearity between Ri

and Ri+1. As all the computations are now in real values,
the parallelization is convenient. As reported in our exper-
iment, CR-based implementation outperforms built-in BP
method from existing DL frameworks including PyTorch
and TensorFlow.

The activation and some other network modules like batch
normalization (BN) (Ioffe and Szegedy 2015) need to be
taken care of separately. In general, the activation is ap-
plied at each neuron individually, making the paralleliza-
tion straightforward. We overload nonlinear activation with
CSFD to output necessary imaginary information. BN is also
treated as a special batch-wise activation with CSFD.

Adjoint Perturbation in HoD-Net
The n-order derivative of f : RN → RM yields an M ×Nn

tensor with a prohibitive complexity of O(Nn). Thus, high-
order differentiation of a deep network appears infeasible at
the first sight. A closer look however, reveals otherwise. This
M × Nn tensor is seldom needed in its original high-rank
form. Its rank is often reduced via follow-up contractions,
and all the way down to a matrix or a vector. A good example
is the adjoint analysis (Giles and Pierce 2000), which avoids
an explicit assembly of the Jacobian matrix w.r.t. a large

number of parameters. We show that this idea can also be
exploited in CSFD as the real-part computations of the net-
work remain unchanged for differentiations under different
perturbations. Following the naming of the adjoint method,
we refer to our strategy as adjoint perturbation.

Adjoint Perturbation for Right Contraction
We now elaborate our method with M = 1 or f : RN → R.
Computing its Hessian (∇2f) will need N2 perturbations
with second CSFD. However, if ∇2f is (single) contracted
with a right vector a, ∇2 · a can actually be evaluated as:

[∇2f · a]k =
N−1∑
l=0

lim
h→0

[∇f(x+ hel)−∇f(x)]k
h

· [a]l

=
N−1∑
l=0

lim
h→0

[∇f(x+ [a]lhel)−∇f(x)]k
h

, (8)

where [·]k gives k-th element of the vector, and el is the l-th
canonical basis. Here, we substitute h with [a]lh to cancel
the multiplication of [a]l. In the vector form, we have

∇2f · a = lim
h→0

∇f(x+ ha)−∇f(x)

h

=
Im(∇f(x+ hi · a))

h
+ O(h2). (9)

One may immediately recognize that ∇2f · a is essentially
the directional derivative of∇af . The observation of Eq. (9)
is not new, and it leads to a collection of so-called Jacobian-
free or Hessian-free algorithms (Knoll and Keyes 2004).
Some of them have also been used for DL training (Pearl-
mutter 1994; Martens 2010; Martens and Sutskever 2011).

Due to the linearity of differential, Eq. (9) can be gen-
eralized to high-order cases and high-rank tensor contrac-
tions. For instance, consider the third-order differentiation
∇3f = ∂3f/∂x3 ∈ RN×N×N , followed by a right double
contraction of a matrix A ∈ RN×N . ∇3f : A is a vector,
and it can be efficiently computed by a single adjoint per-
turbation – a third-order complex perturbation over all the
N elements of promoted function input x?. The second and
the third imaginary directions of this adjoint perturbation is
scaled by the corresponding element in A. The same strat-
egy can be used if ∇3f is right contracted twice by vectors
a and b since (∇3f · a) · b = ∇3f : (a⊗ b). If f has a vec-
tor output with M > 1, we arrange M adjoint perturbations
into batches, which can be parallelized on GPU with ease.

Adjoint Perturbation for Left Contraction
Now, we consider left contractions like a · ∇3f . Unlike
right contractions, a left contraction occurs at the dimen-
sion which is not expanded by the differentiation. Hence,
the strategy of adjoint perturbation does not apply directly.
We carry out our computation with an auxiliary function
g(x) = a · f(x) ∈ R. This auxiliary function can also be
viewed as appending an FC layer at the end of the net reduc-
ing its M -dimension output to a single scalar. Because a is
independent on f , a·∇3 = ∇3g. Knowing g is a scalar-value

8252

network (N > M = 1) suggests CSFD-BP more effective
for the differentiation. a · ∇3f is then computed via a single
CSBP-BP pass using third-order complex perturbations.

Adjoint perturbation can be applied with both left and
right contractions simultaneously. Using this technique, the
time complexity no longer depends on the differentiation or-
der. This makes the high-order differentiation of DNNs tan-
gible in practice.

