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Abstract

In this paper, based on an asymptotic analysis of the Softmax
layer, we show that when training neural networks for classi-
fication tasks, the weight vectors corresponding to each class
of the Softmax layer tend to converge to the class-wise means
computed at the representation layer (for specific choices of
the representation activation). We further show some conse-
quences of our findings to the context of transfer learning,
essentially by proposing a simple yet effective initialization
procedure that significantly accelerates the learning of the
Softmax layer weights as the target domain gets closer to
the source one. Experiments are notably performed on the
datasets: MNIST, Fashion MNIST, Cifar10, and Cifar100 and
using a standard CNN architecture.

Introduction
One of the big trends of the moment is opening up access
to the Deep Learning technology to non-experts. Therefore,
there is an emergent need to move from manual design of
neural networks models by experts to an automatic design
for non-experts. This methodological shift is known as Au-
toML (for Automatic Machine Learning). Technically, this
consists in designing automatically the architecture of a neu-
ral network as well as its hyperparameters, e.g, the Neural
Architecture Search (NAS) approach (Zoph and Le 2017;
Zoph et al. 2018; Cai, Zhu, and Han 2019; Liu, Simonyan,
and Yang 2019; Real et al. 2019).

Basically, this trend implies to handle more and more spe-
cific data domains with generally few data provided by the
user for each domain. In this context, the NAS approach,
which needs a lot of training data, is no longer relevant. Con-
sequently, the practical solution generally adopted to over-
come this problem is to “recycle”, as much as possible, the
networks already learned, with a minimum of adaptation.
This is facilitated by the fact that there are more and more
pretrained neural networks available online (open source
pretrained models1).

To this end, one of the most simple and widespread ap-
proach is the transfer of pre-trained representations referred
to as Transfer Learning (TL) (Kuzborskij, Orabona, and Ca-
puto 2013; Sharif Razavian et al. 2014; Yosinski et al. 2014;
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Ginsca et al. 2015; Azizpour et al. 2015; Kornblith, Shlens,
and Le 2019; Tamaazousti et al. 2019) in the rest of the docu-
ment. In principle, TL consists in learning a neural network
on a source domain for which we have a large amount of
data and then using this network on a target domain (gener-
ally with few available data) by updating only the last layer
(very often with Softmax activation) of weight associated
with the task to be solved (e.g., classification task). There-
fore, TL plays a key role in this context by reducing dras-
tically the hyper-parameters space and replacing the neural
architecture search by the best available source model/rep-
resentation search.

Unfortunately, a scale up of Deep Learning based on this
TL methodology will be with a huge computational conse-
quences. Indeed, the TL approach implies to duplicate the
search for the best hyper-parameters, generally obtained by
a very costly grid search, as many times as there are avail-
able source models. To the best of our knowledge, there is
no clear solution to an a priori (i.e., without training the last
layer) choice of the best source model from the data associ-
ated to the target domain.

To tackle this issue, our (1) first contribution consists in
analyzing theoretically the behavior of the Softmax layer in
neural networks classifiers (see section Asymptotic analy-
sis of the Softmax classifier weights). Our (2) second con-
tribution consists in showing that Softmax classifies through
the class-wise means of the data representations (see sec-
tion Expression of the class-weights vectors for near-optimal
representations) for specific choices of the representation
activation. This second result is obtained under additional
hypotheses on the representations statistics of the data,
based on commonly accepted interpretations of the prop-
erties expected from the representations of DNNs (Bengio,
Courville, and Vincent 2013; Tamaazousti et al. 2019). Our
results are experimentally confirmed by showing that when
training neural networks for classification tasks, the weight
vectors corresponding to each class of the Softmax layer
tend to be similar to the class-wise means computed at the
representation layer.

