The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

Offline Reinforcement Learning as Anti-exploration

Shideh Rezaeifar,' Robert Dadashi,” Nino Vieillard,”> * Léonard Hussenot,>* Olivier Bachem,’

Olivier Pietquin,” Matthieu Geist >

! University of Geneva
2 Google Research, Brain Team
3 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
Université de Lille, CNRS, Inria, UMR 9189 CRIStAL

shideh.rezaeifar @unige.ch, dadashi@google.com, vieillard @ google.com, hussenot @ google.com, bachem @google.com,

pietquin @ google.com, mfgeist@google.com

Abstract

Offline Reinforcement Learning (RL) aims at learning an opti-
mal control from a fixed dataset, without interactions with the
system. An agent in this setting should avoid selecting actions
whose consequences cannot be predicted from the data. This is
the converse of exploration in RL, which favors such actions.
We thus take inspiration from the literature on bonus-based ex-
ploration to design a new offline RL agent. The core idea is to
subtract a prediction-based exploration bonus from the reward,
instead of adding it for exploration. This allows the policy to
stay close to the support of the dataset, and practically extends
some previous pessimism-based offline RL methods to a deep
learning setting with arbitrary bonuses. We also connect this
approach to a more common regularization of the learned
policy towards the data. Instantiated with a bonus based on
the prediction error of a variational autoencoder, we show that
our simple agent is competitive with the state of the art on a
set of continuous control locomotion and manipulation tasks.

Introduction

Deep Reinforcement Learning (RL) has achieved remarkable
success in a variety of tasks including robotics (Kober,
Bagnell, and Peters 2013; Thrun 1995; Benbrahim and
Franklin 1997; Bagnell and Schneider 2001; Endo et al.
2008), recommendation systems (Rojanavasu, Srinil, and
Pinngern 2005; Afsar, Crump, and Far 2021), and games
(Silver et al. 2018). Deep RL algorithms generally assume
that an agent repeatedly interacts with an environment and
uses the gathered data to improve its policy: they are said to
be online. Because actual interactions with the environment
are necessary to online RL algorithms, they do not comply
with most of real-world applications constraints. Indeed,
allowing an agent to collect new data may be infeasible such
as in healthcare (Murphy et al. 2001), autonomous driving
(Sallab et al. 2017; Grigorescu et al. 2020), or education
(Mandel et al. 2014). As an alternative, offline RL (Levine
et al. 2020) is a practical paradigm where an agent is trained
using a fixed dataset of trajectories, without any interactions
with the environment during learning. The ability to learn
from a fixed dataset is the crucial step towards scalable and
generalizable data-driven learning methods.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

8106

In principle, off-policy algorithms (Ernst, Geurts, and We-
henkel 2005; Lagoudakis and Parr 2003; Mnih et al. 2013;
Lillicrap et al. 2016; Haarnoja et al. 2018) could be used to
learn from a fixed dataset. However, in practice, they perform
poorly without any feedback from the environment. This
issue persists even when the off-policy data comes from ef-
fective expert policies, which in principle should address any
exploration issue (Kumar et al. 2019). The main challenge
comes from the sensitivity to the data distribution. The distri-
bution mismatch between the behavior policy and the learned
policy leads to an extrapolation error of the value function,
which can become overly optimistic in areas of state-action
space outside the support of the dataset. The extrapolation
error accumulates along the episode and results in unstable
learning and divergence (Fujimoto, Hoof, and Meger 2018;
Kumar et al. 2019, 2020; Levine et al. 2020; Peng et al. 2019;
Dadashi et al. 2021; Yu et al. 2020).

This work introduces a new approach to Offline RL, in-
spired by exploration. This may seem counter-intuitive. In-
deed, in online RL, an exploring agent will try to visit state-
action pairs it has never experienced before, hence drifting
from the distribution in the dataset. This is exactly what
an Offline RL agent should avoid, so we frame it as an
anti-exploration problem. We focus on bonus-based explo-
ration (Brafman and Tennenholtz 2002; Burda et al. 2019;
Pathak et al. 2017; Burda et al. 2018; Bellemare et al. 2016b).
The underlying principle, in these methods, is to add a bonus
to the reward function, this bonus being higher for novel/-
surprising state action-pairs (Barto, Mirolli, and Baldassarre
2013). The core idea of the proposed approach is to perform
anti-exploration by subtracting the bonus from the reward,
instead of adding it, effectively preventing the agent from
selecting actions of which the effects are unknown. Con-
currently, Rashidinejad et al. (2021) proposed a theoretical
framework for subtracting an exploration bonus from the
reward that was applied only to the tabular setting. Similarly,
Jin, Yang, and Wang (2021) recently proposed a theoretical
pessimistic variant of the value iteration based on uncertainty
quantifier. However, they did not provide any practical deep
RL algorithm with empirical results. Under minimal assump-
tions, we relate this approach to the more common offline RL
idea of penalizing the learned policy for deviating from the
policy that supposedly generated the data. We also propose
a specific instantiation of this general idea, using TD3 (Fuji-

moto, Hoof, and Meger 2018) as the learning agent, and for
which the bonus is the reconstruction error of a variational
autoencoder (VAE) trained on offline state-action pairs. We
evaluate the agent on the hand manipulation and locomotion
tasks of the D4RL benchmark (Fu et al. 2020), and show that
it is competitive with the state of the art.

Preliminaries

A Markov decision process (MDP) is defined by a tuple
M := (S, A,r, P,7), with S the state space, A the action
space, P € AgXA the Markovian transition kernel (Ags
is the set of distributions over S), r € RS*A the reward
function and v € (0, 1) the discount factor. A policy 7 € A%
is a mapping from states to distribution over actions (a deter-
ministic policy being a special case). The general objective
of RL is to find a policy that maximizes the expectation of
the return Gy = > ;o 7' (S¢4i, ar4i). Given a policy m,
the action value function, or Q-function, is defined as the
expected return when following the policy 7 after taking
action a in state s, Q7 (s, a) = E;[G¢|s: = s,a: = al.