Results and Applications
We implement HoD-Net with PyTorch in CR form on a
workstation computer with Intel i9-10980XE CPU and
an nVidia 3090 GPU with 24G G-memory. In time crit-
ical applications, we port the trained network to CUDA, and
use cuBLAS (Nvidia 2008) for CR-based network pass.

Time Performance Comparison
We first investigate the time performance of HoD-Net with
off-the-shelf AD routines in PyTorch (autograd) and
TensorFlow (GradientTape) for gradient computa-
tion. We also compare HoD-Net with JAX (Schoenholz and
Cubuk 2019) in Hessian computation. In this experiment,
we use three networks with three representative input/output
configurations: 1) N = 40, M = 400; 2) N = 200,
M = 200; 3) N = 400, M = 40. All the nets have 8 FC
layers, and each layer is activated by ELU.

28
7.

5

26
8.

7 44
.3

17
2.

9

16
9.

3

16
9.

7

40
.1

33
.6

34
.2

11
8.

7

13
7.

3

15
0.

1

2.
8

3.
1

3.
2

Torch, GPU TF, GPU
JAX, GPU, Fwd. JAX, GPU, Rev.
Ours, CSFD, GPU

15
5.

7

57
.9

8.
2

17
3.

5

17
0.

8

17
0.

5

20
.3

20
.6

20
.565

.5 83
.1

67
.4

2.
3

3.
9

5.
1

Torch, CPU TF, CPU
JAX, CPU, Fwd. JAX, CPU, Rev.
Ours, CSFD, CPU

20
6.

8

20
9.

0

21
7.

3

7.
1 16

.8 46
.8

16
.8

17
.3

15
.3

JAX, GPU, Fwd.
Ours, CSFD, GPU
Ours, CSFD-BP, GPU

17
4.

3

25
4.

2

16
5.

8

61
.8

52
2.

8

1,
51

2.
189

.7

19
5.

0 51
.6

JAX, CPU, Fwd.
Ours, CSFD, CPU
Ours, CSFD-BP, CPU

Gradient performance, GPU

Gradient performance, CPU

Hessian performance, GPU

Hessian performance, CPU
40 400 40400200 200

40 400 40400200 200

40 400 40400200 200

40 400 40400200 200

Figure 3: Time performance comparison among HoD-
Net, built-in AD routines from PyTorch (Torch) and
TensorFlow (TF), and JAX. We also compare HoD-Net
and JAX in Hessian calculation. The networks tested have 8
FC layers with ELU activations. All the timing statistics are
in millisecond.

The result is reported in Fig. 3. In the first-order case,
CSFD-BP is not an option, and we only use CSFD-based
HoD-Net implementation. This is a forward process. As a
result, 40 → 400 is faster than 400 → 40 on both CPU and
GPU. In general, HoD-Net significantly outperforms AD-
based packages. This is because AD needs to build the com-
putation graph, which is not required with HoD-Net. In JAX

and TensorFlow, it is possible to pre-build this graph in
the forward AD mode. If this option is on, the performance
of HoD-Net is comparable to JAX and TensorFlow. How-
ever, the computation graph is always needed in reverse AD
mode in current version of JAX. In Hessian computation,
HoD-Net outperforms JAX when the differentiation direc-
tion is probably set. For instance, if the net is 40 → 400,
CSFD-based HoD-Net should be adopted; and if the net is
400 → 40, CSFD-BP should be used. JAX recursively uses
first-order AD, and it is not sensitive to the differentiation or-
der in Hessian calculation (as it will always need one reverse
accumulation and one forward accumulation). Higher-order
differentiation with JAX is orders of magnitude slower than
HoD-Net (even using the Taylor-mode (Bettencourt, John-
son, and Duvenaud 2019)). This is because HoD-Net does
not need to perform high-order chain rule as in (Bettencourt,
Johnson, and Duvenaud 2019).

Applications of HoD-Net
We now showcase how to leverage high-order differentiabil-
ity of HoD-Net in a few concrete applications. It is not our
intention to claim that HoD-Net should always be used in
any differentiation scenarios. However, HoD-Net provides
novel and orthogonal perspectives to high-order differentia-
tion and enables a wide range of applications.

