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Abstract

The shortcomings of maximum likelihood estimation in the
context of model-based reinforcement learning have been
highlighted by an increasing number of papers. When the
model class is misspecified or has a limited representational
capacity, model parameters with high likelihood might not
necessarily result in high performance of the agent on a down-
stream control task. To alleviate this problem, we propose an
end-to-end approach for model learning which directly opti-
mizes the expected returns using implicit differentiation. We
treat a value function that satisfies the Bellman optimality op-
erator induced by the model as an implicit function of model
parameters and show how to differentiate the function. We
provide theoretical and empirical evidence highlighting the
benefits of our approach in the model misspecification regime
compared to likelihood-based methods.

1 Introduction
The conceptual separation between model learning and pol-
icy optimization is the basis for much of the work on model-
based reinforcement learning (MBRL) (Sutton 1991; Boots,
Siddiqi, and Gordon 2011). A standard MBRL agent first
estimates the transition parameters and the reward function
of a Markov Decision Process and then uses the approxi-
mate model for planning (Theil 1957; Sato, Abe, and Takeda
1988). If the estimated model perfectly captures the actual
system, the resulting policies are not affected by the model
approximation error. However, if the model is imperfect, the
inaccuracies can lead to nuanced effects on the policy per-
formance (Abbad and Filar 1992). Several works (Skelton
1989; Joseph et al. 2013; Lambert et al. 2020) have pointed
out on the objective mismatch in MBRL and demonstrated
that optimization of model likelihood might be unrelated to
optimization of the returns achieved by the agent that uses
the model. For example, accurately predicting individual
pixels of the next state (Kaiser et al. 2019) might be nei-
ther easy nor necessary for decision making. Motivated by
these observations, our paper studies control-oriented model
learning that takes into account how the model is used by the
agent.

While much of such work has focused on robust or
uncertainty-based methods (Xu and Mannor 2010; Chua
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et al. 2018), we propose an algorithm for learning a model
that directly optimizes the expected return using implicit
differentiation (Christianson 1994). Specifically, we assume
that there exists an implicit function that takes the model as
input and outputs a value function that is a fixed point of the
Bellman optimality operator induced by the model. We then
calculate the derivatives of the optimal value function with
respect to the model parameters using the implicit function
theorem (IFT), allowing us to form a differentiable compu-
tational graph from model parameters to the sum of rewards.
In reference to (Rust 1988; Bacon et al. 2019), we call our
control-oriented method optimal model design (OMD).

Our contributions can be summarized as follows:
• We propose OMD, an end-to-end MBRL method that op-

timizes expected returns directly.
• We characterize the set of OMD models in the tabular

case and derive an approximation bound on the optimal
Q-function that is tighter than a likelihood-based one.

• We propose a series of approximations to scale our ap-
proach to non-tabular environments.

• We show that OMD outperforms likelihood-based
MBRL agents under the model misspecification in both
tabular and non-tabular settings. This finding suggests
that our method should be preferred when we cannot ap-
proximate the true model accurately.

• We empirically demonstrate that models obtained by
OMD can have lower likelihood than a random model
yet generate useful targets for updating the value func-
tion. This finding suggests that likelihood optimization
might be an unnecessary step for MBRL.

2 Related Work
Learning control-oriented models. Earlier work in optimal
control and econometrics (Skelton 1989; Rust 1988) studied
the relation between the model approximation error and the
control performance and noted that true parameter identifi-
cation could be suboptimal when the model class is limited.
Joseph et al. (2013) were one of the first to address the objec-
tive mismatch (Lambert et al. 2020) and proposed an algo-
rithm for training models that maximize the expected returns
using zero-order optimization.