For uy,uy € RS*A, define the dot product (u1,us) =
> ui(,a)uz(-,a) € RS, and for v € RS write Pv
> P(s']:,)v(s’) € RS>, Whith these notations, define
the Bellman operator as B"QQ = r + vP(m, Q). It is a
contraction (Puterman 2014) and Q™ is its unique fixed
point. An optimal policy 7* satisfies 7* € argmax,_ Q7.
A policy 7 is said to be a greedy policy with respect
to Q if 7 € argmax,, (m, @) (notice that (m,Q)(s)
Eorr()s) [Q.(s,.a)]). An algorithm that allows computing an
optimal policy is Value Iteration (VI):

Tht1 € AIgMAX e ns (m, Q)

{Qk+1 =71+ yP(mry1, Qk)

The first step is the greedy step. When considering only de-
terministic policies (slightly abusing notations), it simplifies
to m,11(s) = argmax,c 4 Qx(s,a). The second step is the
evaluation step, again for deterministic policies, it simplifies
to Qry1(s,a) = r(s,a) + Yy s o[maxy Qr(s’,a’)].

VI may be used to derive many existing deep RL al-
gorithms. First, consider the discrete action case, assume
that a dataset of collected transitions D = {(s,a,s’,r)}
is available. The seminal DQN (Mnih et al. 2013) parame-
terizes the -value with a deep neural network @, takes
Q. as being a copy of a previous network ()5 (w being a
copy of the parameters), uses the fact that the greedy pol-
icy can be exactly computed, and considers a loss which is
the squared difference of both sides of the evaluation step,
Lagn(w) = [ED[(T +ymax, Qz(s',a’) — Qu(s,a))?], with
E an empirical expectation.

With continuous actions, the greedy policy can no longer
be computed exactly, which requires introducing a policy
network 7. TD3 (Fujimoto, Hoof, and Meger 2018), a state-
of-the-art actor-critic algorithm, can be derived from the same
VI viewpoint. It adopts a fixed-variance Gaussian parameteri-
zation for the policy, T9 ~ N (g, ol) with ug € AS, o the
standard deviation of the exploration noise and [the iden-
tity matrix. The greedy step can be approximated by the ac-

tor 1loss Jig3, actor(0) = [AESGD[[AEQNM(,7S)[Q@(S, a)]]. This can

8107

be made more convenient by using the reparameterization

trick, Jia3, acior(8) = HT:SED[EGNN(O,UI) [Qa (s, po(s) + €)]].
The critic loss is similar to the DQN one, Jis, critic(w) =

U-A:D[EA‘a’Nﬂg(v|S’) [(T + ’YQ(I)(SI, a/) - Qw(sa a))2]'

Framing Offline RL as Anti-Exploration

What makes offline reinforcement learning hard? Con-
ventional on-policy RL algorithms operate in a setting where
an agent repeatedly interacts with the environment, gathers
new data and uses the data to update its policy. The term off-
policy denotes an algorithm that can use the data collected by
other policies whilst still being able to interact with the envi-
ronment. Offline RL relies solely on a previously collected
dataset without further interaction with the environment. This
setting can leverage the vast amount of previously collected
datasets, e.g. human demonstrations or hand-engineered ex-
ploration strategies. Offline RL is challenging because the
collected dataset does not cover the entire state-action space.
The out-of-distribution (OOD) actions can cause an extrap-
olation error in the value function approximations. As an
example, consider the regression target of the DQN loss,
y =1+ ymaxyeca Qu(s’,a’). The estimate of the value
function Q5 (s’, a’) for state-action pairs that are not in the
dataset can be erroneously high due to extrapolation errors.
As a consequence, the maximum max, ¢4 Qz (s, a’) may
be reached for a state-action couple (s’,a’) that has never
been observed in the data. Using this maximal value as part
of the target for estimating @, (s, a) will result in being over-
optimistic about (s,a). This estimation error accumulates
with time as the policy selects actions that maximize the value
function. Thus, many methods constrain the learned policy to
stay within the support of the dataset. These methods differ
in how the deviation is measured and how the constraint is
enforced. For example, it could be achieved by modifying
the DQN target to 7 + 7 max,/|(s/,a/)ep @u (s, a’), which
is the underlying idea of Kumar et al. (2019); Ghasemipour,
Schuurmans, and Gu (2020), among others.

Exploration in Reinforcement Learning. Exploration is
critical in RL and failing at handling it properly can prevent
agents to identify high reward regions, or even to gather any
reward at all if it is sparse. There are many approaches to
exploration, as well as many challenges, such as the well-
known exploration-exploitation dilemma. In this paper, we
focus on bonus-based exploration and then adapt it to offline
RL. The core idea is to define or learn a bonus function
b € RS*A, which is small for known state-action pairs and
high for unknown ones. This bonus is added to the reward
function which will intuitively drive the learned policy to
follow trajectories of unknown state-action pairs. Embedded
within a generic VI approach, this can be written as

The1 € argmax e as (7, Qk)
Qr+1 =1+b+ YP(mpi1, Qr)

The bonus-based strategies can be roughly categorized
into count-based or prediction-based methods. First, in
count-based methods, the novelty of a state is measured by
the number of visits, and a bonus is assigned accordingly.

For example, it can be b(s,a) x 1/4/n(s,a), with n(s, a)

the number of times the state-action couple has been
encountered. The bonus guides the agent’s behavior to
prefer rarely visited states over common ones. When the
state-action space is too large, counting is not a viable option,
but the frequency of visits can be approximated by using a
density model (Bellemare et al. 2016b; Ostrovski et al. 2017)
or mapping state-actions to hash codes (Tang et al. 2017).
Second, in prediction-based methods, the novelty is related
to the agent’s knowledge about the environment. The agent’s
familiarity with the environment can be estimated through
a prediction model (Achiam and Sastry 2017; Schmidhuber
1991; Pathak et al. 2017; Burda et al. 2018). For example,
a forward prediction model captures an agent’s ability to
predict the outcome of its own actions. High prediction error
indicates that the agent is less familiar with that state-action
pair and vice versa. However, this prediction error is
entangled with the agent’s performance in the specific task.
Random network distillation (RND) was introduced as an
alternative method where the prediction task is random and
independent of the main one (Burda et al. 2019).

Proposed anti-exploration approach. Offline RL algo-
rithms learn from a fixed dataset without any interaction with
the environment. State-action pairs outside of the dataset are
therefore never actually experienced and can receive erro-
neously optimistic value estimates because of extrapolation
errors that are not corrected by an environment feedback. The
overestimation of value functions can be encouraged in online
reinforcement learning, to a certain extent, as it incentivizes
agents to explore and learn by trial and error (Gulcehre et al.
2021; Schmidhuber 1991). Moreover, in an online setting, if
the agent wrongly assigns a high value to a given action, this
action will be chosen, the real return will be experimented,
and the value of the action will be corrected through boot-
strapping. In this sense, online RL is self-correcting. On the
contrary, in offline RL, the converse of exploration is required
to keep the state-actions close to the support of the dataset (no
self-correction is possible given the absence of interaction).
Hence, a natural idea consists in defining an anti-exploration
bonus to penalize OOD state-action pairs. This bonus will
encourage the policy to act similarly to existing transitions
of the offline trajectories.

