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Abstract
Online reinforcement learning (RL) algorithms are often dif-
ficult to deploy in complex human-facing applications as they
may learn slowly and have poor early performance. To ad-
dress this, we introduce a practical algorithm for incorpo-
rating human insight to speed learning. Our algorithm, Con-
straint Sampling Reinforcement Learning (CSRL), incorpo-
rates prior domain knowledge as constraints/restrictions on
the RL policy. It takes in multiple potential policy constraints
to maintain robustness to misspecification of individual con-
straints while leveraging helpful ones to learn quickly. Given
a base RL learning algorithm (ex. UCRL, DQN, Rainbow)
we propose an upper confidence with elimination scheme that
leverages the relationship between the constraints, and their
observed performance, to adaptively switch among them.
We instantiate our algorithm with DQN-type algorithms and
UCRL as base algorithms, and evaluate our algorithm in four
environments, including three simulators based on real data:
recommendations, educational activity sequencing, and HIV
treatment sequencing. In all cases, CSRL learns a good policy
faster than baselines.

Introduction
Online reinforcement Learning (RL) algorithms have
the large potential for improving real world systems
with sequential decisions such as recommendation sys-
tems (Theocharous et al. 2020) or intelligent tutoring sys-
tems (Bassen et al. 2020). Such domains often have large
or infinite state spaces, and existing RL methods that can
scale to these settings frequently require a prohibitively large
amount of interaction data to learn a good policy. Incorporat-
ing human expert knowledge can accelerate learning, such
as through expert demonstrations (Wu et al. 2019; Arora and
Doshi 2021; Hussein et al. 2017; Taylor, Suay, and Chernova
2011) or having them provide properties the optimal policy
is guaranteed to satisfy, such as a specific function class con-
straint (Ijspeert, Nakanishi, and Schaal 2002; Tamosiunaite
et al. 2011; Buchli et al. 2011; Kober, Bagnell, and Peters
2013). However, such approaches also run the risk of reduc-
ing the system performance when the provided information
is misleading or suboptimal. For example, in recommenda-
tion systems, prior Human Computer Interaction (HCI) lit-
erature has found that diversity of recommendations across
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time is important (Nilashi et al. 2016; Bradley and Smyth
2001; Komiak and Benbasat 2006; Chen et al. 2019). But
confidently concluding this finding will generalize to a new
system, and translating this high level knowledge into a con-
crete constraint for the policy class is subtle (does ’diversity’
mean 3 or 4 different item categories? Within the last 5 or
the last 10 recommendations?). Choosing the wrong formu-
lation can significantly impact the resulting reward.

An alternate approach is to allow a human domain ex-
pert to provide many different formulations, and use model
or algorithm selection to automatically learn to choose the
most effective (e.g. (Lee et al. 2021; Laroche and Feraud
2018). However, much of the work on selection focuses on
theoretical results and cannot be used with popular deep RL
algorithms that may be of more practical use (Lee et al.
2021). Perhaps most closely related to our work is the work
of Laroche and Feraud (2018), which uses an upper confi-
dence bound bandit approach to learn to select among a set
of reinforcement learners. This work was constructed for op-
timizing across learning hyperparameters (such as learning
rate or model size) and, like many upper confidence bound
approaches, relies on tuning the optimism parameter used,
which is often hard to do in advance of deployment.

In this work we instead focus on leveraging human in-
sight over the domain to speed RL through weak labels on
the policy. We propose an algorithm, Constraint Sampling
Reinforcement Learning (CSRL)1 which performs adaptive
selection and elimination over a set of different policy con-
straints. Our selection algorithm optionally uses these con-
straints to learn quickly. To distinguish this from the safety
constraints used in safe RL, we will also refer to them as
policy restrictions. A policy constraint or restriction limits
the available actions in a state and can speed learning by po-
tentially reducing the exploration of suboptimal actions. Our
method performs algorithm selection over a set of RL learn-
ers, each using a different policy restriction. For example, in
a recommendation system, one restriction might specify that
3 items should be from unique categories in the past 5 items
shown, and another could require at least 2 unique items in
the past 10, but only for users who have used the system for
more than 6 months. A third RL learner could use the unre-
stricted policy class, which does not limit the available ac-

1Code: https://github.com/StanfordAI4HI/CSRL
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tions in any state. Note that other areas of machine learning
have significant reductions in cost by allowing people to pro-
vide weak supervision through labeling functions that may
be imperfect(e.g. (Ratner et al. 2017)). At a high level, we
apply a similar idea here for reinforcement learning, allow-
ing people to provide weak, potentially imperfect policy re-
strictions to be used by different RL learners. Our algorithm
then performs adaptive selection over the set using optimism
under uncertainty over the potential performance of the RL
learners, each of which is operating with a different set of re-
strictions. A second technical innovation comes from noting
that tuning the optimism parameter of the selection mech-
anism in advance can be infeasible, and a parameter either
too high or too low can slow learning. Instead, we introduce
a simple heuristic which uses the amount of model change
to estimate the convergence of each RL learner and use this
to eliminate RL learners with low performance. This allows
us to achieve good performance much faster than through
optimistic adaptive selection alone.