Several papers have proposed model learning approaches
that optimize other return-aware objectives. Farahmand,
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Barreto, and Nikovski (2017) train a model to minimize the
difference between values of the real next states and the next
states predicted by the dynamics. Abachi, Ghavamzadeh,
and Farahmand (2020) use the norm of the difference be-
tween policy gradients as the model objective. D’Oro et al.
(2020) use a weighted maximum likelihood objective where
the weights are chosen to minimize the difference between
the true policy gradient and the policy gradient in the MDP
induced by the model. Schrittwieser et al. (2019) use tree
search and train models for image-based states by encoding
them into a latent space and predicting rewards, a policy, and
values without reconstruction.

The idea of differentiable planning has also been investi-
gated. Amos et al. (2018) learn a model via differentiating
the KKT conditions in the LQR setting (Dorato, Cerone, and
Abdallah 1994). Tamar et al. (2016) uses a differentiable ap-
proximation of the value iteration algorithm to learn a plan-
ner. Amos and Yarats (2020) optimize the parameters of a
distribution in Cross-Entropy Method (Rubinstein 1997) us-
ing a differentiable approximation of Top-K operation.

Several works have theoretically studied the control-
oriented model learning. Ayoub et al. (2020) derive regret
bounds for models used to predict values. Grimm et al.
(2020) introduce the principle of value equivalence for
MBRL defining two models to be equivalent if they induce
the same Bellman operator.

Our work is closely related to the above papers and pro-
poses to learn models by directly optimizing the sum of re-
wards in an end-to-end manner via gradient-based methods.

Implicit function theorem. Implicit differentiation has
been applied for a variety of bi-level optimization problems.
Lorraine, Vicol, and Duvenaud (2020) treat weights of a
neural network as an implicit function of hyperparameters
and use IFT to optimize the hyperparameters. Rajeswaran
et al. (2019) study meta-learning and apply IFT to com-
pute the outer loop gradient without the need to differentiate
through the inner loop iterations. Instead of treating a neural
network as a sequence of layers that transform an input, Bai,
Kolter, and Koltun (2019) propose an implicit layer that cor-
responds to an infinite depth neural network and find a fixed
point of the layer via the IFT. Our method also solves a bi-
level problem: in the inner loop, we train an action-value
function compatible with the model; in the outer loop, we
maximize the expected returns with respect to the model.

3 Preliminaries
Reinforcement Learning (RL) (Sutton and Barto 2018)
methods follow the Markov Decision Process (MDP) for-
malism. An MDP is defined as M = (S,A, γ, p, r, ρ0),
where S is a state space, A is an action space, p(s′|s, a)
is a transition probability distribution (often called dynam-
ics), r(s, a) is a reward function, γ ∈ [0, 1) is a discount
factor, and ρ0(s) is an initial state distribution. The pair (p,
r) is jointly called the true model. The goal of an agent is
to learn a policy π(a|s) that maximizes the expected dis-
counted sum of rewards J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)]. The
performance of the agent following the policy π can also
be quantified using the action value function Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].

Model-based RL methods typically train a model (pθ, rθ)
and use it for policy or value learning. Traditional methods
based on Dyna (Sutton 1991) rely on maximum likelihood
estimation (MLE) of model parameters θ. For example, if
the true model is assumed to be Gaussian with a parame-
terized mean (fθ, rθ) and a fixed variance, maximizing the
likelihood is equivalent to minimizing the mean squared er-
ror of the prediction, namely, to solving

min
θ

Es,a,s′
[
‖fθ(s, a)− s′‖2

]
,

min
θ

Es,a,r
[
(rθ(s, a)− r)2

]
.

(1)

4 Optimal Model Design for Tabular MDPs
Consider a modification of the original RL problem state-
ment, which was first proposed by Rust (1988) and revisited
by Bacon et al. (2019). In addition to maximizing the ex-
pected returns J , we introduce a constraint forcing the action
value function Q to satisfy the Bellman equation induced by
the model. The optimization problem becomes

max
Q,θ

J(πQ)

s.t. Q(s, a) = BθQ(s, a) ∀s ∈ S, a ∈ A,

where πQ(a|s) =
expQ(s, a)∑
a′ expQ(s, a′)

.