A naive approach to anti-exploration for offline RL would
thus consist in subtracting the bonus from the reward, instead
of adding it. Embedded within our general VI scheme, it is

{ﬂk+1 = argmax, (7, Q)
Qi1 =r=b+ 7P (11, Qr)

Intuitively, this should prevent the RL agent from choos-
ing actions with high bonus, i.e., unknown actions that are
not or not enough present in the dataset. However, this
would not be effective at all. Indeed, in offline RL, we
would only use state-action pairs in the dataset, for which
the bonus is supposedly low. Hence this would not avoid
bootstrapping values of actions with unknown consequences,
which is our primary goal. As an example, consider again
the bootstrapped target of DQN, with the additional bonus,
r—>b(s,a) + ymaxy eca Qs (s, a’). The state action-couple
(s, a) necessarily comes from the dataset, so the bonus is sup-
posedly low, for example zero for a well trained prediction-

8108

based bonus. Thus, the bonus is here essentially useless.
What would make more sense would be to penalize the boot-
strapped value with the bonus, for example considering the
target r + ymaxy e a(Qs (s, a’)—b(s’,a’)). This way, we
penalize bootstrapping values for unknown state-action pairs
(s',d’). It happens conveniently that both approaches are
equivalent, from a dynamic programming viewpoint (that
is, when Q-values and policies are computed exactly for all
possible state-action pairs; the equivalence obviously does
not hold in an approximate offline setting). Indeed, we have

{ﬂ'k+1 = al"gmanWa Qr)
Qi1 =7—=b+ VP (Tpt1, Qr)

{’/Tkle = argmax, <’/T, Q;c_b>
Qi1 =1+ 7P (mhy1, Q) —b)

with Q| = Qr41 + b. Even though the Q-values are not
the same, both algorithms provide the same sequence of poli-
cies, provided that Qf, = Q¢ + b. In fact, independently from
the initial)-values, both algorithms will converge to the pol-
icy maximizing E.[>", 7' (r(s¢, ar)—b(s¢, ar))]. This comes
from the fact that is is a specific instance of a regularized
MDP (Geist, Scherrer, and Pietquin 2019), with a linear reg-
ularizer (7)) = (m, b). This is a better basis for an offline
agent, as the bonus directly affects the Q)-function. This was
illustrated above with the example of the DQN target as a
specific instance of this VI scheme. However, the idea holds
more generally, for example within an actor-critic scheme, as
we will exemplify later by providing an agent based on TD3
for continuous actions.

) ey

A Link to Regularization

Many recent papers in offline RL focus on regularizing the
learned policy to stay close to the training dataset of offline
trajectories.

It usually amounts to a penalization based on a diver-
gence between the learned policy and the behavior policy
(the action distribution conditioned on states underlying the
dataset). These methods share the same principle, but they
differ notably in how the deviation of policies is measured.
Here, we draw a link between anti-exploration and behavior-
regularized offline RL.

Let b € RS*A be any exploration bonus. We will just
assume that the bonus is lower for state-action pairs in the
dataset than for those outside. For example, if b was trained
with a one-class classifier, it could be b(s,a) = 0 if (s, a)
in the support, b(s,a) ~ 1 elsewhere. We will discuss a
different approach later, based on the reconstruction error of
a conditional variational autoencoder.

We can use this bonus to model a distribution of actions
conditioned on states, assigning high probabilities for low
bonuses, and low probabilities for high bonuses, the goal
being to model the data distribution (which is a hard problem
in general). This can be conveniently done with a softmax
distribution. Let 8 > 0 be a scale parameter and 7 > 0 a
temperature, we define the policy 7, = softmax(— gb(s,).
Now, we can use this policy to regularize a VI scheme. Define
the Kullback-Leibler (KL) divergence between two policies

as KL(m||ma) = (m1,Inm — Inma) € RS. Define also the
entropy of a policy as H(7) = —(m,In7) € R®. Consider
the following KL-regularized VI scheme (Geist, Scherrer,
and Pietquin 2019; Vieillard et al. 2020):

{Wk+1 = argmax, ((r,Qx) — 7 KL(7||m))
Qi1 =1+ 7P ((7ry1, Qr) — TKL(mpp1]|| 7)) .

Consider for example the quantity optimized within the
greedy step, we have that (7, Q) — 7 KL(7||m) = (7, Qr +
Tlnsoftmax(—%» —7m{mInw) = (7, Qr — Ap) + H(n),
with Ay(s,a) = Bb(s,a) + 7In) , exp(—pb(s,a’)/T).
The same derivation can be done for the evaluation step:

2) < {Wk+1 = argmax, ((m, Qr — Ap) + 7H(7))
Qi1 =7 +vP ((Thr1, Qr — Ap) + TH(Tpy1)) -

This can be seen as an entropy-regularized variation of
the scheme we proposed Eq. (1). Now, taking the limit as
the temperature goes to zero, we have lim, g Ay(s, a)
Bb(s, a)+max, (—Fb(s,a’)) = B(b(s,a) —ming b(s,a’)).

Assuming moreover that the bonus is a prediction-based
bonus, well-trained, meaning that min, b(s,a’) = 0 for any
state s in the dataset (as there is an action associated to it),
we can rewrite the limiting case as Eq. (1):

@)

{Wk-u = argmax_(m, Qr — b)
Qi1 =7+ VP (M1, Qr — b)

Thus, we can see the proposed anti-exploration VI scheme as
a limiting case, when the temperature goes to zero, of a KL-
regularized scheme that regularize the learned policy towards
a behaviorial policy constructed from the bonus, assigning
higher probabilities to lower bonuses. This derivation is
reminiscent to advantage learning (Bellemare et al. 2016a)
being a limiting case of KL-regularized VI (Vieillard et al.
2020) in online RL (Vieillard, Pietquin, and Geist 2020).

