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Abstract

This work aims to address the long-established problem of
learning diversified representations. To this end, we combine
information-theoretic arguments with stochastic competition-
based activations, namely Stochastic Local Winner-Takes-All
(LWTA) units. In this context, we ditch the conventional deep
architectures commonly used in Representation Learning, that
rely on non-linear activations; instead, we replace them with
sets of locally and stochastically competing linear units. In
this setting, each network layer yields sparse outputs, deter-
mined by the outcome of the competition between units that
are organized into blocks of competitors. We adopt stochastic
arguments for the competition mechanism, which perform
posterior sampling to determine the winner of each block.
We further endow the considered networks with the ability to
infer the sub-part of the network that is essential for model-
ing the data at hand; we impose appropriate stick-breaking
priors to this end. To further enrich the information of the
emerging representations, we resort to information-theoretic
principles, namely the Information Competing Process (ICP).
Then, all the components are tied together under the stochastic
Variational Bayes framework for inference. We perform a thor-
ough experimental investigation for our approach using bench-
mark datasets on image classification. As we experimentally
show, the resulting networks yield significant discriminative
representation learning abilities. In addition, the introduced
paradigm allows for a principled investigation mechanism of
the emerging intermediate network representations.

Introduction
The ability to extract diversified representations is the main
focal point of Representation Learning (RL). Despite the im-
mense amount of research effort, though, learning representa-
tions with such qualities remains an open research question.
Recently, information-theoretic arguments, and specifically
mutual information constraints (Bell and Sejnowski 1995;
Belghazi et al. 2018; Hjelm et al. 2019a; van den Oord, Li,
and Vinyals 2019), have risen as a promising direction to-
wards successful RL. Notably, the Information Bottleneck
(IB) (Tishby, Pereira, and Bialek 1999) has attracted a sub-
stantial amount of attention (Alemi et al. 2017; Achille and
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Soatto 2017; Dai, Zhu, and Wipf 2018). The main IB princi-
ple lies on constraining the inferred representations, such that
the information carried about the input is minimized, while
being maximally informative about the target outputs (Tishby
and Zaslavsky 2015). The first implementations of the IB
principle in deep learning can be found in (Shwartz-Ziv and
Tishby 2017; Alemi et al. 2017; Saxe et al. 2018).

Despite these advances, it is striking that the majority of the
proposed works refrain from examining a core -and probably
the most important- aspect of modern deep architectures; that
is, the employed non-linearities. We posit that a radically dif-
ferent paradigm of latent unit operation may allow for signif-
icantly enhancing the representation power of deep networks.
We draw inspiration from biologically-plausible architectures:
it has been shown that neurons with similar functions in the
mammal brain aggregate together in groups/blocks, and a
local competition takes place for their activation (Kandel,
Schwartz, and Jessell 2000; Andersen et al. 1969; Stefanis
1969; Douglas and Martin 2004; Lansner 2009). This leads to
a Local Winner-Takes-All (LWTA) mechanism; the winner
of the competition in each block gets to convey its activa-
tion outside the block, while the rest are inhibited to silence.
The incorporation of the LWTA mechanism in deep architec-
tures has been shown to exhibit significant properties such
as noise suppression, robustness to adversarial attacks and
compression (Srivastava et al. 2013; Grossberg 1982; Carpen-
ter and Grossberg 1988; Panousis, Chatzis, and Theodoridis
2019, 2021; Panousis et al. 2021). Despite these properties,
LWTA-based networks have been scarcely examined in the
RL literature.

On this basis, in this work, we propose a novel deep learn-
ing design framework that: (i) replaces the commonly em-
ployed non-linear activations with stochastic LWTA activa-
tions; (ii) endows the considered networks with a data-driven
component utility inference mechanism, which allows to infer
the essential sub-parts of the network necessary for modeling
the available data; and (iii) utilizes recent advances in the
information-theoretic approaches to yield diversified repre-
sentations, namely competing mutual information constraints
(Hu et al. 2019). Our ultimate goal is to yield deep networks
with considerably diversified resulting representations. We
evaluate our approach using well-known benchmark datasets
and architectures for image classification.
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Foundational Principles
Let us assume a dense layer of a conventional deep neural
network comprising K hidden units. When presented with
an input x ∈ RJ , each hidden unit k performs an inner
product computation, hk = wT

k x =
∑J

j=1 wjk · xj ∈ R;
W ∈ RJ×K is the associated weight matrix of the layer. This
response usually passes through a non-linear function σ(·),
yielding yk = σ(hk), ∀k. Thus, the final output of the layer
arises from the concatenation of the non-linear activations of
each unit, such that y = [y1, . . . , yK ] ∈ RK .