(2)

Bθ here is the soft Bellman optimality operator with re-
spect to the model parameters θ:

BθQ(s, a) , rθ(s, a) + γEpθ(s′|s,a) log
∑
a′

expQ(s′, a′).

(3)
We choose the soft Bellman operator with

log
∑
a′ expQ(s′, a′) over the “hard” version with

maxa′ Q(s′, a′) because of the differentiability of log-
sum-exp. We also use a temperature α in softmax and
log-sum-exp but omit it from the expressions for simplicity.
Note that finding a fixed point of the soft Bellman optimality
operator corresponds to solving the MaxEnt RL formulation
(Ziebart et al. 2008), but for a sufficiently small value of α,
the difference is negligible.1

Suppose there exists an implicit function ϕ(θ) = Q∗ that
takes as input a model and outputs a Q-function that satis-
fies the constraint in (2). The sequence of transformations
from the model parameters to the agent’s performance can
be described then using the following graph:

θ
ϕ−→ Q∗

exp−−→ πQ∗
act−→ J. (4)

In Section 4.1, we show how ∂ϕ(θ)
∂θ can be calculated us-

ing the implicit function theorem (IFT). Since ∂J(π)
∂π can be

calculated using the policy gradient theorem (Sutton et al.
1999), we can apply automatic differentiation to calculate
the gradient with respect to θ:

∂J(θ)

∂θ
=
∂J(π)

∂π︸ ︷︷ ︸
PG

· ∂π(Q∗)

∂Q∗︸ ︷︷ ︸
softmax

· ∂ϕ(θ)

∂θ︸ ︷︷ ︸
IFT

. (5)

1More details about the soft Bellman operator and MaxEnt RL
could be found in (Levine 2018).
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Given the expression for the gradient of J with respect
to θ, we use an appropriate optimization method to train the
model. We call the approach optimal model design (OMD).
Note that Dyna-based methods also train the Q-function to
satisfy the constraint in (2) while using the likelihood as the
objective for the model (Rajeswaran, Mordatch, and Kumar
2020). In contrast, we train θ to directly optimize the returns.

The optimization problem (2) suggests that OMD is a
policy-based method (Sutton et al. 1999). However, we can
make it a value-based approach (Watkins and Dayan 1992)
by replacing the objective J(πQ) with the Bellman error:

min
Q,θ

Ltrue(Q) ,
∑
s,a

(Q(s, a)−BQ(s, a))
2
,

s.t. Q(s, a) = BθQ(s, a) ∀s ∈ S, a ∈ A,
(6)

where B, similarly to Bθ, is the soft Bellman operator but
induced by the true reward r and dynamics p. We discuss
the relation between the models obtained by solving prob-
lems (2) and (6) in Section 5.1.

While the constraintQ(s, a) = BθQ(s, a) has to be satis-
fied for all state-action pairs limiting the approach to tabular
MDPs, we show an extention to the function approximation
case in Section 6.

4.1 Implicit Differentiation
In this subsection, we state the implicit function theorem
used to calculate ∂ϕ(θ)

∂θ . The IFT is a well-known result and a
proof can be found, for example, in (Krantz and Parks 2012).
Theorem 1. (Cauchy, Implicit Function) Let
f : Θ × W → W be a continuously differentiable
function and (θ̃, w̃) be a point satisfying f(θ̃, w̃) = 0. If the
Jacobian ∂f(θ̃,w̃)

∂w is invertible, then there exists an open set
U ⊆ Θ containing θ̃ and a unique continuously differen-
tiable function ϕ such that ϕ(θ̃) = w̃ and f(θ, ϕ(θ)) = 0
for all θ ∈ U . Moreover,

∂ϕ(θ)

∂θ
= −

(
∂f(θ, w∗)

∂w

)−1

· ∂f(θ, w∗)

∂θ

∣∣∣
w∗=ϕ(θ)

. (7)

Note that (7) requires only a final point w∗ satisfying the
constraint and does not require knowledge about ϕ itself.
Hence, ϕ can be any black-box function outputting w∗.

The gradient of the scalar objective J or Ltrue is calculated
using (7). To use backpropagation, we only need to define
the product of a vector and ∂ϕ(θ)

∂θ . Overall, the IFT allows
using ϕ as a block in a differentiable computational graph.

4.2 Benefits under Model Misspecification
In the previous subsection, we showed how to use im-
plicit differentiation for training a model that aims to max-
imize the expected returns. In this subsection, we demon-
strate that such a control-oriented model is preferable over
a likelihood-based in the setting where the true model is not
representable by a chosen parametric class.

Let rθ ∈ R|S|×|A| and pθ(s′|s, a) ∈ R|S|×|S|×|A| be a
parametric model, where parameters in pθ denote the cor-
responding logits and each parameter in rθ is a reward for
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Figure 1: Expected returns for the tabular MDP under the
model misspecification. The OMD model optimizes the ex-
pected returns directly, while the MLE agent minimizes the
KL divergence for model learning. OMD outperforms MLE
when the model representational capacity is limited.

a state-action pair. We consider a set of parameters {θ :
‖θ‖ ≤ κ} with the bounded norm and use κ as a measure
of the model misspecification. By decreasing the bound of
the norm of θ, we get a more misspecified model class. To
isolate the model learning aspect, we consider the exact RL
setting without sampling. We take a 2 state, 2 action MDP
shown in Figure 2 with a discount factor γ = 0.9 and a
uniform initial distribution ρ0. For every θ, a function ϕ out-
puts the corresponding Q∗ via performing the fixed point it-
eration until convergence. Q∗ is transformed into the policy
πQ∗ via softmax with the temperature α = 0.01. We then
calculate J(πQ∗) in a closed form (Sutton and Barto 2018).

For OMD, we obtain the gradient of J with respect to θ
using the expression (5). We then apply the projected gradi-
ent ascent where after each step we make a projection on a
space of bounded parameters via

θ =

{
κ
‖θ‖θ if ‖θ‖ > κ,

θ if ‖θ‖ ≤ κ
. (8)

Finding an MLE solution corresponds to minimizing the
average KL divergence

DKL(p||pθ) =
1

|S| · |A|
∑
s,a,s′

p(s′|s, a) log
p(s′|s, a)

pθ(s′|s, a)

for optimizing the dynamics pθ and minimizing the squared
error for the reward rθ. We similarly perform the projected
gradient descent and call the agent MLE (even though we do
not use the samples for estimation).

The resulting J as a function of the norm bound κ is
shown in Figure 1. When the true model is not representable
by a chosen class, OMD learns a model that uses its repre-
sentational capacity for helping the agent to maximize the
expected returns, while the MLE agent tries to predict the
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next states and rewards accurately while discarding the true
objective function the agent seeks to optimize.

In MDPs with high-dimensional state spaces (Bellemare
et al. 2013; Beattie et al. 2016) where the underlying dynam-
ics are complex, having a model that will accurately predict
the next observation might be expensive and unnecessary for
decision making. Figure 1 reflects the problems an MLE-
based model will face for such environments and provides
evidence for using control-oriented models that leverage the
available capacity of the model effectively.

5 Theoretical Analysis
In the previous section, we have empirically demonstrated
that OMD outperforms Dyna-style (Sutton 1991) MBRL
agents when the model capacity is limited. This section char-
acterizes the set of optimal solutions of OMD and compares
the Q∗ approximation bounds for OMD and MLE agents.

5.1 Optimal Solutions for OMD
We use the principle of value equivalence for
MBRL (Grimm et al. 2020) and argue that value equivalent
models are optimal solutions to (2) and (6).