In a tabular setting, choosing the bonus as b(s,a)
_% Inn(s, a), we would obtain a frequency-based approxi-
mation of the behavioral policy. Yet, this does not scale easily,
and we propose a more practical approach.

A Practical Approach

In principle, any (VI-based) RL agent could be combined
with any exploration bonus for providing an anti-exploration
agent for offline RL. For example, in a discrete action setting,
one could combine DQN, described briefly before, with
RND (Burda et al. 2019). The RND exploration bonus
is defined as the prediction error of encoded features as
shown in Figure 1: a prediction network is trained to predict
the output of a fixed random neural network denoted as
target network, ideally leading to higher prediction errors
when facing unfamiliar states. Here, we will focus on a
continuous action setting. To do so, we consider the TD3
actor-critic as the RL agent, briefly described before. For
the exploration bonus, RND is a natural choice as it is a
well-performing bonus for the Atari benchmark and has been
extended to continuous state-action support estimation in
the context of Imitation Learning with RED (Wang et al.
2019). However, in our experiments, RND performed poorly.

8109

Note that RND was introduced for discrete action spaces
and image-based observations, for which random CNNs
capture meaningful features. In the continuous state-action
setting, random MLPs do not capture environment specific
features (in RED for instance, the random networks are
tuned for each environment, and are used together with a BC
regularization term). We show in Section that RND is not
discriminative enough to distinguish state-action pairs in the
dataset from others. Therefore, we introduce a bonus based
on the reconstruction error of a variational autoencoder.

Randomly initialized
network

Network trained by Loss

distillation min o (s.0) ~ for (s,)]}
[a) (S
Z S R S ‘» Fols.a) Bonus definition
. a-r) b(s.7(5)) = Bl fols,7(s)) — for (s, w())II3
Encoder Decoder Loss
min [la — a3 + KL (1,0). A0 1))
w [)
§ Cing o ‘ S ‘ T —a Bonus definition
O . o z— b(s, w(s)) = BIIT(®(s,w(s))) — n(s)]3
z~N(p,0) '

Figure 1: Illustration of RND and CVAE networks, losses
and inferred anti-exploration bonuses.

TD3. We described briefly TD3 before, from a VI
viewpoint. It indeed comes with additional particularities,
that are important for good empirical performance. The
noise (the standard deviation of the Gaussian policy) is not
necessarily the same in the actor critic losses, a twin-critic
is considered for reducing the overestimation bias when
bootstrapping, and policy updates are delayed. We refer to
Fujimoto, Hoof, and Meger (2018) for more details. We use
the classic TD3 update, except for the additional bonus term:

Jtd3, actor, b(e) - [AESED [Q@(S, NG(S))_b(Sv Mo (5))}7 (3)
Jtd3, critic, b(w> = HT:D [Ea/:ug(s’),eNN((),al) (’I“—|— “4)
YQa(s',d' +€)=b(s',a" +€)) — Qu(s,a))?].

CVAE. The bonus we use for anti-exploration is based
on a Conditional Variational Autoencoder (CVAE) (Sohn,
Lee, and Yan 2015). The Variational Autoencoder (VAE) was
first introduced by Kingma and Welling (2014). The model
consists of two networks, the encoder ® and the decoder V.
The input data z is encoded to a latent representation z and
then the samples & are generated by the decoder from the la-
tent space. Let us consider a dataset, X = {z!,...,2"},
consisting of N i.i.d. samples. We assume that the data
were generated from low dimensional latent variables z.
VAE performs density estimation on P(z, z) to maximize
the likelihood of the observed training data x: log P(x) =
Zil log P(z*). Since this marginal likelihood is difficult
to work with directly for non-trivial models, instead a para-
metric inference model W(z|x) is used to optimize the varia-
tional lower bound on the marginal log-likelihood: Lo ¢ =
Ep(z|a)[log ®(z|2)] —=KL(¥(z|x)||®(z)). A VAE optimizes
the lower bound by reparameterizing ¥(z|z) (Kingma and
Welling 2014; Rezende, Mohamed, and Wierstra 2014). The

first term of £ corresponds to the reconstruction error and
the second term regularizes the distribution parameterized by
the encoder ®(z|z) to minimize the KL divergence from a
chosen prior distribution, usually an isotropic, centered Gaus-
sian. In our problem formulation, given a dataset D, we use
a conditional variational autoencoder to reconstruct actions
conditioned on the states. Hence, L4 v is equal to

Ep(z)s,a)[log ®(als, 2)] — KL(¥(z]s, a)||®(z]s)). (5)

Summary. Our specific instantiation of the idea of
anti-exploration for offline RL works as follows. Given a
dataset of interactions, we train a CVAE to predict actions
conditioned on states (Alg. 1). For any given state-action
pair, the bonus is the scaled prediction error of the CVAE,

(©)

with g the scale parameter. This bonus modifies the TD3
losses, run over the fixed dataset (Alg. 2).

b(s,a) = Blla = ¥(®(s,a))l3

Algorithm 1: CVAE training.
1: Init. CVAE networks ® and ¥
2: for stepi = 0to N do
3 Sample a minibatch of % state-action pairs from D
4: Train ® and ¥ using Lo v, see Eq. (5)
5: end for

Algorithm 2: Modified TD3 training.

1: Init. policy g, Q-network @), and target network Q)
2: forstepi =0to N do
3: Sample a minibatch of & transitions from D
For each transition, compute the bonus, Eq. (6)
Update critic: gradient step on Jyg3, citic, b Eq. (4)
Update actor: gradient step on Jus. actor, b» Eq. (3)
Update target network Qg := @
end for

w

A A

Experiments

After describing the experimental setup and datasets, we
first evaluate the discriminative power of the CVAE-based
anti-exploration bonus in identifying OOD state-action pairs,
comparing it to the one of the more natural (in an exploration
context, at least) RND (Sec. Anti-exploration bonus). Then,
we compare the proposed approach to prior offline RL meth-
ods on a range of hand manipulation and locomotion tasks
with multiple data collection strategies (Fu et al. 2020).