In contrast, in the LWTA framework, singular nonlin-
ear hidden units are replaced by U competing linear units
grouped together in an (LWTA) block; each layer comprises
multiple such blocks. Hereinafter, we denote by B the num-
ber of such blocks in a particular LWTA-based layer. The
weight synapses are now structured as a three dimensional
matrix W ∈ RJ×B×U , revealing that, in this case, each in-
put is now presented to each block b and each unit u therein.
In this context, each linear unit u in each block b computes
its response, following the conventional inner product com-
putation, such that hb,u = wT

b,ux =
∑j

j=1 wj,b,u · xj ∈ R;
then, competition takes places among the units in the block.

The main operating principle is that out of the U units in
the block, only one can be the winner; this unit gets to convey
its (linear) activation to the next layer, while all the rest are
inhibited to silence, i.e. pass a zero value. The final output
of an LWTA-based layer y ∈ RB·U is now composed of B
subvectors yb ∈ RU , one for each LWTA block and each with
a single non-zero entry. It is evident that this process results
in a sparse representation; in each block, only one out of the
U units produces a non-zero output1. In the related LWTA
literature, the competition process is usually deterministic,
i.e., the unit with the highest linear activation is deemed
the winner each time. However, novel data-driven stochastic
arguments for the competition process have been recently
proposed in (Panousis, Chatzis, and Theodoridis 2019, 2021;
Panousis et al. 2021; Voskou et al. 2021).

In this setting, to encode the outcome of the competition
in each of the B stochastic LWTA blocks that constitute a
stochastic LWTA layer, we introduce an appropriate set of dis-
crete latent vectors ξ ∈ one hot(U)B . This vector comprises
B component subvectors; each component entails exactly
one non-zero value at the index position that corresponds to
the winner unit in each respective LWTA block.

Further, in this work, we introduce an additional data-
driven mechanism in order to endow the networks with the
ability to infer which subparts of the network are essential
for modeling the data at hand. To this end, we introduce a
matrix of auxiliary binary latent variables Z ∈ {0, 1}J×B .
Each entry therein is 1 if the jth component of the input is
presented to the bth block and zero otherwise. In this setting,
the response of each unit is facilitated via the inner product
operation between the effective network weights (as dictated
by the latent indicators Z) and the input.

1The higher the number of competitors U in each block, the
sparser the output. When U = 2, only 50% of the units in a layer
are active for each example, when U = 4, only 25%, e.t.c.

We can now express the output y of a stochastic LWTA
layer’s (b, u)th unit, yb,u, that is, the output of the uth unit in
the bth block, as:

yb,u = ξb,u

J∑
j=1

(zj,b · wj,b,u) · xj ∈ R (1)

where ξb,u denotes the uth component of ξb, and ξb ∈
one hot(U) holds the bth subvector of ξ.

We postulate that the winner unit latent indicators ξb, ∀b
in Eq. (1) are obtained via a competitive random sampling
procedure; this, translates to drawing samples from a Categor-
ical distribution, where the probabilities are proportional to
the intermediate linear computation that each unit performs.
Accordingly, the higher the linear response of a particular
unit in a particular block, the higher its probability of being
the winner in said block; this yields:

q(ξb) = Categorical

(
ξb

∣∣∣softmax

(
J∑

j=1

zj,b · [wj,b,u]
U
u=1 · xj

))
(2)

where [wj,b,u]
U
u=1 denotes the vector concatenation of the set

{wj,b,u}Uu=1. On the other hand, we postulate that the binary
latent indicators Z are drawn from a Bernoulli distribution,
operating in an “on”-“off” fashion, such that:

q(zj,b) = Bernoulli(zj,b|π̃j,b) (3)

where π̃j,b, ∀j, b are trainable parameters. A graphical illus-
tration of the proposed stochastic LWTA block is depicted
in Fig.1. Each stochastic LWTA layer comprises multiple
such LWTA blocks as illustrated in Fig. 2a. At this point, it
is important to note a key aspect of the proposed approach;
that is, stochasticity. In each layer, different stochastic repre-
sentations arise due to the sampling procedure for both latent
indicators ξ and Z. Even when presented with the same in-
put, different subnetworks may be activated and different
subpaths are followed from the input to the output, as a result
of winner, ξ, and component utility, Z, sampling.

A Convolutional Variant
To account for networks employing the convolutional oper-
ation, popular in RL, we formulate a convolutional variant
of the proposed Stochastic LWTA rationale. Let us now con-
sider an input tensor X ∈ RH×L×C , where H,L,C are the
height, length and channels of the input. In this context, we
define a set of kernels, each with weights W b ∈ Rh×l×C×U ,
where h, l, C, U are the kernel height, length, channels and
number of competing feature maps; each layer comprises
B kernels. Analogously to the grouping and competition of
linear units in dense layers, in this case, local competition
is performed on a position-wise basis among feature maps.
Each kernel is treated as an LWTA block with competing
feature maps. The feature maps of each kernel compete to
win the activation pertaining to each position; thus, we have
as many competition outcomes within the kernel as the num-
ber of positions (in the definition of the feature maps). This
way, the latent winner indicator variables now pertain to the
selection of winner feature maps on a position-wise basis.