Application I: High-Order DL Finetuning It has been
noticed that training deep networks with gradient-based al-
gorithms exhibits distinct behaviors at early and late stages
(usually empirically divided by the validation error plateau,
or by the learning-rate switch points) (Li, Wei, and Ma 2019;
Frankle, Schwab, and Morcos 2029; Leclerc and Madry
2020). Many observations of “simplicity bias” by SGD and
variants (Arpit et al. 2017; Kalimeris et al. 2019; Valle-
Perez, Camargo, and Louis 2019) endorse their roles to
contribute to the early stage. High-order optimization on
the other hand, could benefit the second stage (a.k.a. net-
work finetuning). To this end, we design a Newton-Krylov-
based (Knoll and Keyes 2004) training algorithm with HoD-
Net. Unlike pseudo second-order methods (e.g., (Gupta, Ko-
ren, and Singer 2018; Martens and Grosse 2015; Osawa et al.
2019)), where low-rank Hessian approximations are used,
HoD-Net allows us to access the full information of ∇2f
during the training.

Our HoD-Net-based second-order finetuning algorithm is
given in Alg. 1. Basically, our method performs the training
in a Newton-Krylov way – the linear system at each New-
ton step is solved with a conjugate-gradient (CG)-like pro-
cedure. In DL, f exhibits high nonlinearity, and the vanilla
CG is infeasible. If a problematic search direction is identi-
fied (i.e., see Fig. 5), we skip the current Hessian sample and
move to the next batch.

We compare our method with several well-known al-
gorithms including Adam (Kingma and Ba 2014), Ada-
Grad (Duchi, Hazan, and Singer 2011), Shampoo (Gupta,
Koren, and Singer 2018), and Hessian-free method
(HF) (Martens 2010) during the training of autoencoder
(AE) (Kramer 1991), LeNet-5 (LeCun et al. 1998), VGG-
11 (Simonyan and Zisserman 2014), and ResNet-20 (He

8253

1E-3

1E-2

1E-1

1E+0

1E+1

0 4 8 12 16 20

1E-3

1E-2

1E-1

1E+0

1E+1

0 6 12 18 24 30
1E-3

1E-2

1E-1

1E+0

1E+1

0 6 12 18 24 30
0.0
0.5
1.0
1.5
2.0
2.5
3.0

0 6 12 18 24 30

1E-3

1E-2

1E-1

1E+0

1E+1

0 6 12 18 24 30

Autoencoder
MNIST

VGG11
CIFAR10

LeNet
MNIST

LeNet
SVHN

LeNet
CIFAR10

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 6 12 18 24 30

ResNet20
CIFAR10

Our methodAdaGradAdam Shampoo HF

Figure 4: Training curves among different training methods.
The x axis is the epoch index.

Global gradient

Unreliable local gradient

Reliable local gradient Top view

Figure 5: We skip unreliable batch by comparing local and
global gradients.

et al. 2016). The datasets used are MNIST, SVHN, and CI-
FAR10. The training curves are plotted in Fig. 4. In a nut-
shell, HoD-Net provides an efficient approach to extract cur-
vature information of the optimization manifold, and our
method shows a superior performance in those DL tasks.

Application II: High-Order Contractive Autoencoder
Contractive autoencoder or CAE (Rifai et al. 2011b) extracts
more robust features by penalizing the Frobenius norm of
the Jacobian matrix of an encoder (w.r.t. the input). This reg-
ularization helps to make the features more consistent in dif-
ferent directions around the training data. It is measured by
the contractive ratio i.e., the ratio between the distance of
two points in the feature space and the original space. By
extending Jacobian-based penalty term to the second order,
we show that better contractive ratios could be achieved.

A practical issue is the dimensionality of the Hessian∇2f
– building the Hessian explicitly consumes significant mem-
ory for large-scale CAE nets. As a compromise, we only
control the trace of∇2f ·∇2f , which partially measures the
mean curvature of the encoder f :

Tr(∇2f · ∇2f) =
∑
ij

(
∂2[f(x)]j
∂x2

i

)2

. (10)

The final loss includes both the norm of Jacobian and Hes-
sian trace:

LCAE = MSE(x, x̃)+α ‖∇f (x)‖2F +βTr(∇2f ·∇2f), (11)

Algorithm 1: HoD-Net Newton-Krylov training.
Input: minibatch set {B1, B2, · · ·}, η̃

1: compute∇f ; // ∇f is the global gradient

2: j ← 0; // minibatch index

3: for each Bj do
4: compute∇fj ; // ∇fj is the local gradient

sampled at mini-batch Bi

5: if ∇fj · ∇f < 0 then
6: j ← j + 1;
7: continue; // skip this loop for Bj

8: end
9: i← 0, ∆w ← ∆w̃;