Based on this finding, our (3) third contribution then con-
sists in addressing the source model selection in the TL con-
text for classification. In addition, this result provides a sim-
ple yet effective initialization procedure (through the class-
wise means of the representations computed on the target
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domain) which significantly accelerates TL as the target do-
main gets closer to the source one. Experiments on real data
confirm empirically the relevance of these technical choices
(see section Experiments). Note that, our second and main
contribution might be of independent interest even outside
the context of TL. Indeed, our theoretical results also support
the remarkable observed performances of the Nearest Class
Mean Classifier (Guerriero, Caputo, and Mensink 2018).

Notation: Vectors are represented by boldface lowercase
letters and matrices are represented by boldface capital let-
ters. The i-th entry of a vector v is denoted by vi, and ele-
ment (i, j) of a matrix M is denoted by Mi,j . The i-th row
and j-th column of M are denoted respectively by Mi,: and
M:,j . Let [p] denote the set of integers {1, . . . , p}. δi,j de-
notes the Kronecker delta. The notation v1 = v2 +O‖·‖(up)
means that for any unitary vector u, uᵀ(v1 − v2) = O(up).
1p denotes the vector of size p full of ones. ‖ · ‖ denotes
the `2 norm for vectors and the operator norm for matrices.
Denote by Cos(u,v) ≡ (u/‖u‖)ᵀ (v/‖v‖) the cosine sim-
ilarity between two vectors u and v.

Settings
In all the paper we consider the following settings. Let E de-
note some data space and T = {(di, `i)}ni=1 be a training
set containing n data points di belonging to one of k differ-
ent classes C1, . . . , Ck ⊂ E , where `i ∈ [k] is the label for
data point di. Let nj denote the number of training points
in class j so that n =

∑k
j=1 nj . Let c : [n] → [k] be the

function which returns the class-index of a datum xi so is
defined such that c(i) = ` if xi ∈ C`. We further denote

x ≡ ϕ ◦ φ(d ; Θ) ∈ Rp, (1)

the representation of dimension p for d ∈ E , where φ :
E → Rp is typically implemented by a deep CNN model
(with the final layer being a dense layer with a linear ac-
tivation function) parameterized by Θ, and ϕ : R → R
stands for the activation function at the representation layer
applied element-wise to φ(d ; Θ). The final class prediction
˜̀ ∈ [k] is given by a classifier function ψ : Rp → Rk,
such that ˜̀ = arg maxψ(x). Generally, ψ is a Softmax
classifier with weight matrix W ∈ Rp×k and bias vector
b ∈ Rk so that ψ(x) = softmax(W ᵀx + b). And the
Softmax function is defined for a vector v ∈ Rk such that
softmax(v)i = evi/

∑k
j=1 e

vj . We consider in all what fol-
lows that the bias vector b is null since its influence is negli-
gible (Kang et al. 2019).

Define the following statistics of the representation layer,
for each ` ∈ [k]

m` ≡ Ed∈C` [x] , C` ≡ Ed∈C` [(x−m`) (x−m`)
ᵀ
] ,
(2)

which are the expected class-wise means and covariances of
the representations as defined in equation 1. Authors in (Sed-
dik et al. 2020) have shown that the performances of a linear
classifier applied on top of the representations xi’s can be
quantified through their class-wise means and covariances,
namely the quantities m` and C`, when the data di’s are as-
sumed to be generated by a GAN. A result which suggests

that the representations behave as Gaussian mixtures for lin-
ear classifiers. Let W = [w1, . . . ,wk] ∈ Rp×k where w`

are the Softmax classifier weights corresponding to class `.
In following, we aim to explicit the relationship between the
class-weights w` and the quantities m` and C`, when the
Softmax classifier is trained on the representations. Namely,
assuming a Gaussian Mixture Model on the data represen-
tations xi we give subsequently an implicit expression be-
tween w` and the representations statistics (cf. equation 8).
And under specific assumptions on m` and C` which we
refer to as the near-optimal representations assumption, we
give a more explicit relationship between w` and the class-
wise means m`.

Main Results
Preliminaries
Before introducing our results, we give the following tech-
nical tool which will be of central interest.
Proposition 1. Let m ∈ Rp a deterministic (mean) vector
and C ∈ Rp×p a positive semi-definite (covariance) matrix,
consider x ∼ N (m,C) and let f : R → R be some differ-
entiable function and w ∈ Rp a deterministic vector. Then,

E[f(wᵀx)x] = E[f(wᵀx)]m + E[f ′(wᵀx)]Cw. (3)

Proof. See supplementary material.

Remark 1. Proposition 1 can be extended beyond the Gaus-
sian assumption when the dimension p is getting large. In-
deed, if x = m+C

1
2 z for some random vector z with ran-

dom i.i.d. entries with zero mean, unit variance and bounded
fourth order moment. As p → ∞, assuming further that
‖C‖ = O(1), the result of Proposition 1 can be extended
thanks to the central limit theorem under this more gen-
eral setting and we get E[f(wᵀx)x] = E[f(wᵀx)]m +

E[f ′(wᵀx)]Cw +O‖·‖(‖w‖ p−
1
2 ).

Asymptotic Analysis of the Softmax Classifier
Weights
Given a set of n labeled representations
(x1,y

(1)), . . . , (xn,y
(n)) belonging to k classes

C1, . . . , Ck, where y(i) ∈ Rk are classically one-hot
encoded vectors such that y(i)

` = 1 and y(i)
j = 0 for j 6= `

if xi ∈ C`. In the following we will consider a generalized
expression for the labels given by:

y
(i)
` = αc(i)

|δ`,c(i) − ε|
1 + (k − 2)ε

, (4)

where αc(i) are hyper-parameters and ε > 0 which will be
converging to zero in our analysis, c(i) ∈ [k] returns the
class index of the i-th datum and δi,j stands for the Kro-
necker delta. We will see in the following that a careful
choice of these parameters αc(i) can make the Softmax clas-
sifier weights independent of the class proportions, which
is a desired property for datasets with unbalanced classes
also known as the long-tail recognition problem (Kang et al.
2019). In particular, the classical labels are recovered by set-
ting αc(i) = 1 and ε→ 0.
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Figure 1: Empirical values of the parameters µ1, µ2, σ
2
1,j and σ2

2,j as in Assumption 2. The top figures correspond to a ReLU
activation in the representation layer and the bottom figures for a tanh activation. As we can see, Assumption 2 is verified
when using the tanh activation. Indeed, the means satisfy µ1 ≈ ‖mi‖2 � mᵀ

imj ≈ µ2 for i 6= j and the covariance
scalars satisfy σ2

1,j � σ2
2,j . While these conditions are not satisfied when using the ReLU activation (for which µ1 ≈ µ2 and

σReLU
1 ≈ 10 × σtanh

1 ). The CNN model has been trained on the MNIST dataset, and when using both activations (tanh or
ReLU) we get the same test accuracy 99.6%.

The Softmax classification task consists in optimizing the
categorical-cross entropy loss function

L(w1, . . . ,wk) = − 1

n

n∑
i=1

k∑
`=1

y
(i)
` log p

(i)
` (5)

where

p
(i)
` =

ew
ᵀ
` xi∑k

j=1 e
wᵀ
j xi

(6)

The gradient of which with respect to each class-weight vec-
tor w` is given by

∇w`L =
1

n

n∑
i=1

αc(i)

(
ew

ᵀ
` xi∑k

j=1 e
wᵀ
j xi
−
|δ`,c(i) − ε|

1 + (k − 2)ε

)
xi

≡ 1

n

n∑
i=1

αc(i)f`,i(w
ᵀ
`xi)xi.