7932



Figure 1: A detailed bisection of the bth Stochastic LWTA block in an LWTA layer. Presented with an input x ∈ RJ , each unit
u = 1, . . . , U computes its activation hb,u via different weights wb,u ∈ RJ , i.e., hb,u = (zb ·wT

b,u)x. Here, zb is the component
utility indicator pertaining to the bth block, which encodes which synapses leading to the bth block the inference algorithm deems
useful, and which not. The linear responses of the units are concatenated, such that hb = [hb,1, . . . , hb,U ], and transformed into
probabilities via the softmax operation. Then, a Discrete sample ξb = [ξb,1, . . . , ξb,U ] is drawn; this constitutes a one-hot vector
with a single non-zero entry at position u′, denoting the winner unit in the block. The winner unit passes its linear response to the
next layer; the rest pass zero values.

(a) (b)

Figure 2: (a) A graphical representation of our competition-based modeling approach. Rectangles denote LWTA blocks, and
circles the competing units therein. The winner units are denoted with bold contours (ξ = 1). Bold edges denote retained
connections (z = 1). (b) The convolutional LWTA variant. Competition takes place among feature maps on a position-wise basis.
The winner feature map at each position passes its output to the next layer, while the rest pass zero values at said position.

Further, we introduce analogous latent utility indicators
z ∈ {0, 1}B in order to infer which kernels (LWTA blocks)
are necessary for modeling the available data. Thus, here, if
zb = 0, we omit whole blocks of competing feature maps.
Under this regard, each feature map u = 1, . . . , U in the
bth LWTA block (kernel) of a convolutional LWTA layer
computes:

Hb,u = (zb ·W b,u) ⋆X ∈ RH×L (4)
Then, competition takes place among the U kernel feature
maps for claiming the available positions, one by one. Specif-
ically, the competitive random sampling procedure reads:

q(ξb,h′,l′) = Categorical
(
ξb,h′,l′

∣∣∣softmax
(
[Hb,u,h′,l′ ]

U
u=1

))
(5)

where [Hb,u,h′,l′ ]
U
u=1 denotes the concatenation of the set

{Hb,u,h′,l′}Uu=1. In each kernel b = 1, . . . , B, and for each
position h′ = 1, . . . ,H , l′ = 1, . . . , L, only the winner fea-
ture map contains a non-zero entry; all the rest feature maps

contain zero values at these positions. This yields sparse fea-
ture maps with mutually exclusive active pixels. Accordingly
for the utility indicators:

q(zb) = Bernoulli(zb|π̃b), ∀b (6)

Thus, the output Y ∈ RH×L×B·U of a convolutional layer
of the proposed stochastic LWTA-based networks is obtained
via concatenation of the subtensors Y b,u that read:

Y b,u = Ξb,u ((zb ·W b,u) ⋆X) , ∀b, u (7)

where Ξb,u = [ξb,u,h′,l′ ]
H,L
h′,l′=1. The corresponding illustra-

tion of the proposed stochastic convolutional LWTA block
is depicted in Fig. 3. Convolutional stochastic LWTA-based
layers comprise multiple such blocks, as shown in Fig. 2b.

Representation Leaning & Mutual Information
Mutual information (MI) has been an indispensable tool in
RL (Bell and Sejnowski 1995; Linsker 1988; van den Oord,
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Figure 3: A detailed bisection of the bth convolutional stochastic LWTA block. Presented with an input X ∈ RH×L×C ,
competition now takes place among feature maps on a position-wise basis. Only the winner feature map contains a non-zero
entry in a specific position. This leads to sparse feature maps, each comprising uniquely position-wise activated pixels. The
component utility indicators zb encode which kernels/blocks the algorithm deems useful; when zb = 0, whole blocks are omitted.

Li, and Vinyals 2019). In this context, (Tishby, Pereira, and
Bialek 1999) introduced the Information Bottleneck (IB); this
employs an information-theoretic objective that constrains
the MI between the input and an intermediate representation,
while enhancing the MI between said representation and the
output (Tishby and Zaslavsky 2015; Shwartz-Ziv and Tishby
2017; Saxe et al. 2018; Dai, Zhu, and Wipf 2018).

In this line of work, the recently proposed Deep Vari-
ational Information Bottleneck (VIB) (Alemi et al. 2017)
constitutes a variational approximation to the IB objective,
yielding networks with increased generalization and robust-
ness capabilities. Notably, there exists a connection between
VIB and the well-known β-VAE formulation (Alemi, Fischer,
and Dillon 2018; Alemi et al. 2018). Both are founded on
information theoretic arguments but used in different con-
texts; the first for supervised while the latter for unsupervised
learning (Higgins et al. 2017). Here, we focus on the former.