10: 〈∇f, hi〉 ← CSFDBP(w,∆w);// hi is the

directional derivative of f(w) under ∆w

11: ri ← −(∇f + hi), pi ← rj ;// ri is the

residual; pi is the search direction

12: while ‖ri‖ is not small enough do
13: κ = pi · ∇2f · pi; // adjoint perturbation

14: if κ < 0 then
15: break; // negative curvature, early

termination

16: end
17: if 0 < κ < 1.0× 10−8 then
18: κ← 0.01 · ‖pj‖; // local flatness, move

forward with momentum

19: end
20: αi ← ‖ri‖/κ;
21: ∆w ← ∆w + αipi;
22: qi ← CSFDBP(w, pi); // qi = ∇2f · pi

23: ri+1 ← ri − αiqi;
24: βj ← ‖ri+1‖2/‖rj‖2;
25: pi+1 ← ri+1 + βipi;
26: i← i+ 1;
27: end
28: if ∆w · ∇f > 0 then
29: ∆w ← (1 + ∆w·∇f

‖∆w‖·‖∇f‖)∆w;
30: end
31: γ ← 1; // the default step size

32: compute η;
33: if η > 0.5η̃ then
34: s← |η̃/η|; // an initial test size

35: while η /∈ [0.5η̃, η̃] do
36: if η > η̃ then
37: γ ← 0.5 · γ; // shrink a step

38: end
39: else
40: γ ← 1.5 · γ; // stretch a step

41: end
42: update η with f(w + γ ·∆w);
43: end
44: end
45: w ← w + γ ·∆w;
46: compute g;
47: j ← j + 1;
48: end

8254

where x̃ is the reconstructed signal. α and β are two hyper-
parameters controlling the strength of the regularization.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

5 15 25 35 45

AE
CAE
HoD CAE

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

5 15 25 35 45
0.0
0.1
0.2
0.3
0.4
0.5
0.6

5 15 25 35 45
MNIST MNIST-rot CIFAR-bw

Figure 6: Contractive ratios on different datasets. The x axis
represents the radius.

The results are reported in Fig. 6. We compare HoD CAE
with the traditional autoencoder and Jacobian-penalized
CAE (Rifai et al. 2011b) on MNIST, MNIST-rot (Vincent
et al. 2010), and CIFAR-bw, a grey-scale version of CIFAR-
10. The network is a 4-layer MLP activated by ELU, which
maps the input to a hidden feature with dimension of 400.
For the first-order regular CAE, HoD-Net trains this MLP
2.4 times faster than PyTorch. Unlike existing Hessian-
based CAE (Rifai et al. 2011a), HoD CAE is not stochastic.
The decoder net always produces a high-dimension output
from a low-dimension hidden representation. More impor-
tantly, HoD-Net does not rely on analytic solution for the
gradient of each penalty, and is capable to evaluate high-
order derivatives of an encoder with any number of layers.

We generate random samples with different radius as the
test samples, and compare the distance on the hidden repre-
sentation. The lower contractive ratios show that HoD CAE
is more robust to the directions orthogonal to the manifold.
We take the trained encoder as a head of an MLP for the
classification task on the same datasets. As shown in Ta-
ble 1, HoD CAE leads to higher test accuracy than CAE.
The advantage of HoD CAE is more noticeable with bigger
and complex data sets.

Data set Vanilla AE Jacobian CAE HoD CAE
MNIST 1.61 1.30 1.25

MNIST-rot 10.9 10.4 10.1
CIFAR-bw 54.7 50.2 49.3

Table 1: Test error on different datasets. HoD CAE makes
use of both Jacobian and Hessian trace to enhance the con-
tractive ratio.

Application III: Reduced-Order Finite Element Simula-
tion Physics simulation has been widely used in modern
science and engineering disciplines. Full-scale simulation
is known to be costly and often prohibitive for interactive
applications. To relieve the computation burden, reduced-
order simulation (Przekop and Rizzi 2006; Sifakis and Bar-
bic 2012) defines a compact set of generalized coordinates
to prescribe the dynamics of the model. Classic reduced
simulations use linear maps like PCA (Treuille, Lewis, and
Popović 2006) and modal analysis (Hurty 1960). Recently,
DL has also been exploited to establish the nonlinear map
between generalized and fullspace coordinates, often in the

structure of encoder-decoder (Fulton et al. 2019; Shen et al.
2021).

