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Abstract

Reinforcement Learning (RL) enables agents to learn how
to perform various tasks from scratch. In domains like au-
tonomous driving, recommendation systems and more, opti-
mal RL policies learned could cause a privacy breach if the
policies memorize any part of the private reward. We study
the set of existing differentially-private RL policies derived
from various RL algorithms such as Value Iteration, Deep-
Q Networks, and Vanilla Proximal Policy Optimization. We
propose a new Privacy-Aware Inverse RL analysis framework
(PRIL), that involves performing reward reconstruction as
an adversarial attack on private policies that the agents may
deploy. For this, we introduce the reward reconstruction at-
tack, wherein we seek to reconstruct the original reward from
a privacy-preserving policy using the Inverse RL algorithm.
An adversary must do poorly at reconstructing the original
reward function if the agent uses a tightly private policy. Us-
ing this framework, we empirically test the effectiveness of
the privacy guarantee offered by the private algorithms on in-
stances of the FrozenLake domain of varying complexities.
Based on the analysis performed, we infer a gap between the
current standard of privacy offered and the standard of pri-
vacy needed to protect reward functions in RL. We do so by
quantifying the extent to which each private policy protects
the reward function by measuring distances between the orig-
inal and reconstructed rewards.

Introduction
Recent advancements in reinforcement learning (RL) have
found widespread application in many real-world domains.
Often, these domains are built from rich data sources or real-
world environments, which could contain sensitive informa-
tion of many individuals. This is evident in domains such as
autonomous driving, recommendation systems, trading, in-
dustrial assembly, and domestic service robots. For example,
a recommendation system agent for an online shopping plat-
form not only tracks the purchases made, but also how long
the user hovers over an item that he/she did not purchase.
Another example is when an autonomous driving agent not
only learns the dynamics behind driving, but also identifies
people and predicts their behaviours on the streets, and how
to respond to such situations. The reward function in these
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environments is often sensitive, as it is built on people’s pri-
vate information. RL agents trained in such environments
should not expose the private information of individuals. We
therefore, need to use privacy-preserving methods to protect
the rewards from being memorized in the agent’s policy in
such a manner that the agent’s utility is not compromised.

Recent works use Differential Privacy (DP) (Dwork et al.
2006) to make the agent’s policy quantifiably private and to
get a rigorous privacy guarantee. Like many other areas in
AI, RL has also started adopting DP to establish a math-
ematical way of guaranteeing data privacy in RL environ-
ments. However, an important question is: does the privacy
guarantee offered by the private policies translate well into
protecting the reward function? If not, how can we under-
stand the gap in achieving meaningful privacy? Does the
type of reward function, algorithms (both training and DP al-
gorithms), and environment play a role? In other words, does
privacy in policy translate well to privacy in reward? To in-
vestigate this, we first build an autonomous agent whose aim
is to learn a private policy using existing privacy techniques
with the intent of reaching a goal state that helps to max-
imize its expected reward in discrete finite-state environ-
ments. We then investigate the true level of reward privacy
offered by the existing state-of-the-art privacy techniques for
RL algorithms.

We evaluate the private policies by estimating an adver-
sary’s ability to reconstruct the original reward function
from the agent’s learned policy. The field of inverse RL (Ng,
Russell et al. 2000), arose to solve this exact problem of ex-
tracting a reward function given the observed, optimal be-
haviour. Given the “reverse engineering” nature of inverse
RL, the reconstructed reward can be used as an adversarial
attack on environments with protected rewards. Building on
this key intuition, we propose the PRIL analysis framework
that first performs the reward reconstruction attack, and then
computes its similarity to the original private reward via var-
ious distance metrics. We apply this framework over a set of
privacy preserving techniques:
1. Bellman update DP
2. Rényi-DP in deep learning (DL)
3. Functional noise DP
These are applied to a set of RL algorithms:
1. Deep Q Network (DQN)
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Figure 1: PRIL: Privacy-Aware Inverse RL analysis framework

2. Vanilla Proximal Policy Optimization (PPO)
3. Value Iteration (VI)
We build privacy into the agent from multiple perspectives
- from a DL perspective, an RL perspective, and a deep RL
perspective. Through experiments, we show that there ex-
ists a gap between the privacy offered via the current private
RL methods, and the privacy needed to protect reward func-
tions. We also present the privacy-utility trade-off achieved
by each policy. We show that privacy in policy does not
translate to privacy in reward, as the reconstruction error is
independent of the DP budget. DP policies are unsuccessful
at protecting the sensitive reward function due to a privacy
gap. Our experiments demonstrate that there is a need to fur-
ther inspect the effectiveness of DP policies to protect sensi-
tive reward functions. It is a serious threat if an adversary is
able to infer the rewards in spite of using a private policy.

In summary, our key contributions are:
1. We study and analyze the existing set of privacy tech-

niques for RL.
2. We introduce a novel reward reconstruction attack and

supporting PRIL framework.
3. We empirically evaluate the performance of various pri-

vate deep RL policies within our framework.
4. We identify and quantify the gap between the privacy of-

fered in policy and the privacy needed in reward.
The next section reviews related work, followed by a sec-

tion that provides background on RL, DP, and inverse RL.
We then explain the PRIL framework, followed by describ-
ing the experimental pipeline and setup. Then, we provide
an empirical analysis and discussion. Finally, we conclude
the work. All source code and experiments are made pub-
licly available1. Longer version of our paper with more de-
tailed experiments and proofs is made available on ArXiv2

1Link to code: https://github.com/magnetar-iiith/PRIL
2Link to ArXiV paper: https://arxiv.org/abs/2112.05495

(Prakash et al. 2021).

Related Work
Previous works on privacy-preserving RL make the use of
DP. (Vietri et al. 2020) shows how to achieve joint-DP in
episodic-RL via the upper confidence bound and Q-learning
algorithms, where each training episode comes from a dif-
ferent environment. (Wang and Hegde 2019) makes the use
of functional noise to make Q-learning private. (Vietri et al.
2020) gives us probably-approximately correct (PAC) and
regret guarantees for private RL. (Balle, Gomrokchi, and
Precup 2016) propose differentially private policy evalua-
tion using the Monte-Carlo algorithm. (Hannun et al. 2019)
introduces a private way of performing multi-party contex-
tual bandits. For the actor-critic class of algorithms, (Leben-
sold et al. 2019) presents a differentially private critic, and
(Seo and Yang 2020) presents a differentially private actor.

In RL, a significant amount of work has been done to per-
form adversarial attacks that target the quality of the learned
policy (Gleave et al. 2019), (Huang et al. 2017), (Kos and
Song 2017), (Chen et al. 2019). Building on this, there has
been work on making RL policies robust to such attacks
(Oikarinen, Weng, and Daniel 2020). However, very few
works have looked into privacy attacks in RL. (Pan et al.
2019) shows that agents can memorize the environment and
its private transition dynamics, by performing privacy at-
tacks using genetic algorithms and candidate inference. (Fu,
Luo, and Levine 2017) introduce an adversarial inverse RL
algorithm based on an adversarial reward learning formula-
tion to improve robustness.

While these previous works can tackle building privacy in
policies, they do not investigate its impact on the underlying
private data i.e., the reward function used to learn the poli-
cies. Many adversarial attacks such as the membership infer-
ence attack, the linkage attack, and the data-reconstruction
attack have been used to evaluate the level of privacy attain-
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Acronym List
Abbreviation Full Form
DP Differential Privacy
RL Reinforcement Learning
MDP Markov Decision Process
DL Deep Learning
LP Linear Programming
RDP Rènyi Differential Privacy
PAC Probably Approximately Correct
PRIL Privacy-Aware Inverse RL
VI Value Iteration
DQN Deep Q Network
PPO Proximal Policy Optimization
DP-Bellman Private Bellman update
DP-SGD Private SGD optimizer + ReLU
DP-Shoe Private SGD optimizer + tan-h
DP-Adam Private Adam optimizer + ReLU
DP-FN Private Functional Noise engine
VI-DP-Bellman VI + DP-Bellman
DQN-DP-SGD DQN + DP-SGD
DQN-DP-Shoe DQN + DP-Shoe
DQN-DP-Adam DQN + DP-Adam
DQN-DP-FN DQN + DP-FN
PPO-DP-SGD PPO + DP-SGD actor
PPO-DP-Shoe PPO + DP-Shoe actor
PPO-DP-Adam PPO + DP-Adam actor

Table 1: List of acronyms used

able by a data-analysis system. We introduce a new privacy
attack that targets the private reward function. Our proposed
attack - the reward-reconstruction attack is a special case of
the data-reconstruction attack. We use inverse RL to learn
the reward, and to assess the quality of private RL algo-
rithms.

Background and Preliminaries
In this section, we introduce the basics of RL, inverse RL,
and DP.

Reinforcement Learning
We focus on non-deterministic environments with dis-
crete and finite - state and action spaces. Let M =
(S,A, P,R, γ, S0) represent the MDP environment. Here,
S is the set of finite discrete states, A is the set of finite
actions, P (s, a, s′) is the transition probability of reaching
state s′ by taking an action a ∈ A in state s, where s, s′ ∈ S.
R(s) is the reward the agent receives in state s ∈ S, γ is the
discount factor for future rewards, and S0 is the initial state
distribution over S. State value V (s) is the value of expected
return (sum of future discounted rewards) starting with state
s. State-Action value Q(s, a) denotes the value of taking an
action in a state (following a policy π). The goal of an RL
agent is to learn a policy that maximizes the expected cumu-
lative reward. We use the following classes of RL algorithms
to learn the optimal policy and value function for our exper-
iments:

1. VI (Pashenkova, Rish, and Dechter 1996): VI computes
an optimal state value function for an MDP. The method
uses Bellman updates to converge to the optimal values.

2. DQN (Mnih et al. 2013): DQN is a model-free off-policy
deep RL approach that uses a neural network approxima-
tor for the Q-function which uses a batch of past expe-
riences (replay memory) to train the agent to learn the
optimal policy.

3. PPO (Schulman et al. 2017): PPO is a first-order opti-
mization based policy-gradient algorithm that uses the
actor-critic approach to find the best policy. In this ap-
proach, the actor model learns to take an action in an ob-
served state by improving upon the feedback given by
the critic model - that takes state as an input, and finds a
value function estimating future rewards with the help of
an optimizer.

Inverse RL
Inverse RL (Ng, Russell et al. 2000) is a method of extract-
ing a reward function, given the observed, optimal behaviour
in an environment. We use the method of inverse RL in
finite-state spaces to reconstruct the private reward function
by solving a linear programming (LP) (Ignizio and Cavalier
1994) formulation that makes the given policy optimal by
a large margin (as compared to other sub-optimal policies).
Since this is an under-constrained problem, we choose the
reward with the smallest L1-norm.

Differential Privacy
DP (Dwork et al. 2006) is considered to be the golden stan-
dard of computational privacy guarantees. It allows us to
quantify the degree of privacy achievable by a mechanism. It
is built on the concept of adjacent databases. In the context
of our work, the RL agents learn optimal policies by explor-
ing the environment and taking in rewards as a feedback for
their actions. Since we care about the privacy of the reward
signals, we say that two reward signals are adjacent if the
maximum L2 norm of their point-wise difference is upper
bounded by 1.
Definition 1 (ε, δ)-DP: A randomized mechanism M :
D → R with domain D and range R satisfies (ε, δ)-
differential privacy if for any two adjacent inputs d, d′ ∈ D
and for any subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ

Definition 2 α-Rènyi Divergence: For two probability dis-
tributions P and Q defined over R, the Rènyi divergence of
order α > 1 is

Dα(P ||Q) =
1

α− 1
logeEx∼Q

(
P (x)

Q(x)

)α
where P(x) and Q(x) are the respective probability densities
of P and Q at x.

An algorithm is said to have - (α, ε) Rènyi DP (Mironov
2017) if for any two neighbouring databases, it holds that
the Rènyi divergence of order α between outputs of the al-
gorithm is less than eε.
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Figure 2: All 24 FrozenLake environments used. Here, green: goal (G), red: frozen (F), yellow: start state, white: safe (S), and
blue: high-reward (A).

Definition 3 (α, ε)-Rènyi DP: A randomized mechanism f :
D → R is said to have (ε)-Rènyi differential privacy of or-
der α, or (α, ε)-RDP for short, if for any adjacent d, d′ ∈ D
it holds that

Dα(f(d)||f(d′)) ≤ eε

Private RL Methods
We use the following private RL methods in our experi-
ments:

1. Bellman update DP: In this method, noise is added lo-
cally to the Bellman update step of VI, such that it satis-
fies the definition of ε-DP (Dwork et al. 2006).

2. Rényi-DP in DL: This is a natural relaxation of DP, that
we use for multiple DP methods (DQN-DP-SGD, PPO-
DP-SGD, and more) in our work (Abadi et al. 2016), (Pa-
pernot et al. 2019).

3. Functional noise DP in Q-Learning: In this, functional
noise is iteratively added to the value function in the
training process. The aim is to protect the value function
(Wang and Hegde 2019).

We share the entire training process - including every loss
gradient update publicly (worst-case guarantee).

PRIL: Privacy-Aware Inverse RL Analysis
Framework

We introduce a novel case of the data-reconstruction attack
- the reward reconstruction attack for RL, as we wish to pro-
tect the reward function from adversaries. We assume that
the adversary has knowledge of the environment and the
learned private policy. Using this information, the adversary

tries to reverse engineer the reward function. While many
methods can be used to do so, we focus on the LP based in-
verse RL technique in this paper, as it seems to be the best
tool at our disposal. Using inverse RL, we perform the re-
ward reconstruction attack, to determine how effective a pri-
vate policy is at protecting the reward function. It does so by
computing (a variety of) distances between the reconstructed
reward and the original reward. The framework takes as in-
put the original reward function R, an RL policy P ′, and a
private RL policy P ′′ trained using the same algorithm. Us-
ing the inverse RL algorithm, it predicts the reconstructed
rewards, R′ and R′′, from P ′ and P ′′ respectively. It then
computes the distances d′(R′, R) and d′′(R′′, R), and com-
pares them. The larger the distance, the stronger the RL pol-
icy’s privacy guarantee (in protecting the reward function).
We use multiple distance metrics, such as - L1 norm, L2

norm, L∞ norm, and number of sign changes.

Experimental Setup
We will now discuss our overall experimental pipeline and
setup. We perform our experiments on 24 custom environ-
ments (as shown in Figure 2) in the FrozenLake domain - a
discrete-state OpenAI Gym (Brockman et al. 2016) toolkit.
In all these environments, the agent controls its movement
and navigates in a grid-world. Additionally, the movement
direction of the agent is uncertain and is only partially de-
pendent on the direction chosen. The agent is rewarded for
finding the most rewarding walkable path to the goal state.
The grid-world environment has five possible states - safe
(S), frozen (F), hole (H), high-reward (A) and goal (G). The
agent has four possible actions - up, down, left and right.
Half of the 24 environments are of a grid-size 5x5, and the
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Figure 3: Original and reconstructed reward heatmaps for two 5x5 FrozenLake environments (1a, 2a) and for two 10x10
FrozenLake environments (3a, 4a)

remaining half are of a grid-size 10x10. The agent moves
around the grid until it reaches the goal state. If it falls into
the hole, it has to start from the beginning and is penalized.
The process continues until it eventually reaches the goal
state. We measure the performance of 8 private algorithms
across three algorithm classes - VI, DQN, and PPO:
For VI, we evaluate the performance of VI-DP-Bellman (pri-
vate Bellman update via local DP) as well as non-private VI.
For DQN, we evaluate the performance of the following
cases (with and without privacy):
1. DQN-DP-SGD: DP-SGD optimizer + ReLU activations
2. DQN-DP-Adam: DP-Adam optimizer + ReLU activa-

tions
3. DQN-DP-Shoe: DP-SGD optimizer + tan-h activations
4. DQN-DP-FN: DQN + functional noise
For PPO, we evaluate the performance of the following cases
(with and without privacy in the actor network):
1. PPO-DP-SGD: DP-SGD optimizer + ReLU activations
2. PPO-DP-Adam: DP-Adam optimizer + ReLU activa-

tions
3. PPO-DP-Shoe: DP-SGD optimizer + tan-h activations
All the experiments were performed across the following set
of ε privacy budgets: 0.1, 0.105, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0,
and∞ (no privacy).

We evaluate the privacy-utility trade-off by simultane-
ously measuring the average returns of the the private policy
over multiple sample trajectories during test time (as shown
in Figure 5). For each private RL algorithm, we consider the
non-private version of the RL policy (with an indefinite pri-
vacy budget) as the baseline for reward reconstruction. The
more private the policy is, the larger the reward distance (be-
tween the original reward and the reconstructed reward).

Reward distance as a measure of privacy guarantee: We
used four reward distance metrics for our experiments - L1

distance, L2 distance, L∞ distance, and the sign change

count. The idea is to measure the similarity between the orig-
inal reward function and the recovered reward function. This
is a measure of the degree of privacy of a policy - the larger
the reward distance, the more private the policy is. The met-
rics are calculated as follows:
• L1 distance: Normalize the rewards R,R′ using L1-

norm, and then take the L1 distance across the 2 vectors.
• L2 distance: Normalize the rewards R,R′ using L2-

norm, and then take the L2 distance across the 2 vectors.
• L∞ distance: Normalize the rewards R,R′ using L∞-

norm, and then take the L∞ distance across the 2 vectors.
• Sign change count: Measure the number of sign changes

from R to R′.
Since each distance metric is in a different space, all the dis-
tances evaluated together allow us to get a deeper insight
into the reward reconstruction mechanism, and the optimal-
ity and privacy of policies.

Policy return as a measure of agent utility: We measure
how much utility the learned private policies achieve by
observing how they perform during test-time, by calculat-
ing the average discounted returns over multiple trajectories
played by the agent following the policy.

We build 24 custom FrozenLake environments using the
Open AI gym toolkit. We use LP solvers to help solve the
objective functions of Inverse RL. We build the Deep RL
experiments using TensorFlow 2.4, and add privacy using
TensorFlow Privacy. We build VI-DP-Bellman private algo-
rithm from scratch, and use the publicly available code pro-
vided for the DQN-DP-FN strategy (Wang and Hegde 2019).
We use a reference implementation (Alger 2016) for finite-
state space inverse RL that makes the use of cvxopt (Ander-
sen et al. 2013) to solve the LP formulation. We use Linux
OS based servers for training all the RL agents with a to-
tal of 8 GPUs and 8 CPUs. All experiments spanned across
9 privacy budgets, 24 environments, 8 algorithms, repeating
each experiment 10 times (to account for the randomness
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Figure 4: Reward distance vs privacy budget graphs for all strategies: 1,5: L1 distance, 2,6: L2 distance, 3,7: L∞ distance, 4,8:
Sign change counts. 1,2,3,4: averaged over 5x5 grid sized environments, 5,6,7,8: averaged over 10x10 grid sized environments

Figure 5: Utility (test-time return) vs privacy trade-off for all
policies averaged across grid-sizes 5x5 (a) and 10x10 (b).
Legend is the same as that in figure 4.

stemming from private noise mechanisms and DL optimiza-
tion). The total runtime for the entire set of experiments was
3 weeks. In the longer version of the paper on ArXiv (link
included), we provide a detailed record of all DL and RL
hyperparameters (such as learning rate, discount factor, con-
vergence criteria, and more). We also list the l2 sensitivities,
and Gaussian noise standard deviations used corresponding
to each privacy budget ε, along with the formal privacy guar-
antees offered.

Analysis and Discussion
Figure 4 presents the variation in reward distances (y-axis)
(of each type: L1, L2, L∞, and sign change counts) with
an increase in the ε privacy budget (x-axis) (9 discrete val-
ues) including the no-privacy case at the very end (ε = ∞).
The first row shows results averaged over the 12 Frozen-
Lake environments of grid size 5x5, whereas the second row
shows the results corresponding to the environments of grid
size 10x10. Each graph shows this relationship for all 8 pri-
vate algorithms: DQN-DP-SGD, DQN-DP-Shoe, DQN-DP-
Adam, DQN-DP-FN, PPO-DP-SGD, PPO-DP-Shoe, PPO-
DP-Adam, and VI-DP-Bellman. The graphs show that there
is no clear indication of any private strategy improving at
reconstructing the reward (w.r.t. all distances) with a relax-
ation in the privacy budget - thus, rendering all strategies
ineffective at being a truly meaningful private strategy. We
observe the same lack of trend across both rows: for the 5x5
results in row 1 and 10x10 results in row 2.