Despite significant progress in the field, the majority of
existing methods optimize a single information constraint
to learn “useful” and diverse representations; however, this
mode of operation fails to promote diversity among the rep-
resentations inferred from the latent units.

Thus, various learning schemes have been devised in the
literature to address this inadequacy; these are based on the
idea of collaboration and competition between different neu-
ral representations (Greff et al. 2016; Greff, van Steenkiste,
and Schmidhuber 2017; Ranjan et al. 2019). On this basis,
(Hu et al. 2019) recently proposed the information-competing
process (ICP) scheme; this construct entails different repre-
sentation parts that not only compete, but also collaborate to
achieve a downstream task, thus enabling the model to learn
richer and more discriminative representations.

Proposed Approach
Let us denote by t, the output of the downstream task, and by
r the learned representation of x; in supervised learning, t
corresponds to the target label pertaining to an observation
x. Most information-theoretic approaches aim to maximize
a single constraint, e.g., the MI between the representation

r and target t denoted as I(r, t). In contrast, ICP takes a
different route. Initially, in order to promote diversification
of the emerging representations, r is explicitly split into two
different parts, {ζ,y}; each is imposed different constraints:
the “information capacity” of ζ is minimized, while the “in-
formation capacity” of y is maximized. Under this regard,
the objective reads:

max [I(r, t) + αI(y,x)− βI(ζ,x)] (8)

where α, β are regularization constants. I(ζ,x) and I(y,x)
are called the mutual information minimization and maximiza-
tion terms respectively. At this point, it is important to note
that computing the MI between different pairs of variables
is usually intractable; thus, we need to devise different opti-
mization schemes for each considered term. For example, to
minimize I(ζ,x), we introduce a variational approximation
Q(ζ) to P (ζ), yielding the following tractable upper bound:

I(ζ,x) ≤ Ex∼p(x)

[
KL[P (ζ|x)||Q(ζ)]

]
(9)

where Q(ζ) is a standard Gaussian distribution. The parame-
ters of this distribution, i.e., µζ ,σζ , are founded on an amor-
tization scheme, similar to the well-known VAE formulation
(Kingma and Welling 2014); hence, deep neural networks are
employed for their estimation.

In this context, before proceeding to define the full ICP
objective, we highlight that, all components stemming from
the corresponding tractable bounds and optimization schemes
described next, e.g., feature extractors, discriminators and
classifiers are originally implemented in (Hu et al. 2019) via
ReLU-based DNNs. On this basis, this work introduces a
radically different view: We employ deep networks built of
novel stochastic LWTA arguments, instead of standard non-
linearities. Further, we complement this unique latent unit
operation with a sparsity-inducing framework that allows
determining the best postulated sub-network configuration.

As already discussed, a notable aspect of ICP is the intro-
duction of auxiliary constraints in order to prevent either part
dominating the downstream task. To this end, the separated
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parts are individually allowed to accomplish t via dedicated
MI constraints, namely I(ζ, t) and I(y, t); however, ζ and
y are constrained from knowing what each other has learned.
This property is realized via an additional constraint, that is
by minimizing I(ζ,y); this forces ζ and y to be independent
of each other. The so-obtained objective reads:

LICP = max
[
I(r, t) + αI(y,x)− βI(x, ζ)

+ I(ζ, t) + I(y, t)− γI(ζ,y)
] (10)

where γ is another regularization constant, I(ζ, t), I(y, t),
I(r, t) are called the inference terms, and I(ζ,y) the pre-
dictability minimization term. I(r, t) denotes the “synergy”
between the separate parts, aiming to accomplish the down-
stream task in a synergistic way. Contrarily, the last three
terms, i.e., I(ζ, t), I(ζ,y), I(y, t) constitute the “compe-
tition” aspect of the approach. This conception allows for
both competition as well as synergy of the different repre-
sentation parts, enhancing the information carried by said
representations. In the following, we briefly present the re-
quired optimization schemes for each term of the objective.
In the case of I(y,x) the KL divergence is divergent (Hu
et al. 2019); thus, we resort to maximization of the Jensen-
Shannon (JS) divergence. Its variational estimation yields:

JS[P (y|x)P (x)||P (y)P (x))] =

max
[
E(y,x)∼P (y|x)p(x)

[
logD(y,x)

]
+ E(ŷ,x)∼P (y)p(x)

[
log(1−D(ŷ,x)

]] (11)

where D(·) is a discriminator, estimating the probability
of an input pair; (y,x) is the positive pair sampled from
P (y|x)P (x) and (ŷ,x) is the negative pair sampled from
P (y)P (x); ŷ is a “disorganized” version of y (Hu et al.
2019). For the inference term I(r, t), the following lower
bound is derived:

I(r, t) ≥ Ex∼P (x)

[
Er∼P (r|x)

[ ∫
P (t|x) logQ(t|r) dt

]]
(12)

where Q(t|r) is a variational approximation of P (t|r), and
P (t|x) denotes the distribution of the labels. Thus, Eq.(12)
essentially constitutes the cross-entropy loss. The expressions
for the inference terms I(ζ, t) and I(y, t) are similar.