Clearly, HoD-Net is a powerful tool for this purpose. In
Newtonian dynamics, any map of model’s trajectory takes at
least second-order differentiation to extract necessary inertia
information (i.e., the acceleration-triggered dynamics). Un-
like (Shen et al. 2021), our model reduction is fully network
based (i.e., without using PCA). Under FEM discretization,
the motion of a deformable solid can be described with the
Euler-Lagrange equation: Mü + fint(u) = fext. Here, M
is the mass matrix; u is the unknown displacement of the
mesh; fint and fext are the nonlinear internal force and the
external force. We use the generalized coordinate q such that
u = f(q), and f is a HoD-Net trained from existing simu-
lation poses of the model. Applying time differentiation at
both sides yields:

u̇ =
df(q)

dt
=
∂f(q)

∂q
q̇ = ∇f · q̇,

ü =
d

dt

(
∂f(q)

∂q
q̇

)
= ∇2f : (q̇ ⊗ q̇) +∇f · q̈.

(12)

Eq. (12) is then used to build the reduced equation of motion.
During the simulation, we need third-order differentiation of
f in order to use Newton’s method to compute u, which is
only possible with HoD-Net. The snapshots of a reduced-
order simulation are reported in Fig 8. HoD-Net maps a
1542-dimension problem to a 6-dimension latent space and
achieves a 30× speedup with lower accuracy loss than PCA.

Application IV: Physics-Informed Neural Network As
a differentiation modality, HoD-Net is also useful for solv-
ing neural PDEs problems (Hsieh et al. 2019; Yang, Meng,
and Karniadakis 2021) a.k.a. physics-informed neural net-
works (PINNs). In PINN, the network takes a coordinate
vector as input and predicts the value of the PDE at the in-
put coordinate, for which the network is representing. With
HoD-Net, PINNs are more expressive for high-dimension
and high-order PDEs.

A concrete example is shown in Fig. 7. In this experiment,
we solve a high-dimension Poisson∇2φ(x) = f :

[f]k = −2k2 sin(kx1) sin(kx2)

− k2x2
1 cos(kx1x2)− k2x2

2 cos(kx1x2), (13)
for k from 1 to 8. The boundary conditions are [φ]k(0, x2) =
1, [φ]k(x1, 0) = 1, [φ]k(1, x2) = sin(k) sin(kx2) +
cos(kx2), and [φ]k(x1, 1) = sin(k) sin(kx1) + cos(kx1).
For this specific driving function, the Poisson problem has
an analytic solution of [φ]k(x1, x2) = sin(kx1) sin(kx2) +
cos(kx1x2), which is used as the ground truth. The network
structure is 2 → 100 → 100 → 100 → 100 → 100 → 8,
and each hidden layer is activated by tanh. With HoD-Net,
we can directly access the Laplacian of the network (and its
derivative) to supervise the training based on the MSE loss.

Conclusion
HoD-Net is a numerical differentiation method for neural
networks. It uses CSFD as primary differentiation mecha-
nism. By extending the complex arithmetic to multicom-
plex realms, we can achieve network differentiation of an

8255

0.0 0.5 1.0 0.0
0.5
1.0
1.1
1.2
1.3

0.5
1.0
1.5

0
1

-1
0
1

Er
ro
r

Pr
ed
ic
te
d

Ex
ac

t s
ol

ut
io

n

0.0 0.5 1.00.0
0.2
0.4
0.6
0.8
1.0

k=8k=7k=6k=5k=4k=3k=2k=1 -0.10
-0.05
0.00
0.05
0.10

-1
0
1

-1
0
1

-1
0
1

-1
0
1

Figure 7: HoD-Net for PINN. We test the accuracy of HoD-Net for a high-dimension Poisson problems defined on the 2D
domain of [0, 1]× [0, 1]. The ground truth, network prediction, and the prediction errors are visualized with colormaps.

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500

HoD-Net PCA

Ground truth HoD-Net PCA Frame

Er
ro

r

Figure 8: Bending an elastic beam. The error at the tip of the
beam is plotted on the right. HoD-Net enables faster simu-
lation (over 30×), and is more accurate than PCA with the
same subspace size.
arbitrarily high order with a similar complex-like computa-
tion procedure. This makes HoD-Net fundamentally differ-
ent from AD or BP. HoD-Net does not need to build the com-
putation graph and does not rely on high-order chain rule,
making its computation lightweight. In fact, we show that
HoD-Net synergizes well with AD to maximize the infor-
mation of differential obtained from each perturbation. We
also present a novel scheme of adjoint perturbation, which
reduces the time complexity of high-order differentiation by
orders. In addition, CR-form based HoD-Net can be effi-
ciently parallelized on GPU.

