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Abstract

Across multiple domains from computer vision to speech
recognition, machine learning models have been shown to
match or outperform human experts at recognition tasks. We
lack such a comparison point for Entity Linking. We construct
a human benchmark on two standard datasets (TAC KBP 2010
and AIDA (YAGO)) to measure human accuracy. We find that
current systems still fall short of human performance.
We present DeepType 2, a novel entity linking system that
closes the gap. Our proposed approach overcomes shortcom-
ings of previous type-based entity linking systems, and does
not use pre-trained language models to reach this level. Three
key innovations are responsible for DeepType 2’s performance:
1) an abstracted representation of entities that favors shared
learning and greater sample efficiency, 2) autoregressive entity
features indicating type interactions (e.g. list type homogene-
ity, shared employers, geographical co-occurrence) with previ-
ous predictions that enable globally coherent document-wide
predictions, 3) the entire model is trained end to end using
a single entity-level maximum likelihood objective function.
This is made possible by associating a context-specific score to
each of the entity’s abstract representation’s sub-components
(types), and summing these scores to form a candidate entity
logit. In this paper, we explain how this factorization focuses
the learning on the salient types of the candidate entities. Fur-
thermore, we show how the scores can serve as a rationale for
predictions.
The key contributions of this work are twofold: 1) we create
the first human performance benchmark on standard bench-
marks in entity linking (TAC KBP 2010 and AIDA (YAGO))
which will be made publicly available to support further analy-
ses, 2) we obtain a new state of the art on these datasets and are
the first to outperform humans on our benchmark. We perform
model ablations to measure the contribution of the different
facets of our system. We also include an analysis of human and
algorithmic errors to provide insights into the causes, notably
originating from journalistic style and historical context.

Introduction
Breakthroughs in natural language understanding from high-
capacity language models with mask-based losses (Devlin
et al. 2018) and pre-training on web-sized corpuses (Raffel
et al. 2019) have produced a massive shift in the number
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of examples needed to tackle NLP tasks thanks to finetun-
ing and world-knowledge pre-encoded in model weights.
Entity linking (EL) similarly benefited from this wave of pre-
trained language models (Logeswaran et al. 2019; Ling et al.
2020; Févry et al. 2020) where systems without task-specific
features match the accuracy of those with EL features and
structured data (Sil et al. 2018; Raiman and Raiman 2018).
Despite advances from novel architectures and pre-training,
EL systems fall short of human performance with accuracies
ranging from 90% to 96% on standard benchmark datasets
(Raiman and Raiman 2018; Ling et al. 2020), while other
NLP tasks such as sentiment-analysis (Raffel et al. 2019),
named entity recognition (Yamada et al. 2020), or part of
speech tagging rival human performance with accuracies
above 97%.

Have we reached a performance ceiling on EL? We split
this question into two parts: what is human performance on
this task, and can we match it? We answer through two key
contributions:

1. We establish a human performance benchmark on two
frequently used standard Entity Linking datasets TAC
KBP 2010 (Ji et al. 2010) (TAC) and AIDA (YAGO)
(Hoffart et al. 2011) (AIDA) with annotations we make
publicly available. We observe an accuracy gap remains
between a human panel and prior algorithmic approaches
of 1.96% on TAC and 0.08% on AIDA leaving room for
algorithmic improvement.

2. We present DeepType 2, a new EL system that improves
over the state of art (SoTA) on seven standard EL datasets
and attains higher than human accuracy from our bench-
mark on TAC and AIDA. Most of our gains are explained
by type interactions: an entity representation that captures
rich inter-entity relations by encoding entities using their
typed Wikidata neighbors. Predictions are coherent thanks
to a document-wide score trained by a contrastive loss;
the score retains type-system’s explanatory power by cap-
turing the per-type contribution to each prediction. The
system also enables practical use of document coherency
features by materializing them on-the-fly during search
with a knowledge base in the loop.

The paper is structured as follows: Section 2 states the EL
problem; Section 3 presents related work; Section 4 describes
our approach; Section 5 presents experiments measuring hu-
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man EL accuracy and shows how DeepType 2 profits from
type-based representations, negative sampling, and global
normalization; Section 6 contains a discussion of the results,
a conclusion, and future work directions.

Problem Statement
The goal of entity linking is to find the exact element (entity)
in the knowledge base (KB) referenced by a pre-highlighted
phrase (mention) in an input document1. Using an alias table
collected on training corpora we can store potential mappings
between mentions and entities. The task then becomes finding
the correct entity among the alias table results, rather than
considering all entities in the full KB (6+ million in the
English Wikipedia). In Figure 1 we see that the alias table
entry for “Ada" has two possible options: Ada Lovelace or
Ada language.

Related Work
The state of the art in entity identification and disambiguation
can be structured along several dimensions we discuss below.

Abstract Entity Representations and Types. Ling,
Singh, and Weld (2015) proposed to use the diverse types of
NER tags (e.g., persons, places) to categorize all candidate
entities in their EL system. The use of abstract entities was
further generalized in DeepType (Raiman and Raiman 2018),
considering all Wikidata classes as potential categories, or
types, and shows a type predictor suffices to disambiguate.
Abstract description-based representations are also used in
(Nie et al. 2018; Logeswaran et al. 2019). In (Mulang’ et al.
2020), the proposed EL system combines pre-trained lan-
guage models with entities described by a transcription of
their Wikidata relations.

Identification and Disambiguation Loss. Most ap-
proaches rely on either generative or constrastive losses. In
the former case, the sought model is optimized to maximize
the log-likelihood of the ground truth interpretation. In the
latter case, the model is optimized to enforce a sufficient
margin between the ground truth interpretation and alterna-
tives (Gutmann and Hyvärinen 2010). The two approaches
have complementary strengths and weaknesses. The genera-
tive approach is based on first principles; it enables to assess
any interpretation at the expense of a (very) high sample
complexity; the challenge is to define the search space. The
contrastive approach, only aims at making the good interpre-
tation the preferred one by only requiring that the different
input spaces (images, text, knowledge graph nodes) project
into a mutual scalar comparison space (Nie et al. 2018).

Coherency. EL selects entities based on their individual
relevance, where a key component is their compatibility with
the other document entities. The connections between en-
tities can be measured using reciprocal link statistics from
Wikipedia (Milne and Witten 2008), by analyzing the link
graph using a PageRank algorithm (Pershina, He, and Gr-
ishman 2015), or by learning a distributed representation

1Our work focuses on EL, which differs from end-to-end EL
where the task also involves mention detection.

of entities that captures co-occurence (Yamada et al. 2016).
As the number of potential entity pairs is large, computing
coherence metrics presents a computational challenge. In
Globerson et al. (2016) the authors use attention over a sub-
set of the document mentions to reduce the computational
cost.

SoTA and Attention. A recent trend in Entity Linking sys-
tems is instead to perform independent predictions but use
a pretrained language models with attention to ensure long-
range context informs each prediction (Nie et al. 2018; Wu
et al. 2019; Mulang’ et al. 2020; Ling et al. 2020). The fea-
tures from language modeling help to ensure the model learns
a rich textual encoding, and also reduces the chances of over-
fitting when transferring a model from a high supervision
regime (language modeling) to a sparsely supervised setting
(EL). The high memory and computation cost limit the ap-
plicability of these models to long documents. The current
SoTA (Févry et al. 2020) circumvents this issue by truncat-
ing the document to keep a window around a mention. This
approach approximates global context by gluing back the
document title to the window.

Discussion. Several lessons are learned from the above ap-
proaches. For instance, rich classes as in DeepType (Raiman
and Raiman 2018) enable a type Oracle to reach 99% accu-
racy on TAC and AIDA, but their type classifier does not
realize this potential. Furthermore, this approach forces to co-
erce entities into exclusive type labels, which requires human
intervention in this preprocessing step. Along these lines, our
proposed approach associates entities with a variable number
of type labels removing preprocessing. We switch the objec-
tive function from predicting types to entity disambiguation
in a contrastive loss setting. To reduce the computational
cost of coherency metrics, pairwise entity features are ma-
terialized by DeepType 2 during search by live querying a
KB.

Approach
Neural Network Architecture
DeepType 2 uses a neural network that takes as input en-
tire documents with their mentions. An illustration of the
architecture is given in Figure 2.

Document Representation The tokenized input document
D is represented using word, prefix, and suffix embed-
dings and a capitalization bit. Tokens are processed by a
stacked bidirectional-Long Short Term Memory (LSTM)
RNN (Graves and Schmidhuber 2005) (1 in Figure 2).

Mention Representation For each mention we use an
alias table to generate candidate entities. Our alias table is
generated using the same approach as prior work (Ferragina
and Scaiella 2010): intra-wiki links from Wikipedia provide a
mapping from mention to linked entities. We also exploit the
link statistic features from the alias table: 1) prior probability
of linking to a particular entity given a particular alias table
entry, 2) prior probability a given mention was seen for a
given entity.
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Figure 1: Disambiguating “Ada" in the sentence “Ada wrote the first computer program. She..." Type neighborhoods for candidate
entities are computed by finding depth 2 neighbors via different typed Wikidata edges. An entity’s score is the sum of its type
neighborhood and interaction scores. This acts as a rationale for DeepType 2’s decisions. We see wikipedia probs, gender,
occupation, instance, and work had the largest impact.
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Figure 2: An LSTM reads text, while a separate graph NN produces candidate entity representations used for prediction. Entity
predictions are fed to a Decoder LSTM. The decoder LSTM and predicted entities produce type interaction features for future
predictions.

We obtain for each document-mention pair Dm a fixed-
length representation hm(Dm) from the variable number of
mention tokens. First we max-pool the associated Bi-LSTM
hidden states (3 in Figure 2) to produce hpool,m(Dm). Sec-
ond, we obtain longer-range context using QKV Attention
(Vaswani et al. 2017) (Att(·)) over the full document with
hpool,m(Dm) as query, and linearly project the pooled and
attended vector into the same space via a learnt matrix W to
obtain hm:

hm(Dm) =W · hpool,m(Dm) + Att(hpool,m(Dm)). (1)

Entity Representation Next, we associate to each can-
didate entity multiple sets of Wikidata neighbors (e.g. hu-
man, United Kingdom, mathematician) coming from differ-
ent typed relations such as occupation or origin country.
These neighborhood relations are chosen based on usage
frequency in Wikidata. See Appendix for the list of type
neighborhood relations. The neighbors obtained from these
relations can be entities, real values (e.g. latitude/longitude),

or dates (e.g. birthdate). We refer to neighbors that are up
to nneighborhood depth steps away as the type neighborhood
representation of an entity. See Figure 1 for an example of
Ada Lovelace’s type neighborhood.

To recover a fixed length entity representation from the
type neighborhood we use a Graph Neural Network (GNN).
In this work nneighborhood depth = 2, which enables us to
take advantage of a basic GNN consisting of an embedding
layer and a max-pool. For deeper neighborhoods, a depth or
edge-aware GNN might be preferable (Wang et al. 2019).

Type Interactions We perform joint predictions over all
mentions in a document. In order to do this, we augment the
entity representation with two sets of features related to past
predictions: latent and discrete type interactions.

Latent type interactions are obtained by computing the
scalar product between the type neighborhood representa-
tion of a candidate and the hidden state of a decoder LSTM
(6. in Figure 2). The decoder LSTM receives as input the
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chosen entity’s type neighborhood representation after each
prediction. Latent interactions measure if the candidate’s type
neighborhoods match the memory using a learnt function.

Discrete type interactions are boolean features correspond-
ing to the result of multiple knowledge graph queries. For
each relation in a prefined set, a knowledge graph query
checks if any past entity is connected to the candidate en-
tity by this relation. Using these features it is possible to
measure list type-homogeneity or answer questions such as
“is this candidate of the same sport / team / league/ etc. as
past entities?" As with type neighborhoods, relations were
chosen based on their Wikidata usage frequency. As we later
discuss in Section , certain relations are redundant, and the
system is robust to removing those. See Appendix for the
list of Wikidata relations used in the type interactions. The
discrete interactions access outside information from a KB to
answer factual inter-entity questions. We provide in Figure 3
an example of these interactions to disambiguate John Gorst.

Major' s office - Conservatives still have majority. London 
1996-12-06 British Prime Minister John Major's office said on 
Friday that rebel Conservative Mp Sir John Gorst   had not 
"resigned the whip"

Predicted entities
John Major 

(Q9559)
Conservative 

Party (UK)  (Q9626)

TYPE INTERACTIONS

Candidate entities

1
John Gorst (Q5765264) 
British politician (1835-1916)

2
John Gorst (Q6248624) 
British Conservative party 
Parliamentarian (1928-2010)

John Gorst

SAME POLITICAL PARTY

CONTEMPORARY

Figure 3: In AIDA, type interactions with past predictions
give us hints about “John Gorst"’s candidate entities: candi-
date 2 is contemporary to John Major and his political party
is previously mentioned.

Scoring Candidate probabilities are obtained from the dot
product between the mention and the entity representation:
with c0, . . . , cn candidate entities, s the discrete/latent state,
and ft(ci, Dm, s) the concatenation of type neighborhood
and interaction features:

Score(ci, Dm, s) = hm(Dm) · ft(ci, Dm, s), (2)

P(ci|Dm, s) =
exp (Score(ci, Dm, s))∑n
j=0 exp (Score(cj , Dm, s))

. (3)

Rewriting Score(ci, Dm, s) as a sum of feature scores (see
Appendix) reveals each type neighborhood or interaction’s
contribution to the overall score. Feature scores may serve as
decision justifications as we show in Figure 1.

Objective Function Model parameters θ are learnt by min-
imizing L(θ), the negative log likelihood of the ground truth
entity e relative to alias table candidates for the mention m:

L(θ) =
∑

{e,Dm,s}

− logP(e|Dm.s; θ). (4)

Contrastive Loss Our objective function profits from be-
coming a contrastive loss. When too many candidates are

returned by the alias table we subsample to reduce computa-
tional cost, and when there are too few, we supply negative
samples (Gutmann and Hyvärinen 2010). Negative samples
massively increase the supervision signal as over 45.4% of
Wikipedia mentions are unambiguous.

A further reason to use a contrastive loss is its ability to
focus model capacity towards only resolving actual ambigui-
ties from the alias table. By comparison, a generative loss for
predicting types independently wastes capacity on modeling
all type combinations (e.g. ∼ 2128 in DeepType (Raiman and
Raiman 2018)) most of which are impossible. A contrastive
loss focuses the learning on discriminative features: the gra-
dient is zero for features common between candidates (proof
in Appendix).

Densification
In order to observe type interaction features we densify men-
tions in documents. For training, we densify Wikipedia arti-
cles by creating new links to entities already present in the
page. We filter new links with a classifier trained on 300
hand-collected labels. As articles do not refer to themselves,
the subject of the article can be used to create many addi-
tional links. Keeping the high confidence new links increases
dramatically the size of our training corpus by 2.96x from
74M to 220M mentions. Details for our classifier are given
in the Appendix.

Coherency

The New Yorker’s Steve Coll looked into more 
than $54 million allegedly stashed…

Norm (NYC) (NYC, Steve Coll)
Local Prob 0.60 0.6=0.60 ⨉ 1.0

Global Prob 0.60 0.16

Norm (New  Yorker) (New Yorker, Steve Coll)
Local Prob 0.38 0.38=0.38 ⨉ 1.0

Global Prob 0.38 0.83

New York City (Q60) 
largest city in USA

The New Yorker 
(Q217305) magazine

Steve Coll (Q128771) 
Journalist, author, executive

Steve Coll (Q128771) 
Journalist, author, executive

EMPLOYER

Start 
Beam 

Search

Prob=
0.6

Prob=
0.38

Prob
=1.0

Prob
=1.0

Figure 4: Global normalization effect in TAC: Steve Coll,
although unambiguous, reinforces the likelihood of picking
his employer New Yorker magazine when scores are summed
before being normalized.

To make coherent predictions we jointly predict entities
while taking into account interactions between all predicted
entities:

• Discrete type interactions act as constraints to prune the
candidate search space: in the context of syntactic struc-
tures such as “Venice, California" we expect a located-in
relation, or “Paris and London" where we expect list type
homogeneity.

• Beam search with autoregressive features increases in-
creases coherency with limited computational cost: Deep-
Type 2’s pairwise entity features are only materialized
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during search. For k search beams, and document D with
ND input tokens, Nm mentions, Mc candidates per men-
tion, and Nm ·ND attention features, the computational
complexity is O(Nm · Mc · k + Nm · ND) instead of
O(N2

m ·M2
c ) if all features had to be pre-computed. The

practical implications is that this system can process all
AIDA with 16 search beams in 23s (187.3 mentions/s and
2178 tokens/s) on an NVIDIA GeForce GTX 1080.

• Global normalization enables every decision, regardless
of order, to increase or decrease the joint likelihood of
the prediction sequence. This is achieved by summing all
decision scores before normalizing, rather than multiply-
ing locally normalized probabilities as shown in Figure 4.
This conversion from local to global was previously pro-
posed to improve expressivity and overcome label bias
(Andor et al. 2016; Raiman and Miller 2017), an autore-
gressive model pitfall (Lafferty, McCallum, and Pereira
2001).

Results
We first seek to identify the remaining gap between humans
and algorithms on EL by establishing a human performance
benchmark. Second, we evaluate DeepType 2 on standard
benchmarks. Third, we investigate through ablations what
aspects of the proposed approach are the most important.

In all our experiments DeepType 2 is trained for 2 million
gradient steps using as annotations intra-wiki links from the
December 2017 English Wikipedia dump with densification,
as well as AIDA’s train split. Unless otherwise noted, we use
16 search beams and global normalization. Training takes
approximately 6 days on a single NVIDIA GTX 1080Ti
on a computer with 128GB of RAM and 28 core 3.3Ghz
Intel i9 CPUs. To facilitate comparisons with prior work on
AIDA we use the PPR4NED alias table (Pershina, He, and
Grishman 2015), otherwise our alias table is built from intra-
wiki links. Neural network hyperparameters were selected
using a Wikipedia-based validation set and are given in the
Appendix. Our code is available at this url2. The Wikipedia
dump is downloadable at this url3 and is licensed under CC
BY-SA and GFDL. AIDA’s train split is freely available for
research purposes from NIST4.

Human Performance Benchmark
We measure human performance using a panel of annotators
from Amazon Mechanical Turk (AMT) on TAC and AIDA.
We find that humans reach 96.86% on TAC and 96.78% on
AIDA, outperforming the current state of the art on these
tasks as shown in Table 2.

To improve response quality we take particular care to
screen, brief, and provide proper incentives to the annotators:
1) they must have AMT’s Master qualification, a recognition
of prior excellence in annotation tasks, 2) we give a bonus for
correct answers to align incentives, 3) annotators are screened
by testing that they read the instructions and requiring they

2https://github.com/deep-type/deeptype2
3https://dumps.wikimedia.org
4https://trec.nist.gov/data/reuters/reuters.html

TAC AIDA
Oracle acc. (%) 96.86 96.78
Majority acc. (%) 95.39 93.35
Agreement (Fleiss’ κ) 96.84 93.96
Mean response time (seconds) 18.49 15.68

Table 1: Overall statistics from human performance bench-
mark.

Model TAC AIDA
Human Oracle 96.86 96.78
DeepType 2 (ours) 97.48

±0.06
97.72
±0.04

Ling et al. (2020) 89.8 94.9
Raiman and Raiman (2018) 90.85 94.88
Mulang’ et al. (2020) - 94.94
Févry et al. (2020) 94.9 96.7

Table 2: Humans and state of the art EL system accuracy
(µ± σ).

reach a minimum accuracy on a trial subset of the data. To
further reduce the effect of annotator expertise differences,
each labelled mention is assigned to 3 different annotators
and we measure accuracy using the best provided response
(Oracle). Inter-annotator agreement (Fleiss’s κ) is high, sup-
porting the belief that annotators reached similar conclusions
and did not respond randomly. A summary of our results are
given in Table 1, details of the AMT annotation interface are
given in the Appendix, and we release the annotations from
this benchmark at this url5.

Evaluation on Standard Datasets

Dataset DeepType 2
(ours)

Yang et al.
(2018)

De Cao et al.
(2020)

W-CWEB 85.57±0.24 81.8 77.3
W-WIKI 87.83±0.08 79.2 87.4
MSNBC 95.12±0.23 92.6 94.3
AQUAINT 92.74±0.27 89.9 89.9
ACE 2004 92.23±0.19 89.2 90.1

Table 3: EL system accuracy on standard datasets (µ± σ).

We compare Human performance, DeepType 2, and the
current EL state of the art on the standard benchmark datasets
TAC and AIDA and report our results with average and stan-
dard deviation across 6 runs in Table 2. In Table 3 we report
evaluations of our system on five additional well known EL
datasets WNED-WIKI (Guo and Barbosa 2018), WNED-
CWEB (Guo and Barbosa 2018), MSNBC (Cucerzan 2007),
AQUAINT (Milne and Witten 2008), and ACE 2004 (Ratinov
et al. 2011).

We first find that humans outperform existing approaches,
suggesting that there is room for algorithms to improve. Hu-
mans have similar accuracy on TAC and AIDA, while sur-

5http://deeptype.org
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prisingly SoTA algorithmic approaches until 2020 perform
4.09% higher on AIDA than TAC. DeepType 2 improves
accuracy over the SoTA on all evaluated datasets, and out-
performs the human oracle accuracy by 0.62% on TAC and
0.74% on AIDA. The largest gains relative to prior work are
observed on TAC (2.58%), AIDA (1.02% ), WNED-CWEB
(3.77%), while the smallest is WNED-WIKI. (0.43%).

Mention Densification One of the largest gains relative to
prior work is observed on TAC, greatly thanks to the way
mention “densification" provides additional contextual enti-
ties that power type interaction: we add mentions to the doc-
ument to increase their frequency from TAC’s original single
mention/document. Mentions are detected by greedily taking
the longest alias table matches linkable to persons, places,
or activities. Accuracy increases by 3.97% from 93.51% to
97.48%.

Decision Method TAC AIDA
Independent 93.51±0.07 96.76±0.08
Joint Local Score 97.44±0.08 97.62±0.07
Joint Global Score 97.48±0.06 97.72±0.04

Table 4: Impact (µ± σ) of decision method on accuracy.

k TAC AIDA
1 97.44±0.08 97.69±0.06
8 97.44±0.08 97.71±0.04

16 97.48±0.06 97.72±0.04

Table 5: Impact (µ± σ) of varying search beams k on accu-
racy.

Joint Decision Making The score given to a sequence of
predictions is heavily dependent on type interaction features
to make coherent decisions. We report the result of inde-
pendent predictions versus joint predictions in Table 4. We
observe a massive improvement over independent decisions
when jointly predicting entities. A smaller but noticeable im-
provement is visible when switching from locally to globally
normalized scores.

We also study the effect of varying the number of search
beams in Table 5. We find that a small percentage of search
errors in TAC and AIDA can be mitigated by considering
more hypotheses.

Error Analysis
DeepType 2 has the ground truth entity in its top-3 responses
over 99% of the time (99.10% on TAC, 99.35% on AIDA).
The main remaining mistakes made by DeepType 2 and hu-
mans fall into the same category: confusing places and sports
teams due to journalistic shorthand overloading the meaning
of place names as visible in Table 6.

Ablations
Entity Representation The comparison of different entity
representations in DeepType 2 shows that the best one uses

Confusion TAC (%) AIDA (%)
DT2 H DT2 H

Place vs. Sports
Team/Club

22.2 32.6 8.9 20.2

Business vs. Business 18.5 7.0 2.4 0.8
Ethnic group vs. Country 3.7 3.1 0.8 27.4
Sports team vs. Sports
team

3.7 9.3 0.0 13.7

Remainder 51.9 48.1 37.5 37.9

Table 6: Typed confusions for DeepType 2 (DT2) and humans
(H).

Representation TAC AIDA
type neighborhoods
+ type interactions ∗

97.48 97.72

unique entity vector
+ type interactions

94.07 94.57

unique entity vector 89.60 92.73
∗Our proposed approach.

Table 7: Impact of entity representation on accuracy.

both type neighborhoods and type interactions as visible in
Table 7. We empirically verify the effect of replacing type
neighborhoods by same dimension unique Entity-Vectors
(EV) used in SoTA approaches (Yamada et al. 2016; Sil et al.
2018; Ling et al. 2020; Févry et al. 2020). Type neighbor-
hoods have 6 times less parameters (166M vs. 998M), get
the same accuracy as EV after training on a 1/4 of data and
10 times less updates (150k vs. 1.5M), and reach higher ac-
curacy model on TAC and AIDA. We also ablate the use of
type interactions and find that they also contribute to a large
portion of the EV system’s performance.

Type Interaction Features Our entity representation abla-
tion above shows type interactions are crucial, begging the
question: what are the most important type interactions? We
compare the impact of using a single type interaction on TAC
and AIDA accuracy in the (A) pyramid plot in Figure 5. We
observe that type interactions are domain-dependent: rela-
tions such as “League" matter more in sports-heavy AIDA,
and geographical relations (e.g. “Located in") benefit the
newswire-based TAC.

As type interactions can have overlapping roles, we look
at the sensitivity to removing a single type interaction as
an indication of its redundancy and report the results in the
(B) pyramid plot of Figure 5. “Located in" has the largest
negative impact when removed and thus is least redundant.
Conversely, “League" appears redundant as it individually
increases AIDA accuracy by 0.58% accuracy, but only causes
a 0.12% decrease if removed when all other type interactions
are present.

Training Ablations
Wikipedia Densification We compare the quality of mod-
els trained with and without densification. With densification
models obtain higher accuracy on TAC and AIDA as shown
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Figure 5: Type interactions are domain dependent as visible
in (A) by looking at the impact of using a single relation
in TAC vs. AIDA. In (B) we test the redundancy of type
interactions by removing one from the system.

Training data TAC AIDA
Original 96.75 96.47
Densified 97.48 97.72

Table 8: Impact of Wikipedia Densification on accuracy.

in Table 8.

Negative sampling As entity representations are only
learnt through comparisons, the unambiguous mentions pro-
vide no supervision potentially leaving representations un-
trained. In Table 9 we show that increased negative samples
and training candidate entities improve final accuracy. Some
negative samples are critical to performance, while increas-
ing the number of training candidates from 20 to 100 is more
helpful on TAC than AIDA.

Discussion and Conclusion
We establish an Entity Linking human benchmark that mea-
sures human performance and provides a milestone for al-
gorithmic approaches. The principal difficulty in setting up
this benchmark is to obtain high quality responses from an-
notators. We use trial runs and bonuses for correct answers
to obtain high inter-annotator agreement and accurate re-
sponses. We further reduce the effect of annotator expertise
differences by measuring the best human response (oracle).
Through this benchmark, we observe that previous systems
approach human performance but still underperform.

We close the performance gap thanks to a new EL system,
DeepType 2. The proposed approach removes the need for
a pre-trained language model and improves over the human
accuracy on the benchmark datasets and reaches a new state
of the art on five other commonly used EL datasets.

Negative
Samples

Max candidate enti-
ties/mention if training

TAC AIDA

0 20 95.41 95.63
20 20 96.98 97.99

100 100 97.48 97.72

Table 9: Negative sampling impact on EL performance.

The performance gains are explained by a novel abstract
entity representation built on Wikidata relation subgraphs.
Through ablations we show that this entity representation
uses 80% fewer parameters than equivalent entity vectors,
and reaches higher accuracies thanks to an ability to share
learning between entities of the same type. The strongest
contributor to performance is the set of autoregressive re-
lational features we call type interactions. These features
enable the system to produce coherent document-wide pre-
dictions through higher order reasoning over the entity types
(e.g. shared employers, geographical co-occurence, list type
homogeneity). A further benefit of DeepType 2 is that it
eliminates two major difficulties of existing type based sys-
tems such as DeepType (Raiman and Raiman 2018): 1) the
type representation is now automatically generated by em-
bedding subgraphs rather than curated type labels, 2) a single
task-aligned objective function replaces prior use of a proxy
multi-objective type classification.

Our work has several limitations. First, there is a need to
extend the human benchmark by broadening it to additional
datasets and languages. Second, DeepType 2 relies solely on
structured relations and cannot make use of the wealth of un-
structured relations. Third, the presented system DeepType 2
does not take advantage of pre-trained language models. A
useful line of investigation would be to test the effect of
pre-training and alternate text encoding mechanisms.
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