These simple ideas lead to substantial empirical improve-
ments in the diverse range of settings we consider, which in-
clude simulators created with real data in movie recommen-
dations, tutoring system problem selection, and HIV treat-
ment, as well as the Atari lunar lander simulator. We con-
duct a careful experimental analysis to illustrate the bene-
fits of our additional change-based learner elimination and
the robustness to the inclusion of poor constraints. Our ap-
proach is simple and can be used with a wide variety of base
reinforcement learners, and may make RL more feasible for
a wider set of important domains.

Setting
A Markov Decision Process (MDP) (Bellman 1957) is
described as a tuple (S,A, P,R) where S is the set of
states and A is the set of actions. The transition dynam-
ics, P (s′|s, a) defines the probability distribution of next
states s′ after taking action a in state s. The reward func-
tion R(r|s, a) defines the distribution of rewards r. We
assume the actions are discrete and rewards are bounded
|r| < Rmax. We let the state space be either discrete or
continuous. We consider the episodic, finite horizon setting
where the length of each episode is less than or equal to the
maximum horizon length H .

A policy, denoted as π is a potentially stochastic map-
ping from states to actions, where π(a|s) defines the prob-
ability of taking action a in state s. A trajectory, τ :=
(s0, a0, r0, s1, a1, r1, ...), is defined as the sequence of
states, actions, and rewards in an episode.

The state-action value of a policy, Qπγ (s, a), is the ex-
pected discounted sum of rewards of starting in a state s,
taking action a and then following the policy: Qπγ (s, a) :=

Eτ∼π[
∑h
t=0 γ

trt|s0 = s, a0 = a]), where γ ∈ [0, 1]
is the discount factor. The value function of a policy,
V πγ (s), is the expected discounted sum of rewards ob-
tained starting in state s and following policy π: V πγ (s) :=

Eτ∼π[
∑h
t=0 γ

trt|s0 = s] The optimal policy, denoted π∗, is
the policy that maximizes V : π∗ = arg maxπ V

π
γ .

Algorithm
We first briefly present the aim and overview of our
algorithm, Constraint Sampling Reinforcement Learning
(CSRL), before going into detail. The goal of our work is to
provide a simple method for leveraging (potentially weak)
human domain knowledge for faster learning without sacri-
ficing final performance. CSRL takes as input a set of dif-
ferent candidate policy constraints (we also refer to as re-
strictions to distinguish our goal from that of the Safe RL
work which uses constraints), each of which is used to de-
fine a RL learner that must follow the restriction while learn-
ing. Some or all of the provided restrictions may disallow
the (unknown) optimal policy and the unrestricted option
may be included as a candidate. CSRL then uses an upper
confidence bandit (UCB) (Auer 2002) method that consid-
ers the prior performance of the learners to adaptively select
the next learner to use to make decisions for the episode.
In practice such optimism based approaches often require
careful tuning to achieve good performance which can be
infeasible in new domains lacking prior data. To increase
robustness to this hyperparameter and speed learning, our
CSRL method introduces a simple heuristic that tracks the
model parameter changes in the RL learner for hypothesiz-
ing when a learner has converged, and eliminates those that
may be misspecified or have low performance.

We now introduce some notation. In this paper we use the
following definition of constraint/restriction:

Definition 1 (Constraint/Restriction). A constraint (or re-
striction) C is a function that maps each state to a set of
allowable actions, C(s) = {ai, ak, . . .}.2

Given a set of K restrictions C, let Ck denote the kth re-
striction.

We say a policy π satisfies a restriction Ck if for every
state, π only takes actions allowed by Ck: ∀(s, a) π(a|s) >
0 only if a ∈ Ck(s).