Finally, we turn to the predictability minimization term;
this enforces the representations parts to be independent. To
this end, we introduce a predictor H that is used to predict
y given ζ; this way, we guide the ζ variable extractor from
producing ζ values that can predict y (Hu et al. 2019). The
same procedure is followed for y to ζ. This yields:

minmax
[
Eζ∼P (ζ|x)[H(y|ζ)] + Ey∼P (y|x)[H(ζ|y)]

]
(13)

A graphical illustration of the described optimization process
of the ICP objective of Eq.(10) is depicted in Fig. 4. Therein,
all DNN-based components are founded on the Stochastic
LWTA and component utility arguments of Section .

Training & Prediction
The core training objective was defined in the previous
section; this stems from the ICP rationale as expressed in

Eq.(10); however, the existence of Stochastic LWTA activa-
tions and the component utility mechanism, necessitates the
augmentation of the final objective via appropriate KL terms.

Without loss of generality, we begin by considering a sym-
metric Categorical distribution for the latent variable indica-
tors ξ; hence, p(ξb) = Categorical(1/U)∀b for the dense
layers, and p(ξb,h′,l′) = Categorical(1/U), ∀b, h′, l′ for
convolutional ones. Differently, for the latent utility indica-
tors Z (or z) we do not impose a symmetric prior; instead, we
turn to the non-parametric Bayesian framework and specif-
ically to the Indian Buffet Process (IBP) (Ghahramani and
Griffiths 2006). This constitutes a sparsity-promoting prior;
at the same time, its so-called stick-breaking process (SBP)
(Teh, Grür, and Ghahramani 2007) renders IBP amenable to
Variational Inference. The hierarchical construction reads:

p(zj,b) = Bernoulli(πb), πb =

b∏
i=1

ub, ub ∼ Beta(ω, 1) (14)

where ω is a non-negative constant, controlling the induced
sparsity. The SBP requires an additional set of latent stick
variables ub, ∀b. Since these are Beta-distributed, we assume
a posterior of similar form: q(ub) = Beta(ub|ãb, b̃b), where
ãb, b̃b, ∀b are trainable variational parameters. This yields:

L = LICP −KL
[
q(ξ)||p(ξ)

]
−KL

[
q(Z)||p(Z)

]
−KL

[
q(u)||p(u)

] (15)

For training, we perform Monte-Carlo sampling to estimate
Eq. (15) using a single reparameterized sample for each latent
variable. For the Gaussian distributed variables, e.g. ζ, we re-
sort to the well-known Gaussian trick. For ξ and Z, these are
obtained via the continuous relaxation of the Categorical and
Bernoulli distribution (Jang, Gu, and Poole 2017; Maddison,
Mnih, and Teh 2017). In the following, we describe the repa-
rameterization trick for the ξ variables of dense layers; the
cases for Z and for the convolutional variant are analogous.

Let ξ̃ denote the probabilities of q(ξ) (Eqs.(2),(5)). Then,
the samples ξ̂ can be expressed as:

ξ̂b,u = Softmax((log ξ̃b,u + gb,u)/τ), ∀b, u (16)

where gb,u = − log(− log Vb,u), Vb,u ∼ Uniform(0, 1) and
τ ∈ (0,∞) is a temperature constant that controls the degree
of the approximation. Similarly, the Beta distribution of the
stick variables u is not readily amenable to reparameteri-
zation; for these variables, we obtain the required samples
via the Kumaraswamy distribution (Kumaraswamy 1980);
this constitutes an approximation of Beta and admits the
following reparameterization trick:

ûb =
(
1− (1−G)

1
ãb

) 1
b̃b (17)

where G ∼ Uniform(0, 1) and ãb, b̃b are the variational pa-
rameters of the original Beta distribution. We can now com-
pute each expectation term in the objective (Eq.(15)) via
these samples. For example, we can write the KL divergence
term for the latent variables ξ as:

KL
[
q(ξb)||p(ξb)

]
= Eq(ξb)

[
log q(ξb)− log p(ξb)

]
≈ log q(ξ̂b)− log p(ξ̂b), ∀b

(18)
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At prediction time, we directly draw samples from the
trained posteriors q(ξ) and q(z) in order to determine the
winner in each block of the network and to assess component
utility respectively. Thus, each time we sample, even for the
same input, a different subpath may be followed according
to the outcomes of the sampling processes. This leads to a
stochastic alternation of the emerging representations of the
network at each forward pass.