Experimental setup. We focus on locomotion and
manipulation tasks from the D4RL dataset (Fu et al. 2020).
Along with different tasks, multiple data collection strategies
are also considered for testing the agent’s performance in
complex environments. First, for the locomotion tasks, the
goal is to maximize the traveled distance. For these tasks,
the datasets are: random, medium-replay, medium
and lastly medium-expert. Random consists of tran-
sitions collected by a random policy. Medium-replay
contains the first million transitions collected by a SAC

8110

agent (Haarnoja et al. 2018) trained from scratch on the
environment. Medium has transitions collected by a policy
with sub-optimal performance. Lastly, medium-expert is
build up from transitions collected by a near optimal policy
next to transitions collected by a sub-optimal policy. Second,
the hand manipulation tasks require controlling a 24-DoF
simulated hand in different tasks of hammering a nail, open-
ing a door, spinning a pen, and relocating a ball (Rajeswaran
et al. 2017). These tasks are considerably more complicated
than the gym locomotion tasks with higher dimensionality.
The following datasets were collected on hand manipulation
tasks: human, cloned, and expert. The human dataset
is collected by a human operator. C1one contains transitions
collected by a policy trained with behavioral cloning inter-
acting with the environment next to initial demonstrations.
Lastly, expert is build up from transitions collected by a
fine-tuned RL policy interacting in the environment.

Anti-exploration bonus. We analyze the quality of the
learned bonus in detail for different algorithms. In particu-
lar, we are interested in the capability of the anti-exploration
bonus to separate state-action pairs in the dataset from others.
However, even though it is straightforward to have positive
examples (these are those in the dataset), it is much more
difficult to define what negative examples are (otherwise,
the bonus could be simply trained using a binary classifier).
In these experiments, for a state-action pair (s, a) € D, we
define an OOD action a in three different ways. First, we
consider actions uniformly drawn from the action space,
a ~ U(A). Second, we consider actions from the dataset
perturbed with Gaussian noise, @ = a + N (0, I). Third, we
consider randomly shuffled actions (for a set of state-action
pairs, we shuffle the actions and not the states, which forms
new pairs considered as negative examples).

We investigate the discriminative power of the bonus in dis-
tinguishing OOD state-action pairs for two different models,
namely RND (as it would be a natural choice in an explo-
ration context, at least in a discrete action setting) and CVAE
(the proposed approach for learning the bonus).

As for the case of RND (Burda et al. 2019), state-action
pairs are passed to the target network f and prediction net-
work f’. The prediction network is trained to predict the
encoded feature from the target network given the same state-
action pair, i.e., minimize the expected MSE between the
encoded features. All the implementation details are pro-
vided in the Appendix. The bonus is defined as the prediction
error of encoded features: b(s,a) := 8| f(s,a) — f'(s, a)||§
In the CVAE model, a state-action pair (s,a) is concate-
nated and encoded to a latent representation z. This latent
representation z next to state s is passed to the decoder to
reconstruct action a. Both encoder and decoder consist of
two hidden layers of size 750 with the latent size set to 12.
We provide further details on the implementation in the Ap-
pendix. The bonus is defined as the reconstruction error of
the actions: b(s,a) := /3 ||a — ¥(®(s, a))]|5. Notice that the
CVAE bonus requires sampling the decoder, and thus is ran-
dom. Yet, empirically, the associated standard deviation is
much smaller the the difference between in-distribution and
OOD samples (relative scale of roughly 1%).

CVAE RND

Dataset

Shuffled

Random

Dataset + noise (std: .25)
1 Dataset + noise (std: .5)

le5 le5

o B N W »

0.0 0.5 1.0 15 2.0 0.0 0.2 0.4 0.6

Figure 2: Visualization of the histogram of the reconstruction
error for walker2d-medium. The reconstruction error is
computed for the original dataset state-action pairs (blue) and
different perturbations of the actions: randomly permutated
actions over the dataset (orange), random actions (green),
original actions to which is added Gaussian noise with
different standard deviations (red, purple).

Histograms of the bonus for OOD state-action pairs
are compared with those in the dataset and visualized in
Figure 2. For these experiments, the state was fixed, and
the bonus was derived for different kind of OOD actions.
The results are shown for CVAE and RND models in the
left and right figures, respectively. RND model performs
poorly in identifying OOD actions, and there is not much
difference between the bonus for actions in the dataset
and randomly generated actions. This might be surprising
as Wang et al. (2019) empirically demonstrated that RED
reward is sufficiently informative for continuous control tasks
in the context of imitation learning. However, estimating the
support of an expert policy is different from a non-optimal
behavioral policy. Moreover, in RED, environment-specific
network tuning is required to achieve good performance, and
the reward function comes with a BC regularization term. As
we expected, for the CVAE model, the bonus is mostly higher
for shuffled, random, and noisy actions in contrast to the
actions in the dataset. Moreover, the bonus gets higher as we
increase the variance of the added noise. Hence, the CVAE
model is discriminative enough to separate state-action pairs
in the dataset from others. In fact, in the novelty detection
task where the goal is to identify outliers, autoencoders were
shown to be beneficial (Abati et al. 2019; Pidhorskyi et al.
2018; Xu et al. 2015; Zhou and Paffenroth 2017).

Performance on D4RL datasets. Now that we have as-
sessed the efficiency of CVAE in discriminating OOD state-
action pairs from the ones in the dataset, we combine it
with TD3 and assess the performance of the resulting of-
fline RL agent on the DARL datasets depicted above. We
compare to the model-free approaches BEAR (Kumar et al.
2019), BRAC (Wu, Tucker, and Nachum 2019), AWR (Peng
et al. 2019), BCQ (Fujimoto, Meger, and Precup 2019) and
CQL (Kumar et al. 2020), the later providing SOTA results.

The architecture of the TD3 actor and critic consists of a
network with two hidden layers of size 256, the first layer has
a tanh activation and the second layer has an elu activation.
The actor outputs actions with a tanh activation, which is
scaled by the action boundaries of each environment. Except
from the activation functions, we use the default parameters
of TD3 from the authors implementation, and run 10° gradi-

8111

ent steps using the Adam optimizer, with batches of size 256.
Other details are provided in the Appendix.

In online RL, it is quite standard to scale or clip rewards,
which can be hard as the reward range may not be known a
priori. In an offline setting, all rewards that will be used are in
the dataset, so their range is known and it is straightforward to
normalize them. Therefore, we scale the reward of each envi-
ronment such that it is in [0, 1]. This is important for having a
scale parameter J for the bonus not too much dependent from
the task. Indeed, we have shown that our anti-exploration
idea ideally optimizes for E[Y,~ 7' (7(s¢, ar) —b(s¢, ar))].
Thus, the scale of the bonus should be consistent with the
scale of the reward, which is easier with normalized rewards.