(7)

Expression of the class-weights vectors under a GMM
model In order to characterize the behavior of the weight
vectors w`, we need to assume a statistical prior on the data
representations. Motivated by the result of (Seddik et al.
2020) which shows that deep learning representations tend
to behave as Gaussian mixtures when their dimension grow,
we make the assumption that the xi follow a Gaussian Mix-
ture Model (GMM) as follows.

Assumption 1 (Statistical model on the representations).
We assume that the data representations are independent
random vectors which follow a GMM with means m` and
covariances C` for each class C`, further we denote by
π` ≡ limn

n`
n ∈ (0, 1) where n` stands for the cardinality

of the class C`. Formally, if xi ∈ C` then xi ∼ N (m`,C`).
We further assume that both p, n→∞.

Under assumption 1, the loss function in equation 5 is a
sum of i.i.d. random variables and therefore converges to
its expectation for sufficiently large n thanks to the central
limit theorem. Therefore, the class-weights vectors w` con-
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centrate around some deterministic vectors w̄` which are de-
fined as E[∇w̄`L] = 0 since the expectation and the gradient
are linear operators. The following proposition provides an
implicit expression for the asymptotic class-weights vectors
w̄`.

Proposition 2 (Asymptotic class-weight vectors). Let
w̄1, . . . , w̄k be the deterministic vectors satisfying
E[∇w̄`L] = 0. Thus, under Assumption 1, each w̄`

satisfies the implicit equation

w̄` =

 k∑
j=1

αjπjEj [f ′`,i(w̄
ᵀ
`xi)]Cj

−1

 k∑
j=1

αjπjEj [f`,i(w̄ᵀ
`xi)]mj


(8)

where the notation Ej [g(xi)] ≡ E[g(xi) |xi ∈ Cj ] for some
g : R→ R.

Proof. The result is straightforward thanks to Proposition 1.
Indeed,

E[∇w`L] =
k∑
j=1

nj
n
αjEj [f`,i(wᵀ

`xi)]mj

+
k∑
j=1

nj
n
αjEj [f ′`,i(w

ᵀ
`xi)]Cjw`.

Finally, letting E[∇w`L] = 0 completes the proof.

Remark 2 (Relaxation of the Gaussian assumption). Note,
thanks to Remark 1, that the Gaussian assumption can be
relaxed and one may assume that xi = m` + C

1
2

` zi with
zi having i.i.d. entries with zero mean, unit variance an
bounded fourth order moment. In which case, we have

w̄` =

 k∑
j=1

αjπjEj [f ′`,i(w̄
ᵀ
`xi)]Cj

−1

 k∑
j=1

αjπjEj [f`,i(w̄ᵀ
`xi)]mj

+O‖·‖
(
‖w̄`‖ p−

1
2

)
.

Looking carefully at the expression in equation 8, we see
that in order to make the weight vectors w̄` independent of
the class proportions πj which is a desirable property for the
long-tail recognition problem (Kang et al. 2019), a natural
choice of the parameters αj’s in the expression of the gen-
eralized labels in equation 4 is such that αj = (k πj)

−1. We
hence have the following corollary to Proposition 2.

Corollary 1. Recalling Proposition 2, setting the weight la-
bels αj’s such that αj = (k πj)

−1. The class-weight vectors
become asymptotically independent of the class proportions

πj . Specifically,

w̄` =

 k∑
j=1

Ej [f ′`,i(w̄
ᵀ
`xi)]Cj

−1

 k∑
j=1

Ej [f`,i(w̄ᵀ
`xi)]mj

 .

(9)

Corollary 1 provides a general implicit expression for the
class-weight vectors in function of the representations statis-
tics namely the means mj and the covariances Cj . In the
following, we will provide an explicit expression for the
class-weights w` under specific assumptions on the repre-
sentations statistics which we refer to as the case of near-
optimal representations.

Expression of the class-weights vectors for near-optimal
representations
Assumption 2 (Near-optimal representations). Let ε > 0,
as p→∞
• A1) mᵀ

imj = δi,j µ1 + (1 − δi,j)µ2 with µ1 = O(1)
and µ2 = O(p−ε).