Figure 5 presents the trade-off between the amount of util-
ity (expected return: y-axis) and the degree of privacy (ε bud-
get: x-axis) achieved by a private RL privacy. Graph 1 gives
us the average trade-off for 5x5 environments, and graph 2
- for the 10x10 environments. Almost all algorithms exhibit
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Figure 6: Aggregated L2 distances across all environments
and policy variants of the three main classes of RL algo-
rithms: DQN, PPO, and VI.

comparable performance - with the exception of DQN-DP-
FN, which performs significantly worse.

Figure 3 shows the heatmaps and reward structures of
4 different MDPs (row 1) and their corresponding recon-
structed rewards (row 2) using the VI-DP-Bellman algo-
rithm. From 1a and 1b we can observe that the agent is able
to clearly detect the obstacle bar on the right. From 2a and
2b we can infer that the agent finds a straight line path along
the edges that is rewarding. But it also wrongly identifies
some states as rewarding, even though they might be dead-
ends (bright yellow bottom-right corner). Perhaps, this could
be because the agent is able to survive the cost of the state
directly above it, if it means that the agent can easily reach
the goal state in a short amount of time. In 3a and 3b we
learn that even in such a rich environment, the agent is able
to reconstruct the reward structure from an implementation
of the policy. It can clearly identify rewarding blocks within
the entire maze. And finally, in 4a and 4b, the agent learns
to stick to the edges to maximize reward early-on - which
is why its evaluation of the central region is poor, and pri-
vacy preserving. Figure 6 shows that DQN algorithms give
us the strongest reward privacy, followed by PPO and VI al-
gorithms - that do a very poor job at protecting the reward -
despite having very similar utilities (from figure 5).

Based on the experiments performed, we can say that
there is a considerable gap between the privacy provided by
the existing private methods, and the level of privacy needed
to protect the reward function from the inverse RL attack.
We can also infer that techniques using Deep RL methods
are able to learn the policy in a more general manner, as
compared to non-deep methods. We address the need for bet-
ter privacy techniques for RL algorithms that can effectively
protect the reward function. We hope that our work inspires a
deeper theoretical understanding of the limits to minimizing
the gap, as well as its consequences in real-world applica-
tions. Besides thoroughly testing our code, we perform an
extensive span of experiments. Contrasting our results with
the baseline (no privacy), we find the reward distances to be
quite similar. We therefore, believe that the source of the pri-

vacy gap is not experimental error. Our survey of papers that
experiment on FrozenLake shows that the commonly used
grid sizes are {4 × 4, 8 × 8} while we experimented with
slightly larger grid sizes - {5×5, 10×10}. We expect to ob-
serve a similar (or worse) privacy gap upon further increase
of grid size since the reward would be richer in information,
and the DP sensitivity is independent of the grid size.

While we demonstrate our work on a grid-world domain,
we believe it is extendible to real-world domains with sen-
sitive data. Our work is the first in this direction and serves
as evidence that there is a need to inspect further. Deep RL
is increasingly being used for recommendation systems in
dynamic environments. Consider the case when the recom-
mendation engine for every user is a unique private RL pol-
icy whose job is to recommend items to users and learn their
preferences in an online fashion (given the user’s historical
data). The reward is the user’s feedback (ratings) to the rec-
ommended action. While the policy provides privacy guar-
antees for its training process, it can leak the user’s feedback
when subject to the re-identification attack via reward recon-
struction. PRIL can help assess this threat better.

We surveyed a range of Inverse RL (IRL) algorithms:
finite state space LP, sample trajectories ((Ng, Russell
et al. 2000)), deep IRL ((Wulfmeier, Ondruska, and Posner
2015a)), and maximum entropy IRL ((Ziebart et al. 2008),
(Wulfmeier, Ondruska, and Posner 2015b)). Despite starting
with the simplest case - LP for finite state spaces, we observe
a significant privacy gap. The LP method acts as a baseline
for other IRL methods. With increased complexity, the re-
ward function would be represented parametrically which
would allow the system to evaluate performance on much
larger and richer (and maybe continuous) environments. As
the performance of IRL attack improves, we expect the issue
of privacy gap to become even more important to address.

Our work introduces a novel direction of evaluating the
privacy guarantees of RL systems. In the future, we hope
to build on our work in multiple ways: extending to the
multi-agent scenario, extending to a diverse set of domains,
assessing the effect of generalization and exploration on
privacy in RL, testing the performance of other RL algo-
rithms such as PPO-Clip and PPO-KL, and evaluating the
effect of using other complex inverse RL algorithms such
as (Wulfmeier, Ondruska, and Posner 2015a), (Ziebart et al.
2008) and (Wulfmeier, Ondruska, and Posner 2015b).

Conclusion
This paper introduces a new Privacy-Aware Inverse RL anal-
ysis framework (PRIL) for enhancing reward privacy in re-
inforcement learning (RL) that performs a novel reward re-
construction attack and demonstrated its ability to fairly as-
sess the level of privacy achieved in protecting the reward
structure from adversarial attacks. We studied the set of ex-
isting privacy techniques for RL, performed a detailed eval-
uation of their effectiveness and identified that there is a sig-
nificant gap between the current standard of privacy offered
and the standard of privacy needed to protect reward func-
tions in RL. We quantify this gap by measuring distances
between the original and reconstructed rewards via the re-
ward reconstruction attack.

8015



References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learn-
ing with differential privacy. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, 308–318.
Alger, M. 2016. Inverse Reinforcement Learning. https:
//zenodo.org/record/555999#.YkwFGnUzaV6. Accessed:
2022-04-05.
Andersen, M. S.; Dahl, J.; Vandenberghe, L.; et al. 2013.
CVXOPT: A Python package for convex optimization.
Available at cvxopt. org, 54.
Balle, B.; Gomrokchi, M.; and Precup, D. 2016. Differen-
tially private policy evaluation. In International Conference
on Machine Learning, 2130–2138. PMLR.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai gym.
arXiv preprint arXiv:1606.01540.
Chen, T.; Liu, J.; Xiang, Y.; Niu, W.; Tong, E.; and Han,
Z. 2019. Adversarial attack and defense in reinforcement
learning-from AI security view. Cybersecurity, 2(1): 1–22.
Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating Noise to Sensitivity in Private Data Analysis.
In Halevi, S.; and Rabin, T., eds., Theory of Cryptography,
265–284. Berlin, Heidelberg: Springer Berlin Heidelberg.
ISBN 978-3-540-32732-5.
Fu, J.; Luo, K.; and Levine, S. 2017. Learning robust re-
wards with adversarial inverse reinforcement learning. arXiv
preprint arXiv:1710.11248.
Gleave, A.; Dennis, M.; Wild, C.; Kant, N.; Levine, S.; and
Russell, S. 2019. Adversarial policies: Attacking deep rein-
forcement learning. arXiv preprint arXiv:1905.10615.
Hannun, A.; Knott, B.; Sengupta, S.; and van der Maaten, L.
2019. Privacy-Preserving Multi-Party Contextual Bandits.
arXiv preprint arXiv:1910.05299.
Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and
Abbeel, P. 2017. Adversarial attacks on neural network poli-
cies. arXiv preprint arXiv:1702.02284.
Ignizio, J. P.; and Cavalier, T. M. 1994. Linear program-
ming. Prentice-Hall, Inc.
Kos, J.; and Song, D. 2017. Delving into adversarial attacks
on deep policies. arXiv preprint arXiv:1705.06452.
Lebensold, J.; Hamilton, W.; Balle, B.; and Precup, D. 2019.
Actor Critic with Differentially Private Critic. arXiv preprint
arXiv:1910.05876.
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