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Abstract

We introduce three new generative models for time series
that are based on Euler discretization of Stochastic Differen-
tial Equations (SDEs) and Wasserstein metrics. Two of these
methods rely on the adaptation of generative adversarial net-
works (GANs) to time series. The third algorithm, called Con-
ditional Euler Generator (CEGEN), minimizes a dedicated
distance between the transition probability distributions over
all time steps. In the context of Itô processes, we provide
theoretical guarantees that minimizing this criterion implies
accurate estimations of the drift and volatility parameters. Em-
pirically, CEGEN outperforms state-of-the-art and GANs on
both marginal and temporal dynamic metrics. Besides, corre-
lation structures are accurately identified in high dimension.
When few real data points are available, we verify the effec-
tiveness of CEGEN when combined with transfer learning
methods on model-based simulations. Finally, we illustrate the
robustness of our methods on various real-world data sets.

Introduction
Time series Monte Carlo simulations are widely used for
multiple industrial applications such as investment decisions
(Kelliher and Mahoney 2000), stochastic control (Pham 2009)
or weather forecasts (Mullen and Baumhefner 1994). They
are notably considered in the financial sector, for market
stress tests (Sorge 2004), risk management and deep hedg-
ing (Buehler et al. 2019; Fecamp, Mikael, and Warin 2020),
or for measuring risk indicators such as Value at Risks (Jo-
rion 2000) among others. Providing Monte Carlo simulations
representative of the time series of interest is a difficult and
mostly manual task, which requires underlying modeling as-
sumptions about the time dependence of the variables. Hence,
it is difficult to update these models when a new type of data
is observed, such as negative interest rates, negative electric-
ity prices or unusual weather conditions. This naturally calls
for the development of reliable model-free data generators
for time series.

Generative methods such as Variational Auto Encoders
(Kingma and Welling 2013) or Generative Adversarial Net-
works (GAN) (Goodfellow et al. 2014) provide state-of-the-
art accuracy for the generation of realistic images (Xu et al.
2018) or text (Zhang et al. 2017). The development of similar
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generative methods for time series is very promising (Lyu
et al. 2018; Chen et al. 2018). However, due to the complex
and possibly non-stationary underlying temporal structure of
some time series, these generative methods, especially GANs,
are unsatisfactory applied as is (Yoon, Jarrett, and Van der
Schaar 2019). Efficient generation of time series requires
a proper learning of time-marginals as well as a faithfully
representation of the underlying temporal dynamic.

In this paper, time series are represented as a discretized
Euler approximation of continuous-time Itô processes. The
three proposed generators rely on deep learning approxima-
tion of the deterministic drift and volatility functions. This
representation benefits from a theoretically grounded tempo-
ral dynamic and provides a meaningful structure that avoids
complex neural network architectures. Moreover, the consid-
ered Euler generators allow tractable, at least controllable,
outputs, which can be difficult with deep embedding such
as Yoon, Jarrett, and Van der Schaar (2019). This feature is
a key component in industrial applications, especially for
decision-making-process.
By combining deep Euler representation with Wasserstein
distance (Villani 2008), we introduce the Euler Wasserstein
GAN (EWGAN), inspired by (Arjovsky, Chintala, and Bot-
tou 2017). Our second GAN-based-model, called Euler Dual
Discriminator (EDGAN) is an adaptation of the DVDGAN
presented in Clark, Donahue, and Simonyan (2019). A spa-
tial discriminator focuses on the accuracy of time-marginal
distributions, while a temporal one focuses on the full se-
quence. Nevertheless, all these GAN approaches still have
difficulties to capture a proper temporal dynamic.We rem-
edy to this problem by introducing the Conditional Euler
Generator (CEGEN) which optimizes a distance between the
transition probability distributions at each time step. On the
(large) class of Itô processes, we prove that minimizing this
metric provides an accurate estimation of both the drift and
volatility parameters.

A numerical study compares the three approaches with
state-of-the-art GANs on synthetic and real data sets. We
first verify that our methods can learn to replicate Monte
Carlo simulations of classical stochastic processes. Synthetic
models give access to more reliable metrics (including
theoretical), and allow to make connections between
model-based and model-free approaches. EWGAN and
EDGAN show a similar accuracy as state-of-the-art GANs
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but capture more efficiently the time dynamics in dimension
up to 20. The best performing model, CEGEN, recovers
the underlying correlation (or independence) structure of
time series particularly well, even in high dimensions. On
real data, CEGEN outperforms every other GAN-based
methods on five quantitative metrics. Moreover, we highlight
the robustness of CEGEN, when combined with a transfer
learning procedure when too few data are available. By
properly mixing model-based simulations with sparse real
data during training, the generator can take advantage of the
prior from synthetic samples to improve its accuracy.

Main Contributions:
• A theoretically grounded time series generator combining

an Euler discretization of Itô processes with a dedicated
loss on conditional distributions (CEGEN) is proposed.
The conditional distance ensures that the generator learns
the distribution around each data point and the temporal
dependence.

• Relying on a similar Itô process restriction, we also intro-
duce two Euler GANs alternatives inspired by (Arjovsky,
Chintala, and Bottou 2017) and (Clark, Donahue, and
Simonyan 2019).

• A thorough numerical study on synthetic and various real
world data sets demonstrate the robustness of our genera-
tors. CEGEN outperforms the other considered methods
on five distinct metrics. A transfer learning application
when sparse data is available is provided. Euler GANs
exhibit close performance to the state-of-the-art GANs on
marginal metrics, but capture more accurately the correla-
tion and temporal structure on Itô processes.

Related Works
The bootstrap method (Efron 1982) is one of the first purely
data-driven attempt to generate data. Samples are simply
taken randomly with replacement. The scope of this tech-
nique is limited as it does not generate additional information.
On the opposite, model-free approaches such as GAN allow
to learn empirical distribution from data and thus to gener-
ate new samples. However, initial GAN proposals focus on
the generation of non-temporally ordered outputs. GAN’s
architecture improvement for the time series case is an in-
tensive area of research. For instance, WaveGAN (Donahue,
McAuley, and Puckette 2018) uses the causal architecture
of WaveNet (Oord et al. 2016) for unsupervised synthesis of
raw-waveform audio. Alternatively, several works consider
recurrent neural networks to generate data sequentially and
keep memory of the previous states (Mogren 2016; Esteban,
Hyland, and Rätsch 2017).
Time Series GAN (TSGAN, Yoon, Jarrett, and Van der Schaar
(2019)) introduces a state-of-the-art method for time series
generation which stands out by its specific learning process.
At each time step, an embedding network projects the se-
quences onto a latent space on which a GAN operates. TS-
GAN manages to get accurate distributions and correlation
on classical processes, we use it as a baseline in this paper.
This method makes theoretical analysis of the generator out-
puts difficult due to its specific embedding. As the usage

of model-free methods grows rapidly, their application to
sensitive fields (e.g. finance) must be considered cautiously
and requires theoretical and empirical guarantees on the be-
havior of these generators. For this purpose, an active line
of research looks towards reliable embedding of time series,
such as signature (Fermanian 2019; Buehler et al. 2019) or
Fourier representation (Steinerberger 2018).
Most recent applications on video generation focus on spe-
cific GAN architectures to capture the spatial-temporal dy-
namics. For instance, MoCoGAN (Tulyakov et al. 2018) and
DVD GAN (Clark, Donahue, and Simonyan 2019) combine
two discriminators, one for the temporal dynamic and another
one on each static frame. Specialized generator structures
have also been designed, TGAN (Saito, Matsumoto, and
Saito 2017) proposed to generate a dynamic latent space
and VGAN (Vondrick, Pirsiavash, and Torralba 2016) com-
bines two generators, one for marginals and another one for
temporal dependencies. Following the idea of applying op-
timal transport to GANs (Arjovsky, Chintala, and Bottou
2017; Genevay, Peyré, and Cuturi 2018), COTGAN (Xu et al.
2020) uses causal optimal transport (COT) for video sequence
generation. To do so, the discriminant penalizes not-causal
transport plans, ensuring that the generator minimizes an
adapted (regularized) Wasserstein distance for time series.
This approach benefits of solid theoretical foundations but
still lacks of empirical success on noisy time series.
A very recent approach (Kidger et al. 2021) proposes as well
to use Stochastic Differential Equation (SDE) formulation
for time series. By combing a neural SDE and a neural CDE
(Controlled Differential Equation) in a GAN setup, the au-
thors show that the classical approach to fit SDEs may be
generalized. Our generators do not use any of these neural
SDE and our discriminators do not aim to solve SDE.

Problem Formulation
We aspire to design a time series generator which combines
accurate estimation of time-marginal distributions while prop-
erly capturing temporal dynamics. The generator we propose
is designed to be simple enough to be tractable (in the sense
that outputs could be controlled) and theoretically grounded.
To do so, we feed our algorithms with training time series
data and seek to learn an empirical probability distribution
that best approximates the data one. This task can be tricky,
depending on the sequences lengths, the dimension, and the
shape of the data distribution.

Although the idea of a model-free approach is attractive,
we restrict ourselves to the context of Itô processes. This
class of processes encompasses a wide range of time series
and yet allows us to develop tractable models based on theory.
In addition to providing a robust theoretical framework and
controls on the generation, Itô processes allow to measure the
accuracy of our generators on synthetic samples via closed
form expressions or Monte Carlo simulators. In comparison
to common literature (Wiese et al. 2020; Buehler et al. 2020),
we do not assume the time series to be stationary and allow
ourselves to consider not-stationary sequences.
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Itô Process A time series observed on a time grid T =
{0 = t0 < t1 < ... < tN = T}. For the sake of simplicity,
we assume a regular time grid with mesh size ∆t. We are
given i.i.d. samples of a random vector X = (Xti)ti∈T on
Rd×(N+1), N ∈ N∗, starting from X0 valued in Rd. The
discrete time samples are supposed to be drawn from a con-
tinuous time underlying process having the following Itô
dynamics:

dXt = bX(t,Xt)dt+ σX(t,Xt)dWt, (1)

where bX : R×Rd → Rd is the drift, σX : R×Rd →Md×d
the volatility and W is a d-dimensional Brownian motion on
some probability space (Ω,F ,P) equipped with a filtration
(Ft)t∈[0,T ] representing the information available at time t.
The parameters bX and σX are supposed to satisfy the usual
Lipschitz conditions (Ikeda and Watanabe 2014) ensuring
existence and uniqueness of the solution of Eq.(1).

Deep Euler Representation Samples of X can be viewed
as samples drawn from the Euler discretization scheme of (1)
given by

Xti+∆t = Xti + bX(ti, Xti)∆t+ σX(ti, Xti)∆Wti ,

where (∆Wti)ti∈T is a collection of i.i.d. N (0,∆tId) ran-
dom variables. Relying on this scheme, we introduce the
deep Euler representation. Starting at t0 = 0, from Y θ0 = X0

we generate time series Y θ = (Y θti)ti∈T by the following
scheme:

Y θti+∆t = Y θti + bθY (ti, Y
θ
ti)∆t+ σθY (ti, Y

θ
ti)Zti , (2)

where Zti are N (0,∆tId) i.i.d. random variables. bθY and
σθY are θ-parametrized functions approximated by a neural
network. Our objective is to learn bθY and σθY , so that the
distributions of the processes Y θ and X are close.

Evaluation During the learning phase, neither bX nor σX
are given as inputs to any of the proposed generator. However,
this formulation allows to compare a posteriori bX and σX ,
when they are known, to the estimated bθY and σθY . This
provides a reliable metric on the generation accuracy.
Moreover, this setup provides a convenient way to control
the drift bθY and volatility σθY functions. This task is delicate
with deep embedding proposals for instance.

Euler Generators
Euler Generators proposed in this paper rely on two main el-
ements: a network generating the drift and volatility of an Itô
process and a distance between distributions to be minimized.
The Itô structure facilitates the time series construction, while
the distance focuses on the probability law accuracy of the
generated sequences. Both GAN-based and Conditional loss
methods described hereafter share this design.

Euler Generative Adversarial Networks
Among various generative models, GAN (Goodfellow et al.
2014) stands out by its specific optimization process. The
adversarial training defined by a zero-sum game between
a discriminator and a generator allows to implicitly learn

data distributions while preventing over-fitting. The Wasser-
stein GAN (Arjovsky, Chintala, and Bottou 2017) seems to
get rid of stability problems encountered in training (mainly
mode collapse) by adapting to the geometry of the underlying
space. We propose two adaptations of GANs to time series
that are based on the deep Euler representation presented in
Eq.(2) and on the (differentiable) Wasserstein-1 (W1) dis-
tance. The Rubinstein-Kantorovich duality allows to rewrite
W1 between two random variables Z1 and Z2 as follow:

W1(L(Z1),L(Z2)) = sup
||f ||L≤1

EZ1∼L(Z1) [f(Z1)]

− EZ2∼L(Z2) [f(Z2)] ,

where ||f ||L denotes the smallest Lipschitz constant of the
real-valued function f .

Euler Wasserstein GAN (EWGAN) This model consid-
ers a Wasserstein GAN, where the generator relies on the
Deep Euler representation (2) and minimizes according to
parameter θ the W1 distance between the distribution of
X = (Xti)ti∈T and the generated one from Y θ = (Y θti)ti∈T
(Eq.(3)). The discriminator dϕ parametrized by ϕ tries to
find the optimal 1-Lipschitz function allowing to compute
W1(L(X),L(Y θ)) using the Rubinstein-Kantorovich dual-
ity. The Lipschitz property of dϕ is guaranteed using the
gradient penalty trick mentioned in Gulrajani et al. (2017).

inf
θ
W1(L(X),L(Y θ)) = inf

θ
sup
ϕ

EX∼L(X) [dϕ(X)]

− EY θ∼L(Y θ)

[
dϕ(Y θ)

]
. (3)

Pseudocode of EWGAN is given in Alg.2 in Appendix C.

Euler Dual Discriminator (EDGAN) Our second GAN-
based model is an adaptation of the Dual Video Discriminator
GAN (Clark, Donahue, and Simonyan 2019). DVD GAN
uses attention networks and two discriminators in order to
generate high fidelity videos. While the spatial discriminator
focuses on time marginals and critics images in high resolu-
tion, the temporal one considers the full sequence of frames
in low resolution. We adapt these ideas to our context by con-
sidering in EDGAN a similar dual discriminator architecture
while the generator creates samples using the Deep Euler rep-
resentation of Eq.(2). The temporal discriminator is similar
as the one of EWGAN and focuses onW1(L(X),L(Y θ)).
At the same time, the marginal discriminator focuses on the
computation of theW1 distance between marginal distribu-
tions W1(L(Xt),L(Y θt )), for each ti ∈ T . Pseudocode is
given in Alg.3 in Appendix C.

Conditional Loss Method
As already mentioned, it is highly challenging for generators
of temporally ordered data to capture the temporal dynamic
(Yoon, Jarrett, and Van der Schaar 2019). In order to rem-
edy to this weakness, we introduce below an innovative loss
function based on conditional distributions.

A Conditional Loss on Distributions The difficulty aris-
ing when trying to design a loss function for a data-driven
time series generator comes from the need to get the cor-
rect balance between the marginal distribution fitness and
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Algorithm 1: CEGEN
Input: D samples of X , m batch size, K Nb of subdivisions, γ
learning rate
Initialize: θ (randomly picked)
while Not converged do

for i = 0 . . . N − 1 do
Sample m observations xti+1 from of Xti+1

Sample z ∼ N (0, Id∆t)
yti+1 ← yti + gbθ(ti, yti)∆t+ gσθ (ti, yti)z
IJ ← J subdivisions of Supp(Xti)∪ Supp(Yti)
for j = 1 . . . J do
`ti+1,j ←W2

2 (L(xti+1 |xti∈Ij),L(yti+1|yti∈Ij))
end for

end for
θ = θ − γ∇θ

∑N−1
i=0

∑J
j=1 `ti+1,j

end while
Output: y = (yti)i∈{0,...,N}

the good representation of the temporal structure. On the
one hand, we cannot only focus on marginals because hav-
ing L(Xti) ∼ L(Y θti) for all ti ∈ T does not imply that
bX = bY θ nor that σX = σY θ (see the counterexample
in Appendix A ). On the other hand, instead of working
on marginals, one can wonder if considering time series re-
alization as a vector defined on Rd×(N+1) provides better
results. Unfortunately, and as mentioned in Yoon, Jarrett,
and Van der Schaar (2019), learning the joint distribution
L(Xt0 , . . . , XtN ) may not be sufficient to guarantee that the
network captures the temporal dynamics, even with memory-
based networks. An empirical example of unsatisfactory gen-
erations based on joint laws is illustrated in Figure 4 in Ap-
pendix, the generated trajectories are smooth. In the case of
time series, one should simply refrain from applying a loss
based only on marginal or joint distributions. To provide a
reliable solution to this issue, we propose to focus on the tran-
sition probabilities at each time step by conditioning on the
previous state. Moreover, by doing so, we are able to produce
theoretical bounds on Itô coefficient estimation accuracy.

CEGEN Algorithm Contrarily to the previous GAN-
based methods, CEGEN does not require a discriminator
network. The idea consists in considering a loss function that
compares the conditional distributions L(Y θti+1

|Y θti) with
L(Xti+1

|Xti) for each time step ti ∈ T . The latter con-
ditional distributions are Gaussian when considering Euler-
discretized Itô processes. We consider the following metric:

W2
2 (L(X),L(Y )) = ‖E[X]− E[Y ]‖22

+ B2(V ar(X), V ar(Y )), (4)

where B is the Bures metrics (Bhatia, Jain, and Lim
2019; Malago, Montrucchio, and Pistone 2018) defined by
B2(A,B) = Tr(A)+Tr(B)−2Tr(A

1
2BA

1
2 )

1
2 , for positive

definite matricesA andB. IfX and Y are gaussian,W2 is the
definition of the Wasserstein-2 distance (Gelbrich 1990). This
metric (4) captures meaningful geometric features between
distributions, andW2 transportation plan is very sensitive to
the outliers thus increases the distribution estimation accu-
racy. The Bures formulation allows us to consider exactly the

Wasserstein-2 distance, instead of regularized ones (Genevay,
Peyré, and Cuturi 2018; Cuturi 2013). The benefit is double,
its value as well as its gradients admit closed forms, and can
handle degenerate measures (Muzellec and Cuturi 2018).
Moreover, the Bures metric allows us to provide theoretically
guarantees that minimizing the conditional loss implies accu-
rate estimation for the drift and volatility coefficients. Indeed,
whenever the distributions of the form L(Xti+1

|Xti = z)

and L(Y θti+1
|Y θti = z) for z ∈ Rd coincide inW2, the pro-

cess parameters coincide as well (see Prop. A.1 in Appendix).
This is encouraging but in general conditioning from the very
same point is complicated. Proposition 1 extends this prop-
erty when the previous states belong to a small ball around z.
To compute the loss, we create at each time ti a partition
(Ij)1≤j≤J of the union of supports of Xti and Y θti . For a
given batch of samples, L(Xti+1

|Xti ∈ Ij) is approxi-
mated by extracting the elements Xti+1

such that Xti ∈ Ij .
L(Y θti+1

|Y θti ∈ Ij) is approximated in the same way. TheW2
2

distance between conditional distributions are then summed
up over all subdivisions and over all time steps:

l(X,Y θ) =
N−1∑
i=0

J∑
j=1

W2
2 (L(Xti+1

|Xti ∈ Ij),L(Y θti+1
|Y θti ∈ Ij)).

By computingW2
2 between the elements such that the pre-

vious states are close to each other, i.e. belonging to the
same ensemble, the generator is able to learn the distribution
around data points and ensures the temporal dependence. The
pseudocode of CEGEN is given in Alg.1 and details are pro-
vided in Appendix D. Bures metrics is computed using the
Newton-Schulz method (Muzellec and Cuturi 2018), which
is a differentiable way to get covariance matrice square roots.

Theoretical Guarantee In order to theoretically ground
the choice of the loss function, we need to quantify how
reducing the W2 distance implies proximity between drift
and volatility parameters. The following result is allowed
by the specific Bures-Wasserstein formulation (Eq.4)
implemented in CEGEN.
Proposition 1. Let ti ∈ T . Assume that σ2

X(ti, .), σ2
Y (ti, .)

are strictly positive and, together with bX(ti, .) and bY (ti, .),
are K-Lipschitz in their second coordinate. Let (Ij)1≤j≤J
be a regular partition covering Supp(Xti)∪ Supp(Yti) with
mesh size ∆x. Let ε > 0.
IfW2

2

(
L(Xti+1

|Xti ∈ Ij),L(Yti+1
|Yti ∈ Ij)

)
≤ ε for any

j, then, for z in Ij

‖bX(ti, z)− bY (ti, z)‖2 ≤
√
ε+ ∆x

∆t
+ 2K∆x.

Furthermore,

‖σX(ti, z)− σY (ti, z)‖2 ≤

{√
ε

∆t + 2K∆x if d = 1√
2α2ε
∆t + 2K∆x if d > 1

,

where Tr
(
σ2
X(ti, z)

)
= Tr

(
σ2
Y (ti, z)

)
= α.

As described in Appendix A, this result is proved using
useful inequalities between Hellinger and Bures distances.
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The α coefficient comes from the need of using density matri-
ces, in practice one can easily normalize covariance matrices
by their traces. Proposition 1 implies that by conditioning
over sufficiently small intervals, a low W2 loss between
transition distributions guarantees a good process estimation.

Numerical Study
EWGAN, EDGAN and CEGEN are compared numerically
to the state-of-the-art TSGAN and COTGAN. Two additional
benchmarks are provided, but in Appendix due to poor re-
sults: RCGAN (Esteban, Hyland, and Rätsch 2017) a condi-
tional GAN based on recurrent neural networks and GMMN
(Li, Swersky, and Zemel 2015) an unconditional MMD with
Gaussian kernel. Networks are composed of 3-layers of 4
times the data dimension neurons each. Euler generator net-
works are feed-forward, while benchmarks benefit of recur-
rent networks (LSTMs). Hyper-parameters are described in
Appendix D.

Two kinds of data sets are used: synthetic and real time
series. In single dimension, we use Black-Scholes (BS) model
(dXt = rXtdt + σXtdWt) and Ornstein-Uhlenbeck (OU)
model (dXt = θ(µ−Xt)dt+σdWt). For these two stochastic
models, our empirical references are drawn from Monte Carlo
simulations. The latter are performed on a regular time grid
of 30 dates, the maturity is 0.25 (1 simulation per day for 3
months) andX0 = 0.2. BS model (resp. OU) has coefficients
of r = 0.8, σ = 0.3 (resp. σ = 0.1, µ = 0.6, θ = 7). In
higher dimensions, we proceed with the same methodology
but with multivariate correlated BS time series (d = 4, 10,
20). The real data sets include various nature of time series
and are detailed in Appendix F.

Evaluation Metrics
We consider five metrics to evaluate the accuracy of the gen-
erators. For all metrics the lower, the better.

(1) Marginal Metrics. These metrics quantify the qual-
ity at each time step of the marginal distributions induced
by the generated samples compared to the reference ones.
This includes Fréchet Distance (FD) (Fréchet 1957; Dow-
son and Landau 1982) as well as classical statistics (mean,
95% and 5% percentiles denoted respectively Avg, q95, q05).
We compute the mean squared error (MSE) over time of these
statistics. This helps measuring whether a generator manages
to get an accurate overall envelope of the processes.

(2) Temporal Dynamics. This metric aims at quantifying
how the generator is able to capture the underlying time
structure of the signal. The difference between the quadratic
variations of both reference and generated time series is com-
puted. The quadratic variation (QVar) of an Itô process
X is given by [X]t =

∫ t
0
σ2
X(s,Xs)ds. Thus, the temporal

metric ensures that the diffusion σX is well estimated. In the
discrete case, [X]t is obtained with

∑
i |Xti+1 −Xti |2.

(3) Correlation Structure. The metric denoted Corr is
the term-by-term MSE between empirical correlation from
reference samples on one side and from generated samples
on the other side. It evaluates the ability of a generator to
capture the multi-dimensional structure of the signal.

CEGEN EWGAN EDGAN
Black-Scholes

r̂ (0.8) 0.739 0.581 0.996
σ̂ (0.3) 0.324 0.314 0.379

Ornstein-Uhlenbeck
θ (7.0) 7.05 4.36 4.68
µ̂ (0.6) 0.60 0.75 0.72
σ̂ (0.1) 0.11 0.16 0.02

Table 1: Exp.A. Model parameter estimations.

(4) Process Parameters. A by-product output of Euler gen-
erators are the estimated drift bθY (.) and volatility σθY (.)
functions. When using synthetic data, we can compare
them with the true process parameters. In the BS case,
the coefficients are estimated by the empirical average of
(bθY (t, Y θt )/Y θt )t∈T and (σθY (t, Y θt )/Y θt )t∈T . For OU, σ is
estimated in a similar manner, while θ and µ are estimated
by regressing bθY on (t, Y θt ). These statistics cannot be com-
puted in the same way with TSGAN due to its specific deep
embedding, nor COTGAN.

(5) Discriminative and Predictive Scores. We use two
distinct scores, as proposed in Yoon, Jarrett, and Van der
Schaar (2019). First, we train a classification model (a 2-
layer LSTM) to distinguish real sequences from the generated
ones. The accuracy of the classifier provides the discrimina-
tive score. Second, the predictive score is obtained by training
a sequence-prediction model (a 2-layer LSTM) on generated
time series to predict the next time step value over each input
sequence. The performance is measured then by evaluating
the trained model on the original data, in term of MSE.

One-Dimensional Simulated Process (Exp. A)
We start comparing the generators on unidimensional syn-
thetic data. Figure 1 illustrates how crucial is the balance
between the estimation of the marginal distributions and the
temporal structure. On the one hand, the trend and marginals
of generations seem close to the empirical reference. On the
other hand, GANs struggle to capture the temporal dynam-
ics between two time steps. COTGAN tends to smooth the
time series while TSGAN outputs too noisy samples. How-
ever, CEGEN manages to capture the overall envelope and
is able to fit the dynamics of time series. These results are
confirmed quantitatively by the QVar metric in Table 5 (in
Appendix B). Table 1 reports the reference drift and volatility
coefficients with those obtained by the three Euler generators.
CEGEN provides an accurate estimation and to a lesser ex-
tent of EWGAN. Despite benefiting of a dedicated temporal
discriminator, EDGAN returns the poorest estimation. Euler
structure alone does not manage to recover the right parame-
ter values. Regarding the overall dynamics and the marginals,
CEGEN seems a reliable generator for time series.

Scaling the Dimension (Exp. B)
The question we address now is how CEGEN scales to higher
dimensions. Table 2 reports the discrepancies between refer-
ence empirical correlation and generated time series corre-
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(a) COTGAN (b) TSGAN (c) CEGEN

Figure 1: Exp.A. Ornstein-Uhlenbeck samples (in blue) with
COTGAN, TSGAN and CEGEN generations (in orange).

Dim CEGEN EWGAN EDGAN TSGAN COTGAN
4 .007 .015 .053 .177 .031

10 .011 .055 .022 .259 .035
20 .006 .034 .014 .481 .019

Table 2: Exp.B. MSE between reference and generator em-
pirical correlation matrices on Black-Scholes.

lation for dimensions d = 4, 10, 20 on BS simulations. Up
to dimension 20, CEGEN obtains a significant improvement
compared to every GANs. Figure 2 illustrates how well CE-
GEN outperforms the other generators with respect to the FD
and QVar in higher dimensions. This is confirmed by statis-
tics on drift and volatility of Table 7 in Appendix B, where
one can also find an illustration of the process envelopes
of CEGEN for the d = 20 case (Figure 5 ). These good
global performances encourage us to focus on the conditional
generator in the following transfer learning section.

Transfer Learning for Small Data Sets (Exp. C)
Deep generators may need more data than available to be
trained effectively. As is done in transfer learning (Torrey
and Shavlik 2010), we propose to start the training with a
reasonably wrong probabilistic model and finish up with a
few real data samples. This situation is tested on synthetic
data to allows us to track the drift and volatility learning dur-
ing the training phase. Both target and misspecified samples
come from Monte Carlo simulations, but target sequences
include only 60 trajectories of 30 dates (5 years of monthly
measures). The first phase of transfer learning includes new
simulated samples from the misspecified model each itera-
tion, while the second phase loops randomly with only the
60 samples of the target model. The reference (resp. misspec-
ified) parameters are σ∗ = 0.15, µ∗ = 0.6, θ∗ = 2.0 (resp.

4 10 20
10 4

10 3

10 2

FD

4 10 20

10 2

100

QVar

Figure 2: Exp.B. Left: Average of Fréchet Distance between
distributions at each time step. Right: Difference between
quadratic variations. Ordinate axis is Log scale. Both scores
are provided for d = 4, 10, 20.

Figure 3: Exp.C. Evolution of parameter estimations during
training when a transfer occurs at iteration 1000 (red lines).
Dashed green lines correspond to the theoretical target values.
Orange lines indicate coefficient estimations of CEGEN only
trained on few data and blue lines CEGEN with transfer.

σ = 0.1, µ = 0.8, θ = 3.0). A CEGEN with transfer is
compared with a CEGEN only trained with the few available
target sequences. Figure 3 provides the coefficient evolution
of both generators during the training process. The transfer
iteration start is represented by the red vertical line. Firstly
trained with the mis-calibrated OU model, the transfer learn-
ing approach is able to retrieve the parameters when fed with
few samples of the target model. The generator only trained
with few real samples is unable to estimate correctly the θ
and σ coefficients, but exhibits a better estimation of µ. Table
8 in Appendix confirms quantitatively the process estimation
comparison. The model benefiting from the transfer takes
advantage of the initial training phase and provides an overall
better estimation.

This framework is a way to update an existing model with
the help of incoming real data. Transfer learning tests show
how model-free methods can rely on a proven simulation
model without replacing it completely.

Experiments on Real-world Data (Exp. D)

Finally, we test generators on various real time series (de-
pending on the dimension, periodicity or noise). In Table
3, we evaluate models with the help of FD, QVar and Corr.
CEGEN outperforms GANs or is close in term of FD, and
captures well the correlation structure of the signals. However,
some QVar from TSGAN or COTGAN are lower than CE-
GEN despite their generated trajectories being significantly
smoother than real data. To better evaluate the fidelity of the
generation we need to consider other metrics. Table 4 reports
discriminative and predictive scores for each model (except
EWGAN, RCGAN and GMMN where scores can be found in
Appendix as we focus on state-of-the-art models). Our condi-
tional generator almost consistently produces higher-quality
time series in comparison to the benchmarks. On Electric
Load data, COTGAN is able to better capture seasonality of
the times series, but generates too smooth trajectories. In the
opposite, CEGEN proposes more faithful times series in term
of noise, but struggles to fool the classifier.
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CEGEN EDGAN
Data FD QVar Corr FD QVar Corr
Spot prices (d=2) 1.38e-04 2.09e+00 2.10e-02 3.11e-03 2.18e+00 4.12e-02
Stocks (d=6) 1.04e-04 2.10e+01 2.33e-03 7.93e-03 2.43e+01 9.78e-03
Electric Load (d=12) 6.47e-03 4.30e+00 1.27e-03 4.62e-02 1.27e+00 1.56e-03
Jena climate (d=15) 1.10e-03 7.18e+00 1.75e-02 4.39e-02 7.73e+00 1.46e-01

TSGAN COTGAN
Data FD QVar Corr FD QVar Corr
Spot prices (d=2) 2.12e-04 9.00e-02 4.45e-02 1.09e-04 8.25e-01 4.15e-02
Stocks (d=6) 3.46e-03 2.19e+01 2.76e-01 1.49e-04 1.86e+01 1.62e-03
Electric Load (d=12) 5.12e-03 9.18e-01 1.87e-03 4.10e-01 3.45e+00 6.27e-01
Jena climate (d=15) 4.07e-03 8.49e+01 1.89e-02 4.48e-03 7.90e+00 2.34e-02

Table 3: Exp.D. Accuracy evaluations for generations on real time series (the lower, the better).

CEGEN EDGAN TSGAN COTGAN
Data Disc Pred Disc Pred Disc Pred Disc Pred
Spot prices (d=2) .014 .049 .137 .049 .066 .055 .033 .049
Stocks (d=6) .079 .040 .429 .041 .159 .041 .116 .041
Electric Load (d=12) .433 .028 .495 .046 .407 .032 .277 .022
Jena climate (d=15) .140 .032 .483 .035 .179 .032 .227 .042

Table 4: Exp.D. Discriminative and predictive scores on real time series (the lower, the better).

Conclusion
We introduced three generative methods for times series, rely-
ing on a Deep Euler scheme of Itô processes. Considering Itô
structure is a compromise between an intuitive representation
and a large class of processes to help generators. Two
methods EWGAN and EDGAN demonstrate an accuracy
close to state-of-the-art GANs. The third method CEGEN
computes a distance between the conditional distributions
of the time series. The generator is thus able to learn the
distribution around data points and ensures the link between
time-dependent states. We prove that minimizing this loss
guarantees a proper estimation of the drift and volatility coef-
ficients of the Itô process. Our experiments on synthetic and
real-world data sets demonstrate that CEGEN outperforms
the other generators on marginal and temporal dynamics
metrics. CEGEN is able to capture correlation structures in
high dimensions and is efficient when combined with transfer
learning on sparse data sets. Transfer learning tests show how
this type of methods can combine model-based simulations
with a data-driven approach. In further work, we plan to con-
sider more specialized neural networks architectures for time
series, extend our results to more general Lévy processes
which may include jumps, and consider not Gaussian noise.

Broader Impact
Generative methods for time series may be involved in indus-
tries using stochastic control and simulation methods making
them of particular interest in physics, finance or for energy
companies. When applied within a decision-making process,
generative methods has to be used carefully as a failure dur-
ing learning phase may lead to damageable consequences.
Thus, the outputs of the generators should not be left free, as
this could lead to erratic optimal controls. Contrarily to the
existing approaches which applies GANs and embedding to

generate any kind of time series, we impose an Euler struc-
ture and we restrain ourselves within the (sufficiently) large
class of Itô processes. Moreover, theoretical results give an
error estimate of the process parameters for a given loss level.
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