Experimental Evaluation
We evaluate our model on image classification, where we
consider two popular benchmarks, namely CIFAR-10 and
CIFAR-100 (Krizhevsky 2009), containing natural images
with 10 and 100 classes respectively. We compare our ap-
proach to recent information-theoretic approaches to deep
networks, including VIB (Alemi et al. 2017), DIM (Hjelm
et al. 2019a) and ICP (Hu et al. 2019). To this end, we follow
the same experimental setup as (Hu et al. 2019), and consider
four different networks for both datasets: (i) VGG-16 (Si-
monyan and Zisserman 2015), (ii) GoogLeNet (Szegedy et al.
2015), (iii) ResNet20 (He et al. 2016), and (iv) DenseNet40
(Huang et al. 2017). For both datasets, we normalize the
raw image values using the per-channel means and standard
deviations. We employ some common data augmentation
procedures, including random cropping and mirroring.

Experimental Setup
To evaluate our approach, we consider two different setups
for our competition-based LWTA activations: (i) an archi-
tecture comprising LWTA blocks with U = 2 competing
units/feature maps, denoted as ICPLWTA-2; and (ii) an archi-
tecture comprising LWTA blocks with U = 4 competing
units/feature maps, denoted as ICPLWTA-4. In all cases, the
total number of hidden units/features in each layer remain the
same as in the original ReLU-based architectures. This en-
sures comparability (size-wise) among existing approaches.

We also compare performance when we employ the pro-
posed, IBP-driven, network sampling mechanism, and when
we omit it. For clarity, in the following, we denote our
full model (which employs the IBP-based mechanism) as
ICPIBP & LWTA-2 and ICPIBP & LWTA-4, respectively. In this con-
text, to allow for compressing the model by exploiting the
trained posteriors over the latent indicators z, we adopt the
following rationale: After network training, we introduce a
cut-off threshold τ = 0.001. All components with trained
utility posterior π̃ ≜ q(z = 1) < τ are removed from the
network; all rest are retained and used at prediction time. In
the following tables, the compression metric corresponds to
the ratio of the number of network components removed to
the total number of network components.

We choose an uninformative Beta prior for the IBP
(Eq.(14)): Beta(1, 1); thus, ω = 1. For the Gumbel-Softmax
relaxation, we set the temperatures τ for the prior and pos-
terior distributions to 0.5 and 0.67 respectively (Maddison,
Mnih, and Teh 2017). Further initialization procedures and
hyperparameter values can be found in the Supplementary.

We draw a single (reparameterized) sample from all the in-
volved random variables during training, while we draw 5 dif-

ferent samples during inference (and proceed with Bayesian
averaging). We perform multiple evaluations for each archi-
tecture and dataset, i.e., 5 runs, and report the best perform-
ing one. All experiments were run on a workstation with 2x
Quadro P6000 24GB GPUs and 64GB RAM.

Experimental Results

Model VGG-16 GoogLeNet ResNet20 DenseNet40
Error (%) ∥ Compression (%)

Baseline 6.67 ∥ 0.00 4.92 ∥ 0.00 7.63 ∥ 0.00 5.83 ∥ 0.00
VIB 6.81 ∥ 0.00 5.09 ∥ 0.00 6.95 ∥ 0.00 5.72 ∥ 0.00
DIM* 6.54 ∥ 0.00 4.65 ∥ 0.00 7.61 ∥ 0.00 6.15 ∥ 0.00
VIB×2 6.86 ∥ 0.00 4.88 ∥ 0.00 6.85 ∥ 0.00 6.36 ∥ 0.00
DIM*×2 7.24 ∥ 0.00 4.95 ∥ 0.00 7.46 ∥ 0.00 5.60 ∥ 0.00
ICP-ALL 6.97 ∥ 0.00 4.76 ∥ 0.00 6.47 ∥ 0.00 6.13 ∥ 0.00
ICP-COM 6.59 ∥ 0.00 4.67 ∥ 0.00 7.33 ∥ 0.00 5.63 ∥ 0.00
ICP 6.10 ∥ 0.00 4.26 ∥ 0.00 6.01 ∥ 0.00 4.99 ∥ 0.00
ICPIBP&LWTA-2 6.01 ∥ 40.4 4.31 ∥ 35.2 5.94 ∥ 37.1 4.78 ∥ 32.0
ICPIBP&LWTA-4 7.02 ∥ 30.4 4.74 ∥ 28.2 6.30 ∥ 31.3 5.61 ∥ 26.3

Table 1: CIFAR-10.