Definition 1 (Optimal value equivalence). Let Q∗ be an op-
timal action-value function for the unconstrained RL prob-
lem. Models with parameters θ and θ′ are Q∗-equivalent if

BθQ∗(s, a) = Bθ
′
Q∗(s, a) ∀s ∈ S, a ∈ A. (9)

The definition is a slight modification of the value equiv-
alence used in (Grimm et al. 2020): instead of requiring the
Bellman operators to be equal for a set of value functions
and policies, we require the equality for a chosen Q∗ only.
The subset of models that areQ∗-equivalent forms an equiv-
alence class ΘQ∗ .

Proposition 1. Let the soft Bellman operator (3) tempera-
ture α → 0 and let θ be any model parameters from the
equivalence class ΘQ∗ . Then, (Q∗, θ) is a solution for (2)
and (6).

This property holds by construction. The optimal Q-
function maximizes the objective in the true MDP. As the
log-sum-exp temperature in (3) approaches 0, we recover
the “hard” target in the Bellman optimality operator:

lim
α→0

α log
∑
a′

exp
1

α
Q(s′, a′) = max

a′
Q(s′, a′). (10)

Thus, if we set θ to the true model, Q∗ will satisfy the
Bellman equation Q∗(s, a) = BθQ∗(s, a). But even though
the true model belongs to the equivalence class ΘQ∗ , it is not
identifiable: all models from ΘQ∗ are going to be indistin-
guishable for OMD. Seemingly undesirable at first glance,
it allows OMD choosing any model that induces the same
Bellman operator, which is beneficial under the model mis-
specification as shown in Section 4.2.

We provide an example of a model that is Q∗-equivalent
with the true model in Figure 2. The model differs signif-
icantly, demonstrating that the equivalence class ΘQ∗ con-
sists of multiple elements. Moreover, the dynamics learned

0 1

(0, -0.45, 0.7, 0.16)

(1, -0.10, 0.99, 0.06)

(0, -0.45, 0.3, 0.16)

(1, -0.10, 0.01, 0.06)

(0, 0.50, 0.2, 1.89)

(1, 0.50, 0.99, 0.66)

(0, 0.50, 0.8, 1.89)

(1, 0.50, 0.01, 0.66)

0 1

(0, 0.02, 1, 0.16)

(1, -1.64, 1, 0.06)

(0, 0.19, 1, 1.89)

(1, -1.04, 1, 0.66)

Figure 2: Two different MDPs with the same optimal Q-
function (a fixed point of the induced Bellman operator).
Circles represent states, tuples are organized as (action, re-
ward, transition probability, optimal Q value). Top: the origi-
nal MDP taken from (Dadashi et al. 2019). Bottom: an MDP
with a trained OMD model.

by OMD are deterministic, suggesting that OMD can choose
a simpler model that will have the same Q∗ as the true
model. Drawing the connection to the prior work on state
abstractions (Li, Walsh, and Littman 2006), the fact that
MDPs have the same optimal action values indicates that the
learned models can be seen as Q∗-irrelevant with respect to
a state abstraction over S .

5.2 Approximation Bound
Our next result relates approximation errors for the optimal
Q-functions under the OMD and MLE models. For simplic-
ity, we analyze the setting with α→ 0 and the Bellman error
(6) as the objective.

Theorem 2. (Q∗ approximation error) Let Q∗ be the opti-
mal action-value function for the true MDP. Let Q̂OMD and
Q̂MLE be the fixed points of the Bellman optimality opera-
tors for approximate OMD and MLE models respectively.

• If the MLE dynamics p̂ and reward r̂ have the
bounded errors maxs,a ‖p(·|s, a)− p̂(·|s, a)‖1 = εp and
maxs,a |r(s, a)− r̂(s, a)| = εr, and the reward function
is bounded r(s, a) ∈ [0, rmax] ∀s, a, we have

max
s,a

∣∣∣Q∗(s, a)− Q̂MLE(s, a)
∣∣∣ ≤ εr

1− γ
+

γεprmax

2(1− γ)2
;

• If the Bellman optimality operator induced
by the OMD model θ̂ has the bounded error
maxs,a

∣∣∣BQ̂OMD(s, a)−Bθ̂Q̂OMD(s, a)
∣∣∣ = ε, we

have

max
s,a

∣∣∣Q∗(s, a)− Q̂OMD(s, a)
∣∣∣ ≤ ε

1− γ
.