Definition 2 (Restricted Policy Set). We denote the policy
set of restriction Ck as Πk and define it as the set of all
policies π that satisfy Ck:

Πk = {π : ∀(s, a)π(a|s) > 0→ a ∈ Ck(s)}

Definition 3 (Restricted RL Learner). Given a restriction
Ck, and a base RL learning algorithm that can learn under
constraints (such as DQN) we instantiate a restricted rein-
forcement learner, denoted lk. lk is restricted to executing
and optimizing over policies in Πk

We assume each restriction in the set is unique and we
define the subset property between restrictions:

Definition 4 (Subset/More Restricted). Restriction Ck is a
subset of restriction Cj if every action allowed in Ck is also
allowed in Cj: ∀s Ck(s) ∈ Cj(s). In this case, we will also
refer to Ck as more restricted than Cj and define the < op-
erator: Ck < Cj . We also apply this notation to describe the
corresponding policy sets and RL learners.

2Note this in is contrast to the Constrained MDP (CMDP)
framework (Altman 1999), which has a different focus on costs
and budgets.
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Note on specifying restrictions: Note that while policy re-
strictions are defined by the state-action pairs allowed, they
often do not need to be specified by humans at that level
of granularity. For example, a human expert might specify
that students should only be given practice problems involv-
ing at most one new skill. As long as the state and action
space has features representing the skills involved, it is easy
to programmatically translate this high level specification to
the desired constraint without requiring the human expert to
enumerate all state-action pairs.

Our algorithm, CSRL (Algorithm 1), takes as input a base
RL algorithm, Alg, a set of potential restrictions C and a
confidence bound function B(h, n). CSRL starts by initial-
izing |C| RL learners, each which use the input base algo-
rithmAlg, along with one of the restrictionsCi ∈ C. Learner
li will only chose actions and learn over policies that satisfy
Ci. Let L denote the set of active learners and initially set
L = {1, . . . , |C|}. Each episode proceeds in 3 steps. First
CSRL chooses a RL learner li in the active set L to select
actions in this episode. Second, CSRL gathers a trajectory of
states, actions, and rewards using li. This data is used both
to update the learner li as well as all the relevant other learn-
ers: sharing data speeds learning across all the RL learners.
Third, a heuristic is used to potentially eliminate li from L.
The next episode then starts.

We now describe step 1, RL learner selection. We use
UCB to select the RL learner with the maximum estimated
upper bound on the potential return in the active set. The
UCB mechanism uses the average prior returns observed
during past executions of RL learner l, denoted µ̂l, and the
input confidence bound function.

k = arg max
l∈L

(µ̂l +B(h, nl)) (1)

There are two important things to note about this learner
selection strategy. First, CSRL does not use any RL learn-
ers’ internal estimates of their own performance or potential
value function. This allows us to leverage very general base
algorithms Alg without requiring that they accurately esti-
mate their own value functions. Instead CSRL relies only on
the observed returns from executing each learner, treating
them as one arm in a multi-armed bandit. Second, note that
the estimated upper bound for a given learner l in Equation 1
will generally not be a true upper confidence bound on the
performance of the RL algorithm. This is because the UCB
multi-armed bandit algorithm assumes that the stochastic
returns of individual arms are unknown, but stationary. In
contrast, in our setting, arms are RL learners whose poli-
cies are actively changing. Fortunately, prior related work
has successfully used UCB to select across arms with non-
stationary returns in an effective way: this is the basis of
the impactful upper confidence trees, a Monte Carlo Tree
Search method that prioritizes action expansions in the tree
according to upper bounds on the non-stationary returns of
downstream action decisions (Shah, Xie, and Xu 2020). It
has also been used in related work on online RL (Laroche
and Feraud 2018), and we will demonstrate it can both be
empirically effective in our setting, and, under mild assump-
tions, still guarantee good asymptotic performance.

After gathering data using the selected RL learner, this
data is provided to all RL learners to optionally update their
algorithm3. Then the third step is to eliminate the poten-
tial learner associated with the chosen constraint. The elim-
ination heuristic checks if a RL learner li’s value or state-
action value has stabilized, and if its average empirical per-
formance is lower than another RL learner lj , we will elimi-
nate li if a less constrained learner lk is in the active set. We
now state this more formally.