• A2) Cj = σ2
1,jIp + σ2

2,j

(
1p1

ᵀ
p − Ip

)
with σ2

1,j =

O (p−ε) and σ2
2,j = O(p−1−3ε).

An optimal representation for a given dataset is typically a
representation which perfectly separates the different classes
by maximizing the between-class variance and minimizing
the within-class variance while having a large number of
degrees of freedom (Bengio, Courville, and Vincent 2013;
Tamaazousti et al. 2019). Assumption 2 makes a formal def-
inition for what we call a near-optimal representation which
satisfies for a sufficiently large number of degrees of free-
dom (dimension p of the representation) two main proper-
ties: (A1) which ensures that the between-class means are
asymptotically orthogonal; mᵀ

imj → δi,jµ1 (maximize the
between-class variance); and (A2) which makes the within-
class covariances asymptotically isotropic; Cj

∼= σ2
1,jIp at

the first order (which models the fact that an optimal rep-
resentation should have independent features) and with low
variance; σ2

1,j → 0 (minimize the within-class variance).
The term near-optimal is used in the sense that these prop-
erties hold as the dimension p grows. We will see in the
experiments part that when training jointly the representa-
tion and the classification parts of a neural network clas-
sifier (for a specific choice of the representation activation
function), its representations tend to satisfy the near-optimal
representations assumption. Under this assumption, we have
the following proposition which gives an explicit relation-
ship between the class-weights vectors w̄` and the class-
wise means.

Proposition 3 (Expression of the weights for near-op-
timal representations). Under Assumption 2, for suffi-
ciently large p and letting ε → 0 in the expression
of the generalized labels in equation 4, the class-weight
vectors are asymptotically proportional to the centred
class-wise means as follows: Let κ > 0 and γ` =
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Figure 2: The first and third rows show, respectively for ReLU and tanh activation at the representation, the cosine similarity
during the training between the learned weights w` and the centred class-wise means m̄` for different classes and across
different datasets (columns). The second and fourth rows show the train and test accuracy during training, when considering
the learned weights (in blue) and the centred class-wise means (in red). As we can see, the cosine similarity between w` and
m̄` for tanh is higher than ReLU since Assumption 2 holds when using tanh (see Figure 1).

(∑k
j=1 σ

2
1,jEj [−f ′`,i(w̄

ᵀ
`xi)]

)−1

≥ 4
k σ2

1,max

w̄` =
γ` k e

−κµ1

1 + (k − 1) e−κµ1

m` −
1

k

k∑
j=1

mj

+O‖·‖ (1)

Proof. See supplementary material.

Proposition 3 provides an explicit link between w̄` and

the class-wise means of the representations when the latter
satisfy the near-optimal assumption. Note that since γ` ≥

4
k σ2

1,max
= O(pε), the w̄`’s are equal at the first order to

the (scaled) centred class-wise means, as a consequence, the
cosine similarity between them is asymptotically high as in
the following corollary.

Corollary 2. Denote the centred class-wise means by
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m̄` ≡ m` − k−1
∑k
j=1 mj and the scaling factor %` =

γ` k e
−κµ1

1+(k−1) e−κµ1
, therefore Cos(%−1

` w̄`, m̄`) = 1−O(p−ε).

We now turn to the experiments to show the application
of this result to actual neural network architecture applied
to the classification of image datasets and present the conse-
quences to TL.

Experiments
In all the experiments we consider the following settings.

Datasets. All the experiments performed on four datasets
which are: MNIST (LeCun 1998), Fashion MNIST (Xiao,
Rasul, and Vollgraf 2017), Cifar10 (Krizhevsky and Hinton
2010) and Cifar100 (Krizhevsky, Nair, and Hinton 2009).
Each contains about n = 60000 training images and 10000
test images belonging to k = 10 classes, except Cifar100
which contains n = 50000 training images belonging to k =
100 classes. All the images are normalized in [0, 1].

Architecture. We consider a CNN architecture for the
representation φ(d ; Θ). The dimension of the representa-
tion is taken to be p = 512 and the activation function ϕ
is either ReLU or tanh, and other choices of the activation
are considered in the experiments part of the supplementary
material. The classification layer is a dense layer with Soft-
max activation and without biases since their role is negli-
gible (Kang et al. 2019). We use the Keras (Géron 2019)
deep learning framework for the implementation. More de-
tails about the architecture are provided in the supplemen-
tary material.

Training parameters. Four CNN networks having the
above architecture are trained on the four considered
datasets for 50 epochs (except Cifar100 with 100 epochs)
and using a batch-size of 1000 images, using the Adam op-
timizer (Kingma and Ba 2014). m` and C` are estimated by
their empirical estimates.

Near-optimal Representations in Practice
Under a specific choice of the activation function ϕ at the
representation layer, it turns out that Assumption 2 can hold
once the network has been trained. Figure 1 depicts the em-
pirical values of the parameters µ1, µ2, σ

2
1,j and σ2

2,j for two
choices of the activation function at the representation layer.
Here we considered the MNIST dataset and for each class,
the means are estimated through their empirical estimates
and the parameters σ2

1,j , σ
2
2,j are estimated respectively by

the average of the diagonal and off-diagonal entries of the
sample covariance matrix corresponding to class j.

As we can see in Figure 1, when considering the ReLU
activation function at the representation layer, the parame-
ters µ1 ≈ ‖mi‖2 and µ2 ≈mᵀ

imj for i 6= j are of the same
order which is not consistent with Assumption 2. Besides,
when considering the tanh activation function, µ1 � µ2

and σ2
1,j � σ2

2,j which agrees with the near-optimal rep-
resentation assumption. Therefore, when using the ReLU
activation function the classes-separability information is
shared between the class-wise means and covariances, while
in the case of tanh all the information is encoded in the
class-wise means. As a consequence, we will see in the

next section that, when considering the tanh activation, the
weights vectors of the Softmax classifier get aligned with the
centred class-wise means as suggested by Corollary 2 under
the near-optimal representations assumption.

The fact that we observe a difference in the behavior be-
tween different choices of the activation function at the rep-
resentation layer may be associated to the symmetry prop-
erties of the considered activation function. Indeed, tanh
is an odd function while ReLU does not have any symme-
tries, a deeper analysis of the interplay of the non-linearity
and the data statistics has been done in (Liao and Couillet
2018) which provides insights in the case of random fea-
tures maps. More examples as in Figure 1 using different
activation functions and datasets are provided in the supple-
mentary material.

Note however that the choice of the activation function
at the representation layer does not affect much the perfor-
mances of the model. Indeed, in the case of the MNIST
dataset in Figure 1, the model has the same test accuracy
of 99.6% for both choices of the activation function (ReLU
or tanh). The same property hold for the datasets Fashion
MNIST, Cifar10 and Cifar100 as provided in the supplemen-
tary material.

Similarity Between w̄` and m̄`

Corollary 2 states that the cosine similarity between the
learned w` and m̄` is, at a scaling factor, asymptotically
high when the representations statistics m` and C` satisfy
the near-optimal representations assumption 2. As we dis-
cussed in the previous section, this assumption can be ver-
ified when the CNN model is trained for a specific choice
of the representation activation ϕ. Figure 2 shows the em-
pirically computed cosine similarities Cos(w`, m̄`) during
training for both activations ReLU and tanh. As we can no-
tice, Cos(w`, m̄`) is relatively high when considering the
tanh activation since it yields to near-optimal representa-
tions as assumed in 2.