The proof mostly follows derivations similar to the simu-
lation lemma (Kearns and Singh 2002). Since OMD directly
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Figure 3: Q∗ approximation error and tightness of the error
bounds under the model misspecification. Given a limited
model representation capacity, OMD agent approximates
Q∗ more accurately and enjoys a tighter bound.

optimizes ε, while MLE optimizes εr and εp, the bound sug-
gests that OMD approximation error translates into a lower
Q∗ approximation error. Figure 3 compares empirically the
errors and the tightness of the bounds for a tabular MDP
where Q∗ can be computed exactly. The result provides evi-
dence that OMD indeed achieves a lower Q∗ approximation
error compared to an agent that seeks to estimate p and r
accurately. Motivated by the theoretical findings, the next
section discusses a practical version of OMD.

6 OMD with Function Approximation
Section 4 describes optimal model design, a non-likelihood-
based method for learning models in tabular MDPs. In this
section, we propose several approximations to make OMD
practically applicable.

Q-network. We use a neural network with parameters w
to approximate the Q-values. The network is trained to min-
imize the Bellman error induced by the model θ:

min
w
L(θ, w) , min

w
Es,a[Qw(s, a)−BθQw̄(s, a)]2, (11)

where w̄ is a target copy of parameters w updated using ex-
ponential moving average, a standard practice to increase
the stability of deep Q-learning (Mnih et al. 2015). We also
use double Q-learning (Hasselt 2010; Fujimoto, Hoof, and
Meger 2018) but omit it from the equations for simplicity.
To estimate the expectation, we use a replay buffer (Mnih
et al. 2015).

Constraint. The constraint in (2) and (6) should be satis-
fied for all state-action pairs making it impractical for non-
tabular MDPs. We introduce an alternative but similar con-
straint, the first-order optimality condition for minimizing
the Bellman error (11):

∂L(θ, w)

∂w
= 0. (12)

Algorithm 1: Model Based RL with OMD

Input: Initial parameters w, θ, empty replay buffer D.
repeat

Set s to be the current state.
Sample an action a using softmax over Qw(s, a).
Apply a to get r = r(s, a), s′ ∼ p(s′|s, a).
Append (s, a, s′, r) to buffer D.
for i = 1 to K do

Sample (s, a) from buffer D.
Apply θ to get r = rθ(s, a), s′ ∼ pθ(s′|s, a).
Update Qw parameters w to minimize L(θ, w).

end for
Update model parameters θ according to (14).

until the maximum number of interactions is reached

We note that the 0 is vector-valued and has the same dimen-
sionality as w.

Implicit differentiation. The process of training θ is bi-
level: in the inner loop, we optimize the Q-function param-
eters to get optimal w∗ corresponding to a fixed model θ; in
the outer loop, we make a gradient update of θ. We make K
steps of an optimization method to approximate w∗ = ϕ(θ)
whereK is a hyperparameter and reuse the weights from the
previous outer loop iterations. We follow Rajeswaran, Mor-
datch, and Kumar (2020) and approximate the inverse Ja-
cobian term in ∂ϕ(θ)

∂θ with the identity matrix. Surprisingly,
we did not observe benefits when using the inverse Jaco-
bian term. The investigation of the phenomenon is beyond
the scope of this work. We refer to (Rajeswaran et al. 2019;
Lorraine, Vicol, and Duvenaud 2020) that also observe lim-
ited effects from the Jacobian.