HoD-Net also has limitations. For instance, CR formula
duplicates network copies for storing the perturbations at
imaginary directions, which could be memory demand-
ing for large-scale networks. Fortunately, HoD-Net also re-
moves the need of computation graph, which saves mem-
ory and computations back. HoD-Net allows applications to
better use the information hidden in the high-order differ-
entiations such as geometry curvature (Michalkiewicz et al.
2019), motion acceleration (Shen et al. 2021), shape sensi-
tivity (Kubilius, Bracci, and Op de Beeck 2016), light re-
flectance (Zhang et al. 2019) etc.

Acknowledgements
We thank anonymous reviewers and AC for their construc-
tive comments. Tianjia Shao is partially supported by NSF
of China (No. 61772462, U1736217), and the 100 Talents
Program of Zhejiang University. Kun Zhou is partially sup-
ported by NSF of China (No. 61890954). Chenfanfu Jiang

is supported in part by NSF (1943199, 1813624, 2023780)
and DOE (4000171342). Feng Luo is supported in part by
NSF (ABI-1759856 and MTM2-2025541 to FL). Yin Yang
is partially supported by NSF (2016414, 2011471).

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In 12th {USENIX} symposium on operating systems
design and implementation ({OSDI} 16), 265–283.

Aizenberg, N. N.; Aizenberg, I. N.; and Krivosheev, G. A.
1996. Multi-valued and universal binary neurons: mathe-
matical model, learning, networks, application to image pro-
cessing and pattern recognition. In Proceedings of 13th In-
ternational Conference on Pattern Recognition, volume 4,
185–189. IEEE.

Arpit, D.; Jastrzębski, S.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.;
and Bengio, Y. 2017. A closer look at memorization in deep
networks. In International Conference on Machine Learn-
ing, 233–242. PMLR.

Barrachina, S.; Castillo, M.; Igual, F. D.; Mayo, R.; and
Quintana-Orti, E. S. 2008. Evaluation and tuning of the level
3 CUBLAS for graphics processors. In 2008 IEEE Interna-
tional Symposium on Parallel and Distributed Processing,
1–8. IEEE.

Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; and Siskind,
J. M. 2018. Automatic differentiation in machine learning:
a survey. Journal of machine learning research, 18.

Betancourt, M. 2018. A Geometric Theory of Higher-
Order Automatic Differentiation. arXiv preprint
arXiv:1812.11592.

Bettencourt, J.; Johnson, M. J.; and Duvenaud, D. 2019.
Taylor-Mode Automatic Differentiation for Higher-Order
Derivatives in JAX.

Bolton, D. 1968. The multinomial theorem. The Mathemat-
ical Gazette, 336–342.

8256

Bücker, H. M.; Corliss, G.; Hovland, P.; Naumann, U.; and
Norris, B. 2006. Automatic differentiation: applications,
theory, and implementations, volume 50. Springer Science
& Business Media.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(Jul): 2121–
2159.
Frankle, J.; Schwab, D. J.; and Morcos, A. S. 2029. The
Early Phase of Neural Network Training. In International
Conference on Learning Representations.
Fulton, L.; Modi, V.; Duvenaud, D.; Levin, D. I.; and Ja-
cobson, A. 2019. Latent-space dynamics for reduced de-
formable simulation. In Computer graphics forum, vol-
ume 38, 379–391. Wiley Online Library.
Garling, D. J. 2011. Clifford algebras: an introduction, vol-
ume 78. Cambridge University Press.
Giles, M. B.; and Pierce, N. A. 2000. An introduction to the
adjoint approach to design. Flow, turbulence and combus-
tion, 65(3): 393–415.
Griewank, A. 2012. Who invented the reverse mode of dif-
ferentiation. Documenta Mathematica, Extra Volume ISMP,
389–400.
Gupta, V.; Koren, T.; and Singer, Y. 2018. Shampoo: Pre-
conditioned stochastic tensor optimization. arXiv preprint
arXiv:1802.09568.
Hamilton, W. R. 1848. Xi. on quaternions; or on a new
system of imaginaries in algebra. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
33(219): 58–60.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Hecht-Nielsen, R. 1992. Theory of the backpropagation
neural network. In Neural networks for perception, 65–93.
Elsevier.
Hirose, A.; and Yoshida, S. 2012. Generalization charac-
teristics of complex-valued feedforward neural networks in
relation to signal coherence. IEEE Transactions on Neural
Networks and learning systems, 23(4): 541–551.
Hogan, R. J. 2014. Fast reverse-mode automatic differentia-
tion using expression templates in C++. ACM Transactions
on Mathematical Software (TOMS), 40(4): 26.
Hsieh, J.-T.; Zhao, S.; Eismann, S.; Mirabella, L.; and Er-
mon, S. 2019. Learning neural PDE solvers with conver-
gence guarantees. arXiv preprint arXiv:1906.01200.
Hurty, W. C. 1960. Vibrations of structural systems by com-
ponent mode synthesis. Journal of the Engineering Mechan-
ics Division, 86(4): 51–69.
IEEE. 1985. IEEE standard for binary floating-point arith-
metic. Institute of Electrical and Electronic Engineers.
Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In International conference on machine learning, 448–
456. PMLR.

Kalimeris, D.; Kaplun, G.; Nakkiran, P.; Edelman, B. L.;
Yang, T.; Barak, B.; and Zhang, H. 2019. SGD on Neu-
ral Networks Learns Functions of Increasing Complexity. In
Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems
2019.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Knoll, D. A.; and Keyes, D. E. 2004. Jacobian-free Newton–
Krylov methods: a survey of approaches and applications.
Journal of Computational Physics, 193(2): 357–397.
Kramer, M. A. 1991. Nonlinear principal component anal-
ysis using autoassociative neural networks. AIChE journal,
37(2): 233–243.
Kubilius, J.; Bracci, S.; and Op de Beeck, H. P. 2016. Deep
neural networks as a computational model for human shape
sensitivity. PLoS computational biology, 12(4): e1004896.
Lang, S. 2013. Complex analysis, volume 103. Springer
Science & Business Media.
Leclerc, G.; and Madry, A. 2020. The two regimes of deep
network training. arXiv preprint arXiv:2002.10376.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham,
A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.;
et al. 2017. Photo-realistic single image super-resolution us-
ing a generative adversarial network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 4681–4690.
Li, Y.; Wei, C.; and Ma, T. 2019. Towards explaining the
regularization effect of initial large learning rate in training
neural networks. Advances in neural information processing
systems.
Linnainmaa, S. 1976. Taylor expansion of the accumulated
rounding error. BIT Numerical Mathematics, 16(2): 146–
160.
Lyness, J. 1968. Differentiation formulas for analytic func-
tions. Mathematics of Computation, 352–362.
Maple, V. 1994. Waterloo maple software. University of
Waterloo, Version, 5.
Margossian, C. C. 2018. A Review of automatic differentia-
tion and its efficient implementation. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, e1305.
Martens, J. 2010. Deep learning via hessian-free optimiza-
tion. In ICML, volume 27, 735–742.
Martens, J.; and Grosse, R. 2015. Optimizing neural net-
works with kronecker-factored approximate curvature. In
International conference on machine learning, 2408–2417.
Martens, J.; and Sutskever, I. 2011. Learning recurrent neu-
ral networks with hessian-free optimization. In ICML.
Martins, J. R.; Sturdza, P.; and Alonso, J. J. 2003. The
complex-step derivative approximation. ACM Transactions
on Mathematical Software (TOMS), 29(3): 245–262.

8257

McCulloch, W. S.; and Pitts, W. 1943. A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5(4): 115–133.
Michalkiewicz, M.; Pontes, J. K.; Jack, D.; Baktashmotlagh,
M.; and Eriksson, A. 2019. Implicit surface representa-
tions as layers in neural networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
4743–4752.
Morton, K. W.; and Mayers, D. F. 2005. Numerical solution
of partial differential equations: an introduction. Cambridge
university press.
Muller, J.-M.; Brisebarre, N.; De Dinechin, F.; Jeannerod,
C.-P.; Lefevre, V.; Melquiond, G.; Revol, N.; Stehlé, D.; Tor-
res, S.; et al. 2018. Handbook of floating-point arithmetic,
volume 1. Springer.
Neidinger, R. D. 2010. Introduction to automatic differen-
tiation and MATLAB object-oriented programming. SIAM
review, 52(3): 545–563.
Nocedal, J.; and Wright, S. 2006. Numerical optimization.
Springer Science & Business Media.
Nvidia, C. 2008. Cublas library. NVIDIA Corporation,
Santa Clara, California, 15(27): 31.
Osawa, K.; Tsuji, Y.; Ueno, Y.; Naruse, A.; Yokota, R.; and
Matsuoka, S. 2019. Large-scale distributed second-order op-
timization using kronecker-factored approximate curvature
for deep convolutional neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 12359–12367.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703.
Pearlmutter, B. A. 1994. Fast exact multiplication by the
Hessian. Neural computation, 6(1): 147–160.
Phipps, E.; and Pawlowski, R. 2012. Efficient expression
templates for operator overloading-based automatic differ-
entiation. In Recent Advances in Algorithmic Differentia-
tion, 309–319. Springer.
Price, G. B. 2018. An introduction to multicomplex spaces
and functions. CRC Press.
Przekop, A.; and Rizzi, S. A. 2006. Nonlinear reduced order
random response analysis of structures with shallow curva-
ture. AIAA journal, 44(8): 1767–1778.
Rall, L. B.; and Corliss, G. F. 1996. An introduction to auto-
matic differentiation. Computational Differentiation: Tech-
niques, Applications, and Tools, 89.
Revels, J.; Lubin, M.; and Papamarkou, T. 2016. Forward-
mode automatic differentiation in Julia. arXiv preprint
arXiv:1607.07892.
Rifai, S.; Mesnil, G.; Vincent, P.; Muller, X.; Bengio, Y.;
Dauphin, Y.; and Glorot, X. 2011a. Higher order contrac-
tive auto-encoder. In Joint European conference on machine
learning and knowledge discovery in databases, 645–660.
Springer.

Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; and Bengio, Y.
2011b. Contractive auto-encoders: Explicit invariance dur-
ing feature extraction. In Icml.
Rumelhart, D. E.; Durbin, R.; Golden, R.; and Chauvin, Y.
1995. Backpropagation: The basic theory. Backpropagation:
Theory, architectures and applications, 1–34.
Schoenholz, S. S.; and Cubuk, E. D. 2019. Jax md: End-to-
end differentiable, hardware accelerated, molecular dynam-
ics in pure python.
Shen, S.; Yang, Y.; Shao, T.; Wang, H.; Jiang, C.; Lan, L.;
and Zhou, K. 2021. High-Order Differentiable Autoencoder
for Nonlinear Model Reduction. ACM Trans. Graph., 40(4).
Sifakis, E.; and Barbic, J. 2012. FEM simulation of 3D de-
formable solids: a practitioner’s guide to theory, discretiza-
tion and model reduction. In Acm siggraph 2012 courses,
1–50.
Simonyan, K.; and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Squire, W.; and Trapp, G. 1998. Using complex variables to
estimate derivatives of real functions. SIAM review, 40(1):
110–112.
Treuille, A.; Lewis, A.; and Popović, Z. 2006. Model re-
duction for real-time fluids. ACM Transactions on Graphics
(TOG), 25(3): 826–834.
Utke, J.; Naumann, U.; Fagan, M.; Tallent, N.; Strout, M.;
Heimbach, P.; Hill, C.; and Wunsch, C. 2008. OpenAD/F:
A modular open-source tool for automatic differentiation of
Fortran codes. ACM Transactions on Mathematical Soft-
ware (TOMS), 34(4): 1–36.
Valle-Perez, G.; Camargo, C. Q.; and Louis, A. A. 2019.
Deep learning generalizes because the parameter-function
map is biased towards simple functions. In International
Conference on Learning Representations.
van Merrienboer, B.; Moldovan, D.; and Wiltschko, A. B.
2018. Tangent: Automatic differentiation using source-code
transformation for dynamically typed array programming.
arXiv preprint arXiv:1809.09569.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol,
P.-A.; and Bottou, L. 2010. Stacked denoising autoencoders:
Learning useful representations in a deep network with a
local denoising criterion. Journal of machine learning re-
search, 11(12).
Wolfram, S.; et al. 1996. Mathematica. Cambridge univer-
sity press Cambridge.
Yang, L.; Meng, X.; and Karniadakis, G. E. 2021. B-PINNs:
Bayesian physics-informed neural networks for forward and
inverse PDE problems with noisy data. Journal of Compu-
tational Physics, 425: 109913.
Zhang, C.; Wu, L.; Zheng, C.; Gkioulekas, I.; Ramamoorthi,
R.; and Zhao, S. 2019. A differential theory of radiative
transfer. ACM Transactions on Graphics (TOG), 38(6): 1–
16.
Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; and Fu, Y. 2018.
Residual dense network for image super-resolution. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 2472–2481.

8258