CIFAR-10. We train the considered four networks adopt-
ing the number of epochs and the optimization parameters
used in the original ICP implementation (Hu et al. 2019);
this ensures transparency and comparability of the empirical
results. The exact experimental setup for each network can
be found in the Supplementary. The obtained comparative
results for all considered methods and networks are depicted
in Table 1. Therein, Baseline corresponds to the original ar-
chitectures without any type of MI constraints; VIB×2 and
DIM*×2 denote the VIB and DIM* methods where the repre-
sentation dimension has been expanded in order to facilitate
a fair (size-wise) comparison with ICP. As we observe, our
proposed method yields competitive (in many cases better)
classification accuracy over the best-performing baseline ICP
alternative. At the same time, by exploiting the IBP-based
mechanism, it allows for powerful compression of the con-
sidered architecture; this is effected by removing all network
components (and associated weights) with trained utility pos-
teriors below the cut-off threshold. Clearly, the aim of this
work is not to propose a method for deep network compres-
sion. We posit, though, that this compression process further
facilitates the diversification of the learned representations.
We explore these aspects in the following sections.

CIFAR-100. For CIFAR-100, we follow an analogous
procedure. The classification results are shown in Table 2.
In this set of experiments, the increased classification capa-
bilities of the baseline ICP model, that is the conventional
ICP model with ReLU-based nonlinearities, compared to the
other information-theoretic approaches is more evident. Our
proposed approach, once again follows this trend, yielding
on-par or better classification accuracy with ICP, while at the
same time exhibiting significant compression capabilities.

Random Seed Effect. A core aspect of the considered
approach lies in its stochastic nature. Thus, in order to as-
sess the overall robustness of the proposed method, we run
each experiment 5 times and report the means and standard
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Figure 4: The ICP pipeline: The representation r is split into two parts [ζ,y]. These, not only cooperate but also compete to
accomplish the downstream task. This leads to the computation of the MI between different pairs of variables; this is usually
intractable and optimized through different schemes. All components of these, are implemented via LWTA and IBP-based DNNs.

Model VGG-16 GoogLeNet ResNet20 DenseNet40
Error (%) ∥ Compression (%)

Baseline 26.41 ∥ 0.00 20.68 ∥ 0.00 31.91 ∥ 0.00 27.55 ∥ 0.00
VIB 26.56 ∥ 0.00 20.93 ∥ 0.00 30.84 ∥ 0.00 26.37 ∥ 0.00
DIM* 26.74 ∥ 0.00 20.94 ∥ 0.00 32.62 ∥ 0.00 27.51 ∥ 0.00
VIB×2 26.08 ∥ 0.00 22.09 ∥ 0.00 29.74 ∥ 0.00 29.33 ∥ 0.00
DIM*×2 25.72 ∥ 0.00 21.74 ∥ 0.00 30.16 ∥ 0.00 27.15 ∥ 0.00
ICP-ALL 26.73 ∥ 0.00 20.90 ∥ 0.00 28.35 ∥ 0.00 27.51 ∥ 0.00
ICP-COM 26.37 ∥ 0.00 20.81 ∥ 0.00 32.76 ∥ 0.00 26.85 ∥ 0.00
ICP 24.54 ∥ 0.00 18.55 ∥ 0.00 28.13 ∥ 0.00 24.52 ∥ 0.00
ICPIBP&LWTA-2 24.35 ∥ 32.0 19.00 ∥ 29.0 28.02 ∥ 31.5 24.44 ∥ 29.2
ICPIBP&LWTA-4 25.44 ∥ 22.0 20.12 ∥ 26.5 29.34 ∥ 21.2 25.07 ∥ 24.4

Table 2: CIFAR-100.

deviations; these are presented in Table 3. We observe that
our approach exhibits consistent performance in all cases,
while in most occasions, the mean performance obtained by
multiple runs outperforms the baseline ICP approach.

Ablation Study
Here, we focus on the VGG-16 architecture described in the
previous section, and assess the individual impact of each of
the proposed components, i.e. LWTA and IBP, to the classi-
fication performance of the network. At the same time, we
examine whether adoption of a deterministic LWTA scheme,
as opposed to the adopted stochastic construction, would

CIFAR-10
Mean (%) ∥ Standard Deviation (%)

Model VGG-16 GoogLeNet ResNet20 DenseNet40
ICPIBP&LWTA-2 6.07∥0.04 4.35∥0.04 6.00∥0.06 4.87∥0.05
ICPIBP&LWTA-4 7.12∥0.08 4.84∥0.06 6.42∥0.10 5.70∥0.08

CIFAR-100
Mean (%) ∥ Standard Deviation (%)

Model VGG-16 GoogLeNet ResNet20 DenseNet40
ICPIBP & LWTA-2 24.52∥0.12 19.25∥0.14 28.10∥0.05 24.52∥0.05
ICPIBP & LWTA-4 25.59∥0.08 20.28∥0.10 29.51∥0.10 25.19∥0.08

Table 3: Means and standard deviations of 5 different runs
under different seeds for all datasets and architectures.

yield equal or inferior performance in these benchmarks.
The obtained comparative results are depicted in Table 4.