Objective. We consider the problem (6) and use the Bell-
man error as the outer loop objective:

Ltrue(w) , Es,a[Qw(s, a)−BQw̄(s, a)]2, (13)

where B, again, is a soft Bellman operator induced by the
true reward r and dynamics p:

BQw̄(s, a) , r(s, a) + γEp(s′|s,a) log
∑
a′

expQw̄(s′, a′).

Note that the objective (13) is used for estimating the gra-
dient with respect to θ only and w is trained to optimize
L(θ, w). While both Ltrue and J objectives could be used for
training θ, we found that the latter requires more samples to
converge. Note that optimizing the Ltrue still corresponds to
maximizing the (entropy-regularized) expected returns.

Resulting gradient. The Q function and IFT approxima-
tions result in the following gradient with respect to θ:

∂Ltrue(θ)

∂θ
≈ − ∂Ltrue(w∗)

∂w︸ ︷︷ ︸
grad Bellman

· ∂
2L(θ, w∗)

∂θ∂w︸ ︷︷ ︸
approx IFT

∣∣∣
w∗=ϕ(θ)

(14)

The OMD algorithm is summarised in Algorithm 1. The
only difference between Dyna-based approaches and OMD
is the model learning step in the penultimate line.
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Figure 4: The final performance of the agents in CartPole for
varying hidden dimensionality of the model networks. The
OMD model makes useful predictions under the model mis-
specification. The error bar is the standard error measured
over 10 random seeds.

7 Experiments with Function Approximation
This section aims to test the following hypotheses:

• The OMD agent with approximations from Section 6
achieves near-optimal returns.

• The performance of OMD is better compared to MLE
under the model misspecification.

• Parameters θ of the OMD model have low likelihood,
yet an agent acting with the Q-function trained with the
model achieves near-optimal returns in the true MDP.

Setup. We first use CartPole (Barto, Sutton, and Ander-
son 1983) and later include results on MuJoCo HalfChee-
tah (Todorov, Erez, and Tassa 2012) with similar findings
further supporting our conclusions. Since OMD learns one
of theQ∗-equivalent models as shown in Section 5.1, a close
non-MLE baseline would be the algorithm used in the value
equivalence principle (VEP) paper (Grimm et al. 2020). The
VEP model minimizes the difference between the Bellman
operators:

`VEP(θ) =
∑
π∈Π

∑
V ∈V

∑
s∈S

(
BπV (s)−BθπV (s)

)2
, (15)

whereBθπV (s) = Ea∼π(a|s),s′∼pθ(s′|s,a) (rθ(s, a) + γV (s′)),
Bπ is the real model counterpart, and Π and V are predefined
sets of policies and value functions.

Performance under model misspecification. We design
two experiments that allow measuring the misspecification.
First, we limit the model class representational capacity
by controlling the number of units in hidden layers of the
model. Next, we add distracting states by sampling noise
from a standard gaussian and vary the number of distrac-
tors. Figure 4 and Figure 5 show the returns achieved by the
agents after training in the two regimes. Note that the Q-
function is updated using only the next states and rewards
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Figure 5: The performance when the state space is aug-
mented with uninformative noise. OMD is more robust as
the number of distractor increases, while VEP fails for any
positive number of distractors. The standard error is mea-
sured over 10 seeds.

produced by the model, and even when the hidden dimen-
sionality of the model is 1, the OMD model encodes useful
information for taking optimal actions. Returns achieved by
OMD are also more robust to the distractors indicating that
the MLE focuses on predicting the parts of a state that might
not be relevant for decision making. The relatively low per-
formance of VEP suggests that learning a model to predict
values for a fixed set of policies and value functions is not as
effective, especially if some states are non-informative. The
experiments reflect the challenges an MBRL agent will face
in complex domains such as (Bellemare et al. 2013; Beattie
et al. 2016; Kalashnikov et al. 2021) where accurately pre-
dicting all pixel-wise variations in next observations can be
infeasible and unnecessary. Figures 4 and 5 provide evidence
that using control-oriented methods would allow using the
model capacity more effectively.

Likelihood of OMD model. We show the mean squared
error (MSE) of OMD and MLE dynamics predictions in Ta-
ble 1. The MSE of OMD models is higher than the MSE of
a randomly initialized model, while OMD achieves higher
returns than the MLE agent. This finding suggests that the
dynamics might not need to produce predictions close to the
true states to be useful for planning.

# hidden 1 2 3 4 6 12

MLE 0.9 0.4 10−2 10−3 10−5 10−5

OMD 8.5 5.8 4.3 17.8 11.6 5.7
Random 1.5 1.5 1.5 1.5 1.5 1.5

Table 1: MSE of the next state prediction for OMD, MLE,
and random models in CartPole given varying hidden size.

Results on HalfCheetah. We also test OMD and
MLE agents under the model misspecification on MuJoCo
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Figure 6: Returns for varying representational capacity of
the OMD and MLE agents on HalfCheetah-v2. Given lim-
ited capacity, the OMD model makes more useful predic-
tions. The std is measured over 5 runs.

HalfCheetah. As the inner optimizer, we use an implemen-
tation2 of Soft Actor-Critic (Haarnoja et al. 2018) with the
default configuration. OMD trains the model using Equa-
tion 14. The MLE agent trains the model with MSE effec-
tively becoming the MBPO algorithm (Janner et al. 2019)
without having an ensemble of models and learning the vari-
ance of the predictions. We do not include results for VEP
here because Grimm et al. (2020) test it only in tabular and
CartPole-like environments.

Figures 6 and 7 summarize the results. Similarly to the
observations on the tabular and CartPole environments, the
experiments provide evidence that OMD should be preferred
in the model misspecification setup.

Overall, our findings suggest that the OMD agent achieves
near-optimal returns, performs better than the MLE and VEP
agents under model misspecification, and learns a model that
is useful for control despite having low likelihood.

8 Discussion and Future Work
An exciting direction for future work is the extension
of OMD to environments with image-based observations
where model misspecification naturally arises. We expect
that for complex visual domains, learning a control-oriented
model should be more effective compared to model-based
methods that rely on reconstruction (Hafner et al. 2020).

Implicit differentiation is not the only way to solve con-
strained optimization problems. Other alternatives include
using Lagrangian methods as proposed for the tabular case
in (Bacon et al. 2019). Since extending the approach to non-
tabular MDPs would require an additional approximator for
Lagrange multipliers, we conjecture that solving a saddle
point problem is going to be less stable than using the IFT.

2https://github.com/ikostrikov/jaxrl
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Figure 7: Returns on HalfCheetah-v2 when the state space
is augmented with gaussian noise. The OMD agent is more
robust to the distractors. The std is measured over 5 runs.

Finally, it is worth theoretically studying the sensitivity of
the IFT to the approximations to the inverse Jacobian term
and the inner loop solutions. Our findings, as well as find-
ings of (Rajeswaran et al. 2019; Rajeswaran, Mordatch, and
Kumar 2020; Lorraine, Vicol, and Duvenaud 2020) suggest
that there is a gap between the assumptions of the IFT and
its applicability in practice.

9 Conclusion
The paper proposes optimal model design (OMD), a method
for learning control-oriented models that addresses the
shortcomings of likelihood-based MBRL approaches. OMD
optimizes the expected returns in an end-to-end manner and
alleviates the objective mismatch of standard MBRL meth-
ods that train models using a proxy of the true RL objective.
Theoretically, we characterize the set of optimal solutions to
OMD and illustrate the efficacy of OMD over MLE agents
for approximating optimal value functions. Empirically, we
introduce approximations to apply OMD to non-tabular en-
vironments and demonstrate the improved performance of
OMD in settings with limited model capacity. Perhaps sur-
prisingly, we find that the OMD model can have low likeli-
hood, yet the model is useful for maximizing returns. Over-
all, OMD sheds light on the potential of control-oriented
methods for model-based reinforcement learning.
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