TD3 allows for different levels of noises in the actor and
critic losses, which deviates a bit from the VI viewpoint. We
adopt a similar approach regarding the scale of the bonus,
as it provides slightly better results. We allow for different
scales (3, and [, for the bonus in respectively the actor loss
and critic loss. We execute a hyperparameter search over
the bonus weights over 8,, 8. € {0.1,0.5,1,5,10}. For all
locomotion tasks, we select the pair providing the best result
(so a single pair for all tasks, not one per task), the same for
manipulation tasks. For locomotion 5, = 5 and 5. = 1, and
for manipulation tasks 3, = 8. = 10 were chosen.

We show the performance of the proposed approach, TD3-
CVAE, on the D4RL datasets in Table 1. We report the aver-
age and standard deviation of the results over 10 seeds, each
being evaluated on 10 episodes. On average, it is competitive
with CQL and outperforms others in locomotion tasks. On
the hand manipulation tasks, CVAE outperforms all other
methods. Notice that all considered baselines are model-free.
Better results can be achieved by model-based approaches
(Yu et al. 2021, 2020), at least on the locomotion tasks. No-
tice that the model-free or model-based aspect is orthogonal
to our core contribution, the idea of anti-exploration could be
easily combined to a model-based approach. We let further
investigations of this aspect for future works.

Related Work

Here, we briefly discuss prior work in offline RL and how our
proposed approach differs. As discussed previously, offline
RL suffers from extrapolation error cause by distribution mis-
match. Recently, there has been some progress in offline RL
to tackle this issue. They can be roughly categorized into pol-
icy regularization-based and uncertainty-based methods. The
former constrains the learned policy to be as close as possible
to the behavioral policy in the dataset. The constraint can be
implicit or explicit and ensures that the value function approx-
imator will not encounter out-of-distribution (OOD) state-
actions. The difference lies in how the measure of closeness
is defined and enforced. Some of the most common measures
of closeness are the KL-divergence, maximum mean discrep-
ancy (MMD) distance, or Wasserstein distance (Wu, Tucker,
and Nachum 2019). In AWR (Peng et al. 2019), CRR (Wang
et al. 2020) or AWAC (Nair et al. 2020), the constraint is intro-
duced implicitly by incorporating a policy update that keeps
it close to the behavioral policy. Furthermore, the constraints
can be enforced directly on the actor update or the value func-

Algorithm BC BEAR BRACp BRACv AWR BCQ CQL TD3-CVAE
halfcheetah-random 2.1 25.1 24.1 31.2 2.5 22 354 28.6 £2.0
walker2d-random 1.6 7.3 -0.2 1.9 1.5 4.9 7.0 55+£8.0
hopper-random 9.8 114 11.0 12.2 10.2 10.6 10.8 11.7£0.2
halfcheetah-medium 36.1 41.7 43.8 46.3 374 40.7 44.4 432+04
walker2d-medium 6.6 59.1 77.5 81.1 17.4 53.1 79.2 68.2 + 18.7
hopper-medium 29.0 52.1 32.7 31.1 359 54.5 58.0 559+ 114
halfcheetah-med-rep 38.4 38.6 454 47.7 40.3 38.2 46.2 453+04
walker2d-med-rep 11.3 19.2 -0.3 0.9 15.5 15.0 26.7 154+78
hopper-med-rep 11.8 33.7 0.6 0.6 28.4 33.1 48.6 46.7 £ 17.9
halfcheetah-med-exp 35.8 53.4 442 41.9 52.7 64.7 62.4 86.1 +9.7
walker2d-med-exp 6.4 40.1 76.9 81.6 53.8 57.5 111.0 84.9 £20.9
hopper-med-exp 1119 963 1.9 0.8 27.1 1109 98.7 111.6 £2.3
Mean performance 25.0 39.8 29.8 314 26.8 40.4 52.3 50.3 £8.3
pen-human 344 -1.0 8.1 0.6 12.3 68.9 375 59.2+14.3
hammer-human 1.5 0.3 0.3 0.2 1.2 0.5 4.4 0.24+0.0
door-human 0.5 -0.3 -0.3 -0.3 0.4 -0.0 9.9 0.0 £ 0.0
relocate-human 0.0 -0.3 -0.3 -0.3 -0.0 -0.1 0.2 -0.0£ 0.0
pen-cloned 56.9 26.5 1.6 -2.5 28.0 44.0 39.2 454 £25.5
hammer-cloned 0.8 0.3 0.3 0.3 0.4 0.4 21 03+£0.1
door-cloned -0.1 -0.1 -0.1 -0.1 0.0 0.0 04 0.0+ 0.1
relocate-cloned -0.1 -0.3 -0.3 -0.3 -0.2 -0.3 -0.1 -02+£0.0
pen-expert 85.1 105.9 -3.5 -3.0 111.0 114.9 107.0 112.3 +21.9
hammer-expert 125.6 127.3 0.3 0.3 39.0 107.2 86.7 1289 £ 1.5
door-expert 349 103.4 -0.3 -0.3 1029 99.0 101.5 59.4 +34.7
relocate-expert 101.3 98.6 -0.3 -0.4 91.5 41.6 95.0 106.4 £+ 5.0
Mean performance 36.7 38.3 0.4 -0.4 322 39.6 40.3 42.6 = 8.6

Table 1: Baselines results are reported from Fu et al. (2020), which do not incorporate std of performances, as based on 3
seeds. Following Henderson et al. (2018), we use 10 seeds and evaluate on 10 episodes per seed and report average and std of
performance. We bold best average performance and underline the performance when within one std of the best performance.

tion update. In BRAC, Wu, Tucker, and Nachum (2019) in-
vestigated different divergences and choices of value penalty
or policy regularization. In BEAR, Kumar et al. (2019) ar-
gue that restricting the support of the learned policy to the
support of the behavior distribution is sufficient, allowing
more flexibility and a wider range of actions to the algorithm.
An alternative approach to alleviate the effects of OOD state-
actions is to make the value function approximators robust
to those state-actions. The aim is to make the target value
function for OOD state-actions more conservative. This is
the underlying principle of CQL (Kumar et al. 2020).

The uncertainty-based approaches for offline RL can
build upon robust MDPs (Petrik and Subramanian 2014;
Ghavamzadeh, Petrik, and Chow 2016; Laroche, Trichelair,
and Des Combes 2019) or upon the concept of pessimism (Yu
et al. 2020; Jin, Yang, and Wang 2021; Buckman, Gelada,
and Bellemare 2021). The idea there is to adapt the concept
of optimism in the face of uncertainty, widely used in ex-
ploration, to pessimism for learning from a fixed dataset of
transitions. As such, our contribution is conceptually very
close to this line of work. Especially, Jin, Yang, and Wang
(2021) recently introduced pessimistic VI, which from an ab-
stract viewpoint is very close to what we propose in Eq. (1).
They offer theoretical guarantees for linear MDPs, in a finite
horizon setting and for a specific bonus, but without empirical
study. What we propose, compared to this line of work, is a

8112

practical generalization of this general idea to a deep learning
setting (though without theoretical guarantees), allowing the
use in principle of any possible exploration bonus. We also
introduced a practical and simple bonus built upon CVAE,
more efficient than RND, and more practical than uncertainty
quantifiers considered in previous works (Yu et al. 2020; Jin,
Yang, and Wang 2021; Buckman, Gelada, and Bellemare
2021). We also draw connections between these two general
families of offline RL algorithms, regularization-based and
uncertainty-based.

Conclusion

We proposed an intuitive and straightforward approach to
offline RL. We constraint the policy to take state-action pairs
within the dataset to avoid extrapolation errors. To do so, the
core idea is to subtract a prediction-based exploration bonus
from the reward (instead of adding it for exploration). We
theoretically showed the connection of the proposed method
with the regularization-based approaches. Instantiating this
idea with a CVAE-based bonus and the TD3 agent (which
is a possibility among many others), we reached competitive
performance on D4RL datasets. Even though the perfor-
mance doesn’t define a new state-of-the-art, we believe that
our approach is quite versatile, simple and well principled.As
such, an interesting research direction would be to combine
it with other orthogonal improvements to offline RL.

References

Abati, D.; Porrello, A.; Calderara, S.; and Cucchiara, R. 2019.
Latent space autoregression for novelty detection. In CVPR,
481-490.

Achiam, J.; and Sastry, S. 2017. Surprise-based intrinsic
motivation for deep reinforcement learning. In Deep RL
Workshop, NeurIPS.

Afsar, M. M.; Crump, T.; and Far, B. 2021. Reinforce-
ment learning based recommender systems: A survey. arXiv
preprint arXiv:2101.06286.

Bagnell, J. A.; and Schneider, J. G. 2001. Autonomous
helicopter control using reinforcement learning policy search
methods. In /CRA. IEEE.

Barto, A.; Mirolli, M.; and Baldassarre, G. 2013. Novelty or
surprise? Frontiers in psychology, 4: 907.

Bellemare, M. G.; Ostrovski, G.; Guez, A.; Thomas, P.; and
Munos, R. 2016a. Increasing the action gap: New opera-
tors for reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 30.

Bellemare, M. G.; Srinivasan, S.; Ostrovski, G.; Schaul, T.;
Saxton, D.; and Munos, R. 2016b. Unifying Count-Based
Exploration and Intrinsic Motivation. Conference on Neural
Information Processing Systems (NIPS).

Benbrahim, H.; and Franklin, J. A. 1997. Biped dynamic
walking using reinforcement learning. Robotics and Au-
tonomous Systems, 22(3-4): 283-302.

Brafman, R. I.; and Tennenholtz, M. 2002. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. Journal of Machine Learning Research, 3(Oct):
213-231.

Buckman, J.; Gelada, C.; and Bellemare, M. G. 2021. The
importance of pessimism in fixed-dataset policy optimiza-
tion. International Conference on Learning Representations

(ICLR).

Burda, Y.; Edwards, H.; Pathak, D.; Storkey, A.; Darrell, T.;
and Efros, A. A. 2018. Large-scale study of curiosity-driven
learning. arXiv preprint arXiv:1808.04355.

Burda, Y.; Edwards, H.; Storkey, A.; and Klimov, O. 2019.
Exploration by random network distillation. International
Conference on Learning Representations.

Dadashi, R.; Rezaeifar, S.; Vieillard, N.; Hussenot, L.;
Pietquin, O.; and Geist, M. 2021. Offline Reinforcement
Learning with Pseudometric Learning. Self-Supervision for
Reinforcement Learning Workshop - ICLR 2021.

Endo, G.; Morimoto, J.; Matsubara, T.; Nakanishi, J.; and
Cheng, G. 2008. Learning CPG-based biped locomotion
with a policy gradient method: Application to a humanoid
robot. The International Journal of Robotics Research, 27(2):
213-228.

Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research, 6: 503-556.

Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. DA4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219.

8113

Fujimoto, S.; Hoof, H.; and Meger, D. 2018. Addressing
function approximation error in actor-critic methods. In
International Conference on Machine Learning, 1587-1596.
PMLR.

Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. In Interna-
tional Conference on Machine Learning.

Geist, M.; Scherrer, B.; and Pietquin, O. 2019. A theory
of regularized markov decision processes. In International
Conference on Machine Learning, 2160-2169. PMLR.

Ghasemipour, S. K. S.; Schuurmans, D.; and Gu, S. S. 2020.
Emagq: Expected-max g-learning operator for simple yet effec-
tive offline and online rl. arXiv preprint arXiv:2007.11091.

Ghavamzadeh, M.; Petrik, M.; and Chow, Y. 2016. Safe
policy improvement by minimizing robust baseline regret.
Advances in Neural Information Processing Systems.

Grigorescu, S.; Trasnea, B.; Cocias, T.; and Macesanu, G.
2020. A survey of deep learning techniques for autonomous
driving. Journal of Field Robotics, 37(3): 362-386.

Gulcehre, C.; Colmenarejo, S. G.; Wang, Z.; Sygnowski, J.;
Paine, T.; Zolna, K.; Chen, Y.; Hoffman, M.; Pascanu, R.; and
de Freitas, N. 2021. Regularized Behavior Value Estimation.
arXiv preprint arXiv:2103.09575.

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-
ment Learning with a Stochastic Actor. In International
Conference on Machine Learning (ICML).

Henderson, P.; Islam, R.; Bachman, P.; Pineau, J.; Precup,
D.; and Meger, D. 2018. Deep Reinforcement Learning that
Matters. AAAI Conference on Artificial Intelligence.

Jin, Y.; Yang, Z.; and Wang, Z. 2021. Is Pessimism Provably
Efficient for Offline RL? arXiv:2012.15085.

Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Varia-
tional Bayes. In Proceedings of the International Conference
on Learning Representations.

Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research, 32(11): 1238-1274.

Kumar, A.; Fu, J.; Tucker, G.; and Levine, S. 2019. Stabiliz-
ing off-policy g-learning via bootstrapping error reduction.
Neural Information Processing Systems (NeurIPS).

Kumar, A.; Zhou, A.; Tucker, G.; and Levine, S. 2020. Con-
servative g-learning for offline reinforcement learning. Neu-
ral Information Processing Systems (NeurlPS).

Lagoudakis, M. G.; and Parr, R. 2003. Least-squares policy
iteration. The Journal of Machine Learning Research.

Laroche, R.; Trichelair, P.; and Des Combes, R. T. 2019.
Safe policy improvement with baseline bootstrapping. In
International Conference on Machine Learning, 3652-3661.
PMLR.

Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous

control with deep reinforcement learning. In International
Conference on Learning Representations (ICLR).

Mandel, T.; Liu, Y.-E.; Levine, S.; Brunskill, E.; and Popovic,
Z.2014. Offline policy evaluation across representations with
applications to educational games. In AAMAS, 1077-1084.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Murphy, S. A.; van der Laan, M. J.; Robins, J. M.; and Group,
C. P. P.R. 2001. Marginal mean models for dynamic regimes.
Journal of the American Statistical Association, 96(456):
1410-1423.

Nair, A.; Dalal, M.; Gupta, A.; and Levine, S. 2020. Accel-
erating online reinforcement learning with offline datasets.
arXiv preprint arXiv:2006.09359.

Ostrovski, G.; Bellemare, M. G.; Oord, A.; and Munos, R.
2017. Count-based exploration with neural density models.
In International conference on machine learning, 2721-2730.
PMLR.

Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven exploration by self-supervised prediction. In
International Conference on Machine Learning, 2778-2787.
PMLR.

Peng, X. B.; Kumar, A.; Zhang, G.; and Levine, S.
2019. Advantage-weighted regression: Simple and scal-
able off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177.

Petrik, M.; and Subramanian, D. 2014. RAAM: The ben-
efits of robustness in approximating aggregated MDPs in
reinforcement learning. Advances in Neural Information
Processing Systems, 27: 1979-1987.

Pidhorskyi, S.; Almohsen, R.; Adjeroh, D. A.; and Doretto,
G. 2018. Generative probabilistic novelty detection with
adversarial autoencoders. Advances in neural information
processing systems.

Puterman, M. L. 2014. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.

Rajeswaran, A.; Kumar, V.; Gupta, A.; Vezzani, G.; Schul-
man, J.; Todorov, E.; and Levine, S. 2017. Learning complex
dexterous manipulation with deep reinforcement learning
and demonstrations. Proceedings of Robotics: Science and
Systems (RSS).

Rashidinejad, P.; Zhu, B.; Ma, C.; Jiao, J.; and Russell,
S. 2021. Bridging offline reinforcement learning and im-
itation learning: A tale of pessimism. arXiv preprint
arXiv:2103.12021.

Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochas-
tic Backpropagation and Approximate Inference in Deep
Generative Models. In Proceedings of the 31st International
Conference on Machine Learning, volume 32, 1278-1286.

Rojanavasu, P.; Srinil, P.; and Pinngern, O. 2005. New rec-
ommendation system using reinforcement learning. Special
Issue of the Intl. J. Computer, the Internet and Management,
13(SP 3).

8114

Sallab, A. E.; Abdou, M.; Perot, E.; and Yogamani, S. 2017.
Deep reinforcement learning framework for autonomous driv-
ing. Electronic Imaging, 2017(19): 70-76.

Schmidhuber, J. 1991. A Possibility for Implementing Cu-
riosity and Boredom in Model-Building Neural Controllers.
In Proceedings of the First International Conference on
Simulation of Adaptive Behavior on From Animals to An-
imats, 222-227. Cambridge, MA, USA: MIT Press. ISBN
0262631385.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140-1144.

Sohn, K.; Lee, H.; and Yan, X. 2015. Learning structured
output representation using deep conditional generative mod-
els. Advances in neural information processing systems, 28:
3483-3491.

Tang, H.; Houthooft, R.; Foote, D.; Stooke, A.; Chen, X.;
Duan, Y.; Schulman, J.; De Turck, F.; and Abbeel, P. 2017.
exploration: A study of count-based exploration for deep
reinforcement learning. In 31st Conference on Neural Infor-
mation Processing Systems (NIPS), volume 30, 1-18.
Thrun, S. 1995. An approach to learning mobile robot navi-
gation. Robotics and Autonomous systems, 15(4): 301-319.
Vieillard, N.; Kozuno, T.; Scherrer, B.; Pietquin, O.; Munos,
R.; and Geist, M. 2020. Leverage the average: an analysis of
KL regularization in reinforcement learning. In NeurlPS-34th
Conference on Neural Information Processing Systems.
Vieillard, N.; Pietquin, O.; and Geist, M. 2020. Munchausen
Reinforcement Learning. Advances in Neural Information
Processing Systems, 33.

Wang, R.; Ciliberto, C.; Amadori, P.; and Demiris, Y. 2019.
Random Expert Distillation: Imitation Learning via Expert
Policy Support Estimation. arXiv:1905.06750.

Wang, Z.; Novikov, A.; Zoha, K ; Springenberg, J. T.; Reed,
S.; Shahriari, B.; Siegel, N.; Merel, J.; Gulcehre, C.; Heess,
N.; et al. 2020. Critic regularized regression. Neural Infor-
mation Processing Systems (NeurIPS).

Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior reg-
ularized offline reinforcement learning. arXiv preprint
arXiv:1911.11361.

Xu, D.; Ricci, E.; Yan, Y.; Song, J.; and Sebe, N. 2015.
Learning deep representations of appearance and motion
for anomalous event detection. Computer Vision and Image
Understanding.

Yu, T.; Kumar, A.; Rafailov, R.; Rajeswaran, A.; Levine, S.;
and Finn, C. 2021. Combo: Conservative offline model-based
policy optimization. arXiv preprint arXiv:2102.08363.

Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. Mopo: Model-based offline pol-
icy optimization. Neural Information Processing Systems
(NeurlPS).

Zhou, C.; and Paffenroth, R. C. 2017. Anomaly detection
with robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge dis-
covery and data mining, 665-674.