When RL learner lk is used for the nth time, and gener-
ates trajectory τn, let δnk represent the change in the value
function. For example, in tabular domains, we can measure
the average absolute difference in the state-action values

δnk =
||Qn−1k −Qnk ||1
|S||A|

, (2)

whereQnk represents the state-action value function after up-
dating using the data just gathered. In value-based deep RL
we can use the loss function over the observed trajectory as
an approximate estimate of the amount change4

δnk =
∑
τn

(rt + max
a∈Ck(st+1)

Qnk (st+1, a))−Qnk (st, at). (3)

For a RL learner to be potentially eliminated, the change,
δnk , must be below a threshold Tl for at least Tn succes-
sive steps, suggesting that the underlying learning process
is likely to have stabilized. If this condition is satisfied for a
RL learner li the meta-leaner first checks there exists a less
constrained learner lk in L. If such a lk exists and at least
one other learner lj in L has higher average performance:
µ̂i < µ̂j , then li is removed. See Algorithms 1 and 2 for
pseudocode. We give examples of instantiations of CSRL
with base learners of UCRL and DDQN below and we will
release all our code on Github.
Elimination Mechanism Intuition: Recall that CSRL
should try to select the most restricted learner that is com-
patible with the optimal policy, since learning with a reduced
action space will often speed learning and performance. To
increase robustness, the RL learner selection UCB strategy
relies on minimal information about the internal algorithms.
However, UCB often can be conservative in how quickly
it primarily selects high performing arms (in our case, RL
learners) rather than lower reward arms (in our case, learn-
ers with restrictions incompatible with the optimal policy).
Consider if one can identify when learner li has converged
and can correctly evaluate its performance through the run-
ning average µi. If there exists lj with higher average returns
µj , restriction Ci is likely to not include the optimal policy
and li can be removed from the set of potential RL learn-
ers. Our method uses a proxy heuristic for convergence and

3A reader may wonder if providing such off policy data is al-
ways useful or how best to incorporate it. In the particular base RL
algorithms we use, it is straightforward to incorporate the observed
trajectories into experience replay or in an estimate of dynamics
and reward models, but more sophisticated importance sampling
methods could be used for policy gradient based methods.

4Note one could use other measures of the change in the RL
learner, including differences in the neural network parameters, or
changes in predictions of the value of states.
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Algorithm 1: CSRL
Inputs: Alg, C, Z , B(h, n), Tl, Tn
Initialize: L ← Create Restricted Learners from C
Dk = [ ] ∀Ck ∈ C // Model Change Amounts
for Episode h = 1, 2, ... do

lk ← select RL learner [Eqn. 1]
τh ← GenerateTrajectory (lk)
Rh =

∑len(τh)
t=1 rt

nk = nk + 1

µ̂k = (nk−1)µ̂k+Rh
nk

UpdateLearners (L, τh)
δh ← Calculate Change of lk [ eq. 2 or 3]
Dk ← [Dk, δh]
if Eliminate (lk, Dk) then
L ← L \ lk

Algorithm 2: Eliminate (Eliminate Learner)
Inputs: lk, Dk

if ∃n ∈ {nk − Tn : nk} such that Dk(n) > Tl then
Return False (Don’t Eliminate)

if Exists li, lj ∈ L : Ci > Ck and µ̂j > µ̂k then
Return True (Eliminate)

Return False

sample estimates for returns which can be noisy. Therefore
it may incorrectly conclude a learner li has converged and/or
has suboptimal returns. To ensure that we preserve a learner
that admits the optimal policy, we only eliminate a learner
li, and its constraint Ci, if it is a subset of at least one other
active constraint Cj . Therefore the the set of policies that
satisfy Ci will continue to exist in the active set, even when
Ci is eliminated. We now provide some basic soundness to
this proposed approach, before describing instantiations of
CSRL with particular base learners, and demonstrating its
performance empirically.

Brief Theoretical Discussion
We briefly provide a guarantee that at least one learner
whose policy set contains the optimal policy will be taken
more than all other learners under mild assumptions.

Assumption 1 (Model Parameter Convergence). Let Mk,n

represent the model parameters of the learner lk after
the nth update. In every run of CSRL, the model pa-
rameters of every learner converge: limn→∞Mk,n →
Mk for all Ck ∈ C.

Let πMk
denote the policy corresponding to the con-

verged model parameters Mk of RL learner lk. Let
Es0 [V πMk (s0)] = µk, µ∗ = maxk µk and π∗ denote the
policy that achieves µ∗. Note that π∗ is defined as the policy
with the highest return across all learners in the set. With-
out loss of generality assume π∗ is unique. We refer to the
set of constraints compatible with π∗ as the set of optimal
constraints and denote this set as C∗ with a corresponding
indices set K∗. Then require:

Assumption 2 (Convergence to Optimal). Given a specific
run of CSRL, let every learner in K∗ converge to the µ∗ of
the run: µk = µ∗ for all k ∈ K∗

We now show that at least one RL learner in C∗ will be
chosen more than all suboptimal learners asymptotically.
Theorