
Covered Information Disentanglement: Model Transparency via Unbiased
Permutation Importance

João P. B. Pereira1,2, Erik S.G. Stroes1, Aeilko H. Zwinderman1, Evgeni Levin1,2

1Amsterdam University Medical Center, Meibergdreef 9 1105 AZ, Amsterdam, The Netherlands
2 Horaizon, Marshallaan 2 2625 GZ, Delft, The Netherlands

{j.p.belopereira, e.levin}@amsterdamumc.nl

Abstract

Model transparency is a prerequisite in many domains and
an increasingly popular area in machine learning research. In
the medical domain, for instance, unveiling the mechanisms
behind a disease often has higher priority than the diagnostic
itself since it might dictate or guide potential treatments
and research directions. One of the most popular approaches
to explain model global predictions is the permutation
importance where the performance on permuted data is
benchmarked against the baseline. However, this method and
other related approaches will undervalue the importance of a
feature in the presence of covariates since these cover part of
its provided information. To address this issue, we propose
Covered Information Disentanglement (CID), a framework
that considers all feature information overlap to correct the
values provided by permutation importance. We further show
how to compute CID efficiently when coupled with Markov
random fields. We demonstrate its efficacy in adjusting
permutation importance first on a controlled toy dataset and
discuss its effect on real-world medical data.

Introduction
Understanding the biological underpinnings of disease is
at the core of medical research. Model transparency and
feature relevance are thus a top priority to discover new
potential treatments or research directions. One of the
current most popular methods to explain local model
predictions is SHAP (Lipovetsky and Conklin 2001;
Štrumbelj and Kononenko 2014; Lundberg and Lee 2017),
a game-theoretic approach that considers the features as
“players” and measures their marginal contributions to all
possible feature subset combinations. SHAP has also been
generalized in SAGE (Covert, Lundberg, and Lee 2020)
to compute global feature importance. However, recent
work by Kumar et al. (Kumar et al. 2020) exposes some
mathematical issues with SHAP and concludes that this
framework is ill-suited as a general solution to quantifying
feature importance. Other local-based methods such as
LIME (Ribeiro, Singh, and Guestrin 2016) and its variants
(see e.g. (Singh, Ribeiro, and Guestrin 2016; Ribeiro,
Singh, and Guestrin 2018.; Guidotti et al. 2018; Pereira
et al. 2019)) build weak yet explainable models on the
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neighborhood of each instance. While this achieves higher
prediction transparency for each data point, in this work,
we are mainly concerned with a more holistic view of
importance, which may be more appropriate to guide
new research directions and unravel disease mechanisms.
Tree-based methods are very commonly selected for this
purpose because they compute the impurity or Gini
importance (Breiman 2001). The impurity importance is
biased in favor of variables with many possible split
points; i.e. categorical variables with many categories or
continuous variables (Strobl et al. 2007). A generally
accepted alternative to computing the Gini importance
is the permutation importance (Breiman 2001), which
benchmarks the baseline performance against permuted
data. There is, however, the issue of multicollinearity.
When features are highly correlated, feature permutation
will underestimate the individual importance of at least
one of the features, since a great deal of the information
provided by this feature is “covered” by its covariates. One
option is to permute correlated features together (Toloşi and
Lengauer 2011). However, this implies choosing an arbitrary
correlation grouping threshold. Most importantly, it misses
the differentiation between each feature’s contribution to
the final prediction. Motivated by the idea that there
is an information overlap between different features, we
develop Covered Information Disentanglement (CID),1 an
information-theoretic approach to disentangle the shared
information and scale the permutation importance values
accordingly. We demonstrate how CID can recover the right
importance ranking on artificial data and discuss its efficacy
on the Cardiovascular Risk Prediction dataset (Hoogeveen
et al. 2020).

Methodology
Notation We denote matrices, 1-dimensional arrays, and
scalars/functions with capital bold, bold, and regular text,
respectively (e.g. X, x, α/f ). Given a dataset XM×N , we
will denote its random variables by capital regular text with
a subscript and the values using lowercase (e.g. Xi and xi),
while the joint density/mass will be represented as p(x). The
expected loss of a function given by: 1

M

∑M
i=1 l [y, f(xi)]

1We make an implementation of CID publicly available at:
https://github.com/JBPereira/CID.
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will be denoted by L [f (X)].

Information Theory Background
Information theory (IT) is a useful tool used in quantifying
relations between random variables. The basic building
block in IT is the entropy of an r.v. Xi, which is defined
as: H(Xi) ≡ −

∑
xi
p(xi) log p(xi). The joint entropy

between r.v.s Xi and Xj is defined as: H(Xi, Xj) ≡
−
∑

xi

∑
xj
p(xi, xj)log p(xi, xj). The mutual information

between r.v.s Xi and Xj is the relative entropy between
the joint entropy and the product distribution p(xi)p(xj):
I(Xi, Xj) ≡

∑
xi

∑
xj
p(xi, xj) log p(xi,xj)

p(xi)p(xj)
. For a more

thorough exposition to IT, the reader can refer to (Cover and
Thomas 2012).
Using the definitions above, one can derive properties that
resemble those of set theory, where joint entropy and mutual
information are the information-theoretic counterparts to
union and intersection, respectively (Ting 2008). In order to
keep this intuition when generalizing to higher dimensions,
one can define the entropy of the union of N features as:
Definition 1. Multivariate Union Entropy

H
(
∪Ni=1Xi

)
≡ −

∑
xi

p(x1, ..., xN )log p(x1, ..., xN )

and using the Inclusion-Exclusion principle, we can
define the intersection as:
Definition 2. Multivariate Intersection Entropy

H
(
∩Ni=1Xi

)
≡

∑
x1,...,xN

p(x1, ..., xN )hci(x1, ..., xN ),

hci(x1, ..., xN ) =
N∑

k=1

(−1)k−1
∑

I⊆{1, ..., N};
|I|=k

h(xI1 , ... , xIk),

h(x) = −log p(x) and hci is the local co-information.
This definition of multivariate intersection is also called

co-information and it may yield negative values. This can
happen for instance if Xi has no correlation with XI but
knowing XI introduces a correlation between the two (what
is commonly known as ‘explaining away’). This motivated
Williams and Beer to draw the distinction between
redundant and synergistic information and propose partial
information decomposition (PID) (Williams and Beer 2010).
Ince (Ince 2017) thoroughly analyzed the multivariate
properties of PID directly applied to multivariate entropy
and suggested to divide the individual terms in definition 2,
so that positive local entropy terms correspond to redundant
entropy, while the negative ones correspond to synergistic
entropy.

Permutation Feature Importance
Feature importance is a subjective notion that may vary
with application. Consider a supervised learning task where
a model f is trained/tested on dataset X, y and its
performance is measured by a function L. In this work,
we will refer to feature importance as the extent to which

Figure 1: An illustration of the permutation importance bias
in the presence of covariates and the measures needed to
correct it. The mutual information between random variable
Xi and Y (represented in gray) is covered by the information
provided by r.v.s X1, X2 and X3. Permutation importance
only measures the non-covered part (non-shaded gray), and
to correct its value, we suggest computing Hc

i (X; Y ).

a feature Xi affects L[f(X)], on its own and through its
interactions with X\{i}. Permutation importance was first
introduced by Breiman (Breiman 2001) in random forests
as a way to understand the interaction of variables that is
providing the predictive accuracy.
Consider a dataset XM×N and denote the jth instance of the
ith feature by Xj

i . Suppose the set {1, ...,M} is sampled
and denote the subsample by s, s ⊆ {1, ...,M}. Consider
further a random permutation of this subset which we denote
by π (s) and its jth element by πj (s). The permutation
importance, is given by:

ei(f, s) =

|s|∑
j∈s

(
E∼p(π)

[
L
(
f
(
Xj

1, ...,X
πj(s)
i , ...,Xj

N

))]

− L
(
f
(
Xj

1, ...,X
j
N

)))
(1)

ei(f) = E∼p(s) [ei(f, s)] (2)

Covered Information Disentanglement
In the presence of covariates, the permutation importance
measures the performance dip caused by removing the non-
mutual information between the feature and the remaining
data. That is:

ei (f) = Ii (f)− e∪i (f), (3)

where Ii (f) = E∼p(s) [Ii(f, s)] is the expected total
importance of feature i under model f (the quantity we
are interested in) and e∪i (f) = E∼p(s) [e

∪
i (f, s)] is the

expected performance dip covered by all other variables.
To compute e∪i (f) would require applying the Inclusion-
Exclusion principle and measuring the performance dip for
all possible feature combinations of size 1 to the number of
features. Instead, we note that e∪i (f) intuitively measures
the model performance dip when the model is deprived of
the information covered by the r.v.s that are correlated with
Xi. For an intuitive depiction of the problem, see figure 1.
Motivated by the analogy between set-theory and
information measures, we define the joint information
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between an r.v. and the target variable that is “covered” by
the other r.v.s as:
Definition 3. Covered information (CI) Given an r.v. Xi

and a set of distinct r.v.s Xi− , i
− = {1, ... N}\{i}, the

information of Xi w.r.t. Y covered by Xi− is defined as:

Hc
i (X; Y ) = H

(
Xi ∩ Y ∩

{
∪j∈i−Xj

})
.

When it is clear from the context what Y and Xi− are,
we will abbreviate Hc

i (X; Y ) into Hc
i , denote the mutual

information with Y by H∧
i , and the respective local co-

information terms for the kth row in the dataset with hcik ≡
hci (X

k
i , Y

k) and h∧ik ≡ h∧i (X
k
i ,y

k). We further divide
Hc

i and H∧
i into its redundant and synergistic counterparts,

which for a specific sample s are given by:

Redundant MI : H∧+

i (s) =
1

|s|
∑
k∈s

max (0, h∧ik)

Synergistic MI : H∧−

i (s) =
1

|s|
∑
k∈s

|min (0, h∧ik)|

Redundant CI : Hc+

i (s) =
1

|s|
∑
k∈s

max (0, hcik)

Synergistic CI : Hc−

i (s) =
1

|s|
∑
k∈s

|min (0, hcik)|

Assumption 1. Permutation importance and entropy terms
are related through a map ϕf : R4 → R, such that

ei(f, s) = ϕf

(
Hc+

i (s), Hc−

i (s), H∧+

i (s), H∧−

i (s)
)
+ ϵ,

where ϵ is an error term.
Thus, if assumption 1 holds, we can use the information

of Xi w.r.t. Y by Xi− and approximate equation 3 with:

e∪i (f, s) ≈ϕf
(
0, Hc−

i (s), H∧+

i (s), H∧−

i (s)
)
−

ϕf

(
Hc+

i (s), Hc−

i (s), H∧+

i (s), H∧−

i (s)
)
. (4)

This means we can approximate the result of permuting
all possible combinations of features by computing only the
single-feature permutation loss and the covered information
of r.v. Xi by all the others. Here, we are implicitly defining:
Ii (f, s) ≡ ϕf

(
0, Hc−

i (s), H∧+

i (s), H∧−

i (s)
)

, and thus the
true importance in the performance difference scale is given
by mapping the entropy values when there is no redundant
entropy to the space of performance differences.
Since we are predicting the feature importance using a
map between entropy terms (which measure model-agnostic
importance) and permutation importance values, the end
result depends only on how learnable is the model behavior
w.r.t to entropy. Moreover, since the entropy values are
computed for the different subsample sets s, the overall
importance variability is also estimated.
For two datasets where I(Xi, Y ) > I(Xi, Y

′) but the
covered info of (Xi, Y ) > (Xi, Y

′), CID would correctly
value Ii(f) > Ii(f ′) which is not guaranteed using
Shapley based methods since the contributions to subsets
of features correlated with Xi are biased. The Shapley

efficiency+symmetry properties also imply that correlated
features’ scores are scaled down. To see this, consider Xi =
Xj , then symmetry→ ϕi(vf ) = ϕj(vf ) and efficiency→
ϕi(vf ) = ϕj(vf ) = (vf (D) −

∑
k ̸=i,j ϕk(vf ))/2. In

contrast, CID values do not sum to the complete data
performance, but rather are meaningful individually.

There is still the issue of computing Hc
i , since it

involves computing p(X). Since directionality is irrelevant
for the purpose of computing overlapping information, we
suggest to model p(X) using an undirected graphical model
(UGM). Let G = (V, E) denote a graph with N nodes,
corresponding to the {X1, ..., XN} features, and let C be
a set of cliques (fully-connected subgraphs) of the graph
G. Denoting a set of clique-potential functions by {ψC :
X |C| → R}, the distribution of a Markov random field
(MRF) (Koller and Friedman 2009) is given by: p(x) =∏

c∈C ψc(xc)/Z, where Z =
∫ ∏

c∈C ψc(xc)dx is the
partition function. By the Hammersley-Clifford theorem,
any distribution that can be represented in this way satisfies:
Xi ⊥ Xj |XN (Xi) for any Xj /∈ N (Xi), where N (Xi)
is the set {Xk : (i, k) ∈ E}. This allows to significantly
simplify the expression of covered information yielding the
main result of this paper:
Theorem 1. Consider an r.v. Xi and set of r.v.s Xi− , i

− =
{1, ..., N}\{i}, a response r.v. Y , as well as the set of r.v.s
that are neighbors to both Xi and Y : XN (i,y), N (i, y) ∈
∪{N (Xi), N (Y )}. For a Markov random field, the covered
information of Xi by Xi− w.r.t. Y is given by:

Hc
i = H∧

i −E∼p(xN(i,y))

[
log

(
f

dTFe

dTFyFT
xi
e

)]
,

where F is a matrix with the product of joint potential values
ψCF

for set of cliques F : {c |Xi, Y ∈ c}; f , Fy and Fxi

are an entry, column, and row of F, respectively, while d and
e are arrays with the product of potential values ψCD

, ψCE

for set of cliques D : {c |Xi ∈ c, Y /∈ c} and E : {c |Xi /∈
c, Y ∈ c} with fixed Xi− .

Proof. Using definition 1, 2 and 3:

Hc
i =H∧

i +

1︷ ︸︸ ︷
H(Xi ∪ Y ∪Xi−)−

2︷ ︸︸ ︷
H(Xi− ∪ Y )

+

3︷ ︸︸ ︷
H(Xi−)−

4︷ ︸︸ ︷
H(Xi ∪Xi−) .

The probability density for Markov Random fields is equal
to p(x) =

∏
c∈C ψc(xc)/Z, where Z is the partition function

and C is the set of cliques in the Markov network. Define two
sets of cliques:A : {c |Xi ∈ c} andB : {c |Xi /∈ c}. In that
case (ignoring the partition function term because it cancels
out):

1 = −
∑
x

p(x)

[
log

∏
b∈B

ψb(xb) + log
∏
a∈A

ψa(xa)

]
,

2 = −
∑
x

p(x)

[
log

∏
b∈B

ψb(xb) + log
∑
xi

∏
a∈A

ψa(xa)

]
,

7986



Figure 2: CID importance diagram. The permutation feature importance is computed by first calculating the expected loss of the
model f (L (f(X))). Then, each feature’s values are permuted and the expected loss of f computed. Subtracting each permuted
dataset loss to the original one yields the permutation importance. CID starts by inferring the network G for the Markov random
field Ψ (alternatively, a prior network is given), then the MRF parameters θ are inferred, and finally, Hc

i /H∧
i are computed for

each feature, which are then used to train the entropy/PI model ϕf and predict the true importance I(f).

1 − 2 = −
∑
x

p(x)log

( ∏
a∈A ψa(xa)∑

xi

∏
a∈A ψa(xa)

)
.

To compute 3 − 4 , define four sets of cliques: C :
{c |Xi /∈ c, Y /∈ c}, D : {c |Xi ∈ c, Y /∈ c}, E :
{c |Xi /∈ c, Y ∈ c}, and F : {c |Xi ∈ c, Y ∈ c}. In
order to reduce the clutter, we will introduce the following
functions: d(xi, xi−) =

∏
j∈i−,j∼i ψ(xi, xj), e(y, xi−) =∏

j∈i−,j∼y ψ(y, xj), f(xi, y) = ψ(xi, y), where we will
abbreviate d(xi, xi−) into d(xi) and e(y, xi−) into e(y)
when the value for random variable Xi− is fixed. Then
(again, ignoring the partition function):

3 = −
∑

x p(x)
[
log
∏

c∈C ψc(xc) + log
∑

xi

∑
y d(xi)e(y)f(xi, y)

]
,

4 = −
∑

x p(x)
[
log
∏

c∈C ψc(xc) + log
∑

y d(xi)e(y)f(xi, y)
]
,

3 − 4 = −
∑
x

p(x)log

( ∑
xi

∑
y d(xi)e(y)f(xi, y)∑

y d(xi)e(y)f(xi = Xi, y)

)
,

where f(xi = Xi, y) is the function f for a fixed value of the
r.v. Xi. Since the set of cliques A = {D ∪F}, and denoting
by d(Xi), f(Xi, Y ) the functions d and f for fixed values of
Xi and Y , then:

( 1 − 2 ) + ( 3 − 4 ) =

−
∑

x p(x)log
(∑

xi

∑
y d(Xi)d(xi)f(Xi,Y )e(y)f(xi,y)∑

xi

∑
y d(Xi)d(xi)f(xi,Y )e(y)f(Xi,y)

)
= −E∼p(xN(i,y))

[
log f(Xi, Y ) + log

(
dTFe

dTFyFxi
e

)]
,

where xN (i,y) is an instance of the set of r.v.s that are
neighbors to either Xi or Y , d and e are column arrays with
the different values of d(xi) and e(y) for fixed Xi− , F is a

matrix with all the values f(xi, y) with varying values ofXi

in the rows and Y in the columns, and Fy and Fxi are row
and column vectors of F corresponding to fixed Y and fixed
Xi, respectively. This yields the result of the theorem.

Considerations and Simplifications If a 2-clique MRF
is chosen, then F depends only on Xi and Y , and can be
computed before the expectation.
Gaussian MRF: Learning an MRF’s network structure is
expensive. One popular approach is to use graphical lasso
(Friedman, Hastie, and Tibshirani 2008) which learns the
entries of a Gaussian precision matrix by finding: min

Λ∈Sn+
−

log det(Λ) + tr(SΛ) + ρ||Λ||1, where Λ is the precision
matrix (constrained to belong to Sn+, the set of positive semi-
definite n×nmatrices), S is the empirical covariance matrix
and ρ acts in analogy to Lasso regularization by penalizing
a large number of non-zero precision entries. We can model
the potentials using Gaussian Markov random fields whose
potentials are ψs,t(xs, xt) = exp

[
− 1

2xsΛstxt
]
, ψs(xs) =

exp
[
− 1

2

(
x2sΛss − 2ηsxs

)]
, where η = Λµ (µ is the mean

vector).
Discrete Approximation: Continuous MRF such as
Gaussian Markov Random fields depend on a continuous
multivariate distribution and thus the entropy must be
replaced by differential entropy, which violates many of the
desired properties of discrete entropy. Therefore, we will
approximate a continuous distribution with a discrete one
p(xi) ≈ δip(xi), where δi is the ith feature bin size and
xi is the mean value of the bin, and then carry on with our
computations as specified in theorem 1. For the case where
all bins have the same size per feature, all the δs cancel out.
Complexity: If we approximate the expectation in theorem
1 with the empirical expectation, then the asymptotic
complexity becomes O(SB2), where S is the number of
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samples and B is the maximum between the number of
bins used to discretise continuous values and the maximum
number of values the discrete features take (typically, B ≪
S). This can be computed in parallel for each feature.
Baseline and Maximum Importance The permutation
importance of the whole feature set: eX(f, s) =

IX(f, s) = ϕf

(
0, 0, H∧+

X (s), H∧−

X (s)
)

and/or the empty
set: e∅(f, s) = I∅(f, s) = ϕf (0, 0, 0, 0) can be added to
the info-PI set to improve the model map ϕf .
Out-of-distribution Problem In PI, models are evaluated
in regions outside the training distribution domain. For CID,
substituting PI for permute and retrain or feature ablation
solves this issue.

Experimental Section
To test the CID ranking adjustment, we first tested it
on a toy dataset where the real importances are known,
and a real-world medical dataset. We implemented CID
in Python using scikit-learn’s graphical lasso (Pedregosa
and et al. 2011). For the toy dataset, we used scikit-learn’s
Extremely Randomized Trees and Bayesian regression
implementations, and for the medical dataset we used a
Gradient Boosting Survival model (Pölsterl 2020).

Multivariate Generated Data Test
In order to test if CID adjusts the permutation ranking into
the correct one, we took 2000 samples from a multivariate
distribution with the following marginal distributions:
X1 ∼ Uni(0, 1), X3 ∼ Gamma(1.5,2), X4 ∼
Beta(0.5, 0.5), X2 ∼ X3 · X4, X5 ∼ −Exponential(0.2),
X6 ∼ sin(X4) and X7 ∼ X8 · X9 + (1−X8) ·
X10 with X8 ∼ Bin(1, 0.7) and X9 ∼ N (−5, 1),
X10 ∼ N (5, 1). Consider also the binning values:
b = [0, 0.375, 0.5, 0.575, 0.625, 0.7, 0.775, 0.85, 0.975].
We then defined the outcome variable as: yj =

∑7
i=1 xi ·

1 (bi ≤ uj < bi+1) +
(∑4

k=2 xk

)
· 1 (b8 ≤ uj < b9) +(∑6

l=5 xl

)
· 1 (uj ≥ b9), where u is an observation of U ∼

Uni(0, 1). The true importances are thus: I1 ≥ I2 ≥ I3 ≥
I4 ≥ I5 = I6 ≥ I7. We transformed the data into Gaussian
using quantile information and chosen gaussian markov
random fields to pair with CID. The graph was inferred
using graphical lasso with a grid-search cross-validation
to determine the optimal l1 penalization parameter. To
test the CID correction, we performed 200 Shuffle Splits
with Extremely Randomized Trees and computed the Gini
importance for each feature, as well as the permutation
importance(PI). We then adjusted the feature importances
using the CID algorithm and Bayesian Regression as ϕ
(see assumption 1). You can compare the rankings in figure
3. As can be seen from the swarmplot in figure 3, with
the exception of X1, PI placed a nearly equal weight on
all features, centered around zero, presumably due to the
high feature covariance. The CID was able to rectify this
and ranked the features in the right order. It also placed
every feature importance at non-zero with a gap between
unequally important features and similar importance for

Figure 3: Comparison of the importance ranking on
the multivariate gaussian dataset given by from left to
right: Tree importance ( Gini importance ), permutation
importance, CID importance. The feature order is given by
the importance median. The ground truth is I1 ≥ I2 ≥ I3 ≥
I4 ≥ I5 = I6 ≥ I7.

X5/X6, matching well the true importances. Moreover,
notice how the Gini importance underestimated X3/X1,
presumably because X2 offers many quality splitting points
due to the overlap and similarity with X3/X4.

Cardiovascular Event Prediction with Proteomics
Problem Introduction Cardiovascular diseases (CVDs)
are the number one cause of death globally. Identifying
asymptomatic people with the highest cardiovascular (CV)
risk remains a crucial challenge in preventing their first
cardiac event. Clinically used risk algorithms offer limited
accuracy (Piepoli et al. 2016). Consequently, a substantial
proportion of the general population at risk remains
unidentified until their first clinical event. Hoogeveen and
Belo Pereira et al. recently demonstrated increased efficacy
in predicting primary events using protein-based models
(Hoogeveen et al. 2020). Since technical advances now
allow for cheap and reproducible high-throughput proteomic
analysis (Assarsson et al. 2014), the field is prime for
identifying new diagnostic markers or therapeutic targets, as
well as developing new targeted protein panels to quickly
and cheaply assess the risk of various diseases. The success
of this endeavour is, of course, dependent on reliable feature
importance identification.
The reason this dataset is a good candidate to test CID,
is the ”biological robustness” of living systems (Kitano
2004; Stelling et al. 2004). Biological robustness describes
a property of living systems whereby specific functions
of the system are maintained despite external and internal
perturbations. In proteomics, robustness is achieved in two
ways: since protein structure is intimately related to function
(Schermann 2008), proteins with similar structure can
exhibit similar functions, and proteins can be synthesized
through different pathways in the metabolic network. This
means two proteins located upstream the network relative to
a third causing disease will have redundant information, and
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Algorithm 1: CID Importance
Input: XM×N , y, f , Ψ, G(optional)
Return: I(f)

1: S← SampleSubsets({1, ...,M})
2: e(f)← PermutationImportance(X, y, f , S)
3: G← InferGraph([X, y]) ▷ Infer graph if not povided
4: Ψθ ←InferMRFParams(Ψ, X, y)
5: H∧ ← ComputeMutualInfo(X, y), Hc ← 0
6: N ← GetNeighbors([X, y], G)
7: for i in [1, . . . , N ] do ▷ can be parallelized
8: for j in [1, . . . , M ] do
9: d, e,F← Potentials(Ψθ, X,y, i, j,Ni,Ny)

10: Hc
i [j]←H∧

i [j]− log
(
f dTFe

dTFyFxi
e

)
11: end for
12: end for
13: Hc+

, Hc−
, H∧+

, H∧− ← RedundSyn(H∧,Hc,S)
14: ϕ← FitEntropyPI

(
Hc+

, Hc−
, H∧+

, H∧−
, e(f)

)
15: I(f)← E∼p(s)

[
ϕ
(
0, Hc−

, H∧+

, H∧−
)]

so do two proteins whose structure is similar (this is depicted
in figure 4).

Dataset Description
The dataset consists of a selection of 822 seemingly
healthy individuals in a nested case-control sample from
the EPIC-Norfolk study (Day et al. 1999). Seemingly
healthy individuals were defined as study participants who
did not report a history of CV disease. A total of 411
individuals who developed an acute myocardial infarction
(either hospitalization or death) between baseline and
follow-up through 2016 were selected, together with 411
seemingly healthy individuals who remained free of any CV
disease during follow-up. In the original study, the authors
demonstrate how predicting short-term events leads to a
significant accuracy improvement (Hoogeveen et al. 2020),
presumably because the proteomic profile will change over
time. We used the early-event prediction dataset, where we
only included patients who suffered from an event earlier
than 1500 days from measurement (total of 100 patients).
We do not make the code for this analysis available due to
data confidentiality.

Importance Ranking Experiment Details
To evaluate the models’ performance on days-to-event
regression, we performed 100 shuffle splits and measured
the mean square error on the test set. We used 5-fold
cross-validation to select the optimal hyper-parameters of
a Survival Gradient Boosting regressor (Pölsterl 2020).
To prevent overfitting, we pre-selected 50 proteins using
univariate selection. We then compared the CID with
permutation importance, Univariate importance , SAGE
(Covert, Lundberg, and Lee 2020), and Tree importance
(Gini importance). We used GraphicalLasso (GL) for
network inference in all our experiments and selected the
l1 regularization term using grid-search cross-validation. For

Figure 4: Illustration of biological robustness for the event
prediction with proteomics problem. On the left square, it is
shown how the levels of two different proteins with similar
structure (and hence, similar function) impact the outcome
(obesity); on the right square, it is shown how two different
proteins can influence the levels of a third outcome-related
one through different pathways in the metabolic network;
on the bottom, there is a Venn diagram representing the
information overlap of the outcome (in gray) and the other
proteins considered.

the cardiovascular event survival analysis, we discretized the
data into 10 bins. For this experiment we used:

ei(f, s) = ϕf

(
Hc+

Xi
(s), Hc−

Xi
(s), H∧+

i (s), H∧−

i (s)
)

= Ii(f, s)g
(
Hc+

Xi
(s)
)(

1−
Hc+

Xi
(s)

H∧+

i (s)

)
,

g
(
Hc+

Xi
(s)
)
=

{
c, if Hc+

Xi
(s) > 0, c ∈ [1,+∞[

1, otherwise
,

that is, the permutation importance is modelled as the
true importance weighted by the fraction of uncovered
information (disregarding synergy) scaled by c. We
then found c using grid-search on the values: 1/c =
[1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4]. We removed data instances
that contained values exceeding 4 times the standard
deviation to achieve better discretization.

Results Overall, CID spreads the importance more evenly
than Perm. imp. and aligns better with the Univariate
ranking. Thus, this corroborates the hypothesis that Perm.
imp. underrates correlated features. CID ranked TRAIL-R2,
PSP-D, and IL2-RA two or more places higher, while it
ranked SELL and PCOLCE five and seven places lower,
respectively.
Gold Standard: To establish a gold-standard analysis of the
ranking, we asked world-renowned cardiovascular experts
who commented on the comparison. TRAIL-R2 and GDF-
15 were identified as the highest predictors of long-term
mortality in patients with acute myocardial infarction in
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Figure 5: Importance rankings for cardiovascular event prediction using proteomics given by permutation importance, CID,
univariate importance, SAGE and tree importance ( Gini importance )

Method Corr. MSE top feats Avg. cycle time(s)
Perm. Imp. 0.8697 0.2824 ± 0.0107 0.7756 ± 0.2173
CID 0.8787 0.2801 ± 0.0098 18.76 ± 7.7256
Univar. Imp. 0.8185 0.2947 ± 0.0090 0.0008 ± 0.0003
SAGE 0.8499 0.2858± 0.0064 42179 ± 3835
Tree imp. 0.7219 0.2900± 0.0087 -

Table 1: Correlation between subset model performance and
the subset’s sum of importances for each method (higher is
better) and the mean squared error on top 10 to 35 features
for each method (lower is better), as well as the average
running time per cycle in seconds.

(Skau et al. 2017). PSP-D has been identified as a strong
clinical predictor of future adverse clinical outcome in
stable patients with chronic heart failure in (Brankovic
et al. 2019). Il2-RA has been positively associated with all-
cause mortality, CVD mortality, incident CVD, stroke, and
heart failure in (Durda et al. 2015). To date, SELL and
PCOLCE have not been associated as major players in the
development of cardiovascular disease.
Quantitative Measure: In order to establish a quantitative
measure of the ranking quality, we followed an approach
similar to what is described in (Covert, Lundberg, and Lee
2020), where multiple subsets of the data were selected,
the models were re-trained for each subset and then for
each subset and importance method we measured the
correlation between the performance and the subset’s sum
of importances. We also computed the model performance
when trained on the top 10 to 35 proteins of each method.
We also report the average running time per cycle conducted
on an 8-core Intel(R) Core(TM) i7-7700HQ CPU @
2.81Ghz. The results are displayed in table 1 which shows
CID outperformed the other methods on this dataset.

Discussion and Conclusion
Permutation importance is a popular algorithm used to
equip black-box models with global explanations. It has the
advantage of being easy to understand, but its validity suffers
in the presence of covariates. We propose a novel framework
(CID) to disentangle the shared information between
covariates and show how using Markov random fields leads
to tractability, making permutation importance competitive
against methodologies where all marginal contributions of
a feature are considered, such as SHAP. Due to network
inference’s complexity, we have only explored graphical
lasso in conjunction with Gaussian Markov random fields.
Although this particular implementation is attractive for
its scalability and intuitiveness, it might lack sufficient
expressive power to model more complex relationships
between features.
Recently, A. Fisher proposed model class reliance (MCR),
a method to estimate the range of variable importance
for a pre-specified model class and shown how it can be
computed as a series of convex optimization problems for
model classes whose empirical loss is convex, although
general computation procedures are still an open area of
research (Fisher, Rudin, and Dominici 2018). By learning
a map between permutation importance and entropy terms,
the importances retrieved by CID are less dependent on
the specific fitted model than permutation importance or
SHAP, but the map quality still relies on a consistent model
behavior with regards to redundant entropy, as well as a good
MRF approximation to the data distribution. The former
might depend on the groups of features and thus future work
includes modeling this map using graph methods on the
inferred network, where the node features are the entropy
terms. The latter could be improved by using a class of
non-parametric MRFs with higher flexibility. Should these
two problems be solved, then CID provides a truly model-
agnostic feature importance framework while retaining the
intuitiveness of permutation importance.
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Ethical Impact
With an increasing reliance on using machine learning
methods to research impactful domains such as biology and
medicine, it is more important than ever to achieve model
transparency and accurately determine feature relevance.
In this work, we develop an efficient way to incorporate
interactions when ranking variables. In the biomedical
domain with thousands or millions of complex interactions
among proteins, metabolites, genes, and so on, speed
and correctness in determining the elements governing a
given process are critical because they could significantly
mitigate time, resources, and human lives lost. On the
other hand, model transparency can also be exploited to
develop adversarial examples or gain unwarranted access to
protected systems/data.
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