Therein, the ICPLWTA-*max and ICPIBP & LWTA-*max entries cor-
respond to networks where the LWTA competition function
picks the unit with greatest activation value, in a determinis-
tic fashion; ∗ = 2, 4 denotes the number of competitors in
each LWTA block. We consider both omission and use of the
IBP-based mechanism, respectively.

As we observe, for both U = 2, 4 settings, the Stochas-
tic LWTA approach outperforms deterministic LWTA units
picking the greatest value. The IBP-based mechanism seems
to also facilitate classification accuracy (in addition to com-
pressing the network we perform inference with).
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Model VGG-16
Baseline 6.67
ICP 6.10
ICPLWTA-2max 6.34
ICPLWTA-2 6.23
ICPIBP & LWTA-2max 6.27
ICPIBP & LWTA-2 6.01
ICPLWTA-4max 7.01
ICPLWTA-4 6.85
ICPIBP & LWTA-4max 7.32
ICPIBP & LWTA-4 7.02

Table 4: Ablation Study: CIFAR-10 test-set using a VGG-16
(Simonyan and Zisserman 2015) architecture.

Representation Diversification
The ultimate goal of this work is to allow for deep networks
to yield representations that are sufficiently diverse. In this
Section, we investigate the diversification capabilities of the
proposed framework, both qualitatively and quantitatively.
To perform this analysis, and due to space limitations, we
focus on the VGG-16 architecture and the CIFAR-10 dataset.
Similar results on further architectures and datasets can be
found in the Appendix.

To perform a qualitative evaluation, we visually compare
the emerging intermediate representations from the hidden
layers of employed ReLU-based networks (standard ICP) and
our approach. As we observe in Fig. 5, there exists a clear
disparity between the proposed approach and the commonly
employed nonlinearities. Clearly, the ReLU-based architec-
ture allows for more “aesthetically pleasing” representations.
However, the proposed networks yield significant diversifi-
cation, as they split the resulting representations from each
block to mutually exclusive parts. This constitutes a radically

Figure 5: Feature map visualizations for a test example of
the CIFAR-10 dataset, emerging from the first layer of the
considered VGG-16 architecture. (Left) The original image,
(Upper Row) a visualization of the outputs of the two com-
peting feature maps of the first LWTA block (U = 2), and
(Bottom Row) a visualization of the first two filters of the
conventional ReLU-based approach. The latter exhibit signif-
icant overlap, contrary to the much diverse representations of
our approach which are mutually-exclusive.

different RL scheme with significant diversification capacity
for the emerging intermediate representations.

For the quantification of the diversification properties, we
turn to the commonly used Linear Separability metric. This
metric constitutes a proxy for quantifying the disentangle-
ment and MI between the emerging representations and the
class labels (Hjelm et al. 2019a). In this context, linear classi-
fication is usually considered, and for this we use the standard
Support Vector Machine (SVM) approach. To this end, we
hold the encoders of y and ζ fixed, and build separate SVM-
based classifiers on the two representation parts ζ , y, their
combination (denoted as Total), as well as the output of the
last convolutional layer of the ζ encoder (Conv), which stems
either from ReLU units or LWTA blocks.

The obtained comparative separability results are depicted
in Table 5. We observe that, by training a linear SVM model
on the obtained representations ζ or y, their combination
thereof, or the last convolutional layer of the underlying
encoder, the linear model can obtain more potent accuracy
profile if its inputs stem from networks formulated under our
approach (LWTA & IBP arguments). This hints at obtaining
more diversified representations, that therefore convey richer
information to the linear SVM classifier, which is also easier
to discern in a linear classification fashion.

Method Proxies
SVM(ζ) SVM(y) SVM(Total) SVM(Conv)

ICP 91.5 91.9 92.9 31.2
ICPLWTA-2 & IBP 91.9 92.4 93.4 32.2

Table 5: Results on linear separability using SVMs.

Conclusions
In this work, we attacked the problem of promoting diversi-
fied representations in Deep Learning. To this end, we intro-
duced principled network arguments formulated by stochastic
competition-based Local Winner-Takes-All activations. We
combined these with network component utility mechanisms,
which rely on the use of the IBP prior. Then, to further en-
rich the emerging representations, we employed information-
theoretic arguments, founded on competing mutual informa-
tion constraints under the Information Competing Process.
This results in an efficient network training and prediction
scheme, that significantly compresses the networks during
prediction. We performed a thorough experimental evalua-
tion, using benchmark datasets and several standard network
architectures. We compared networks crafted using the pro-
posed arguments against standard, ReLU-based constructions.
Our experimental results provided strong empirical evidence
of the efficacy of the proposed framework. Specifically, in
all cases, our approach yielded on-par or improved accuracy
for significantly compressed networks. At the same time, our
qualitative and quantitative analysis of the obtained repre-
sentations showed our approach results in representations
that: (i) visually appear much more diverse; and (ii) are more
informative to a linear classifier trained on them, specifically
an SVM used as a proxy to linear separability.
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