We also provide the curves of accuracy during training
of the CNN model (in blue) along with the accuracy when
replacing the weight matrix W of the Softmax layer by
the normalized matrix M̄ containing the centred class-wise
means m̄` (in red). Precisely, M̄ = MP /‖MP ‖ with
M = [m1, . . . ,mk] and P stands for the centring matrix
of dimension k and is given by P = Ik − 1

k1k1
ᵀ
k . The nor-

malization by ‖MP ‖ is considered since the scaling factor
%` depends implicitly on w`, but still one can use spectral
normalization (Miyato et al. 2018) as we considered here by
the term ‖MP ‖.

We can see in Figure 2 that, for ϕ = tanh, there is a
matching between the train and test accuracy when using
the default weights W and when replacing them by M̄
at the end of the training phase. Therefore, this result sug-
gests that the weight matrix W encode the class-wise means
of the representations, and hence the neural network clas-
sifier make decisions through the m̄`’s. The similarity be-
tween w̄` and m̄` notably supports the remarkable observed
performances of the Nearest Class Mean Classifier (Guer-
riero, Caputo, and Mensink 2018), which relies on classify-
ing through the euclidean distances to the class-wise means.
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Figure 3: Training of the Softmax layer on target data. The target data (n = 5000 sampled at random) being noisy versions of the
considered datasets with different Gaussian noise variance σ2. Accuracy (Top) and dynamics (Bottom) of different baselines in
terms of the added noise variance σ2. The different methods are: CM (Centred Means) the weights are replaced with the scaled
centred means; LWM (Learned Weights of Means) a learned weighted sum of means; WFS (Weights Learned From Scratch);
WICM (Weights Initialized with Centred Means).

Note that the performance of the CNN model for ϕ = ReLU
is the same as when considering ϕ = tanh, but the latter has
the advantage to be more interpretable through Corollary 2.

Consequences for Transfer Learning
As a consequence of our finding in the previous section, in a
deep transfer learning scheme (Bengio, Courville, and Vin-
cent 2013; Tamaazousti et al. 2019), one can initialize the
weights of the Softmax layer with the scaled centred class-
wise means M̄ of the target data representations. To stress
this point, we first train a network on the used datasets con-
sidered as source domain and the target domain is consid-
ered as noisy versions of the input data (n = 5000 randomly
samples) by adding Gaussian noise with variance σ2. We
particularly compare three methods which are: CM (Cen-
tred Means) the weights are replaced with the scaled centred
means M̄ without further training; LWM (Learned Weights
of Means) a learned weighted sum of means MW with W

a k× k weight matrix to be trained; WFS (Weights Learned
From Scratch); WICM (Weights Initialized with Centred
Means).

Figure 3 depicts the accuracy on the target domain (along
the different datasets) in terms of the noise variance σ2. We
particularly notice from this figure that when the weights of
the Softmax layer are initialized with the class-wise means
of the representations (WICM), we get a slightly better ac-
curacy than initializing them randomly (WFS). Moreover,
internalizing with the class-wise means yield to faster con-
vergence as the target domain gets closer to the source one,
i.e., as σ → 0. Besides, the source model selection can be
performed by comparing the accuracies, of different repre-
sentations, of the Softmax layer with the weights being the
centred class-wise means of the representations (CM method
in Figure 3), thereby not requiring the training of the Soft-
max layer multiple times.
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Conclusion
We have analyzed throughout the paper the behavior of the
Softmax layer in neural networks classifiers. We have no-
tably shown that the weight vectors corresponding to each
class of the Softmax layer tend to converge to the class-wise
means computed at the representation layer, a result which
unfolds from the near-optimal representations assumption.
Our findings suggested three main procedures for efficient
transfer learning: (i) use of symmetric representation activa-
tions to ensure the near-optimal representations assumption;
(ii) we provided a systematic approach to perform source
model selection without training the Softmax layer; (iii) and
finally we provided an initialization procedure which accel-
erates the training of the Softmax layer as the target domain
gets closer to the source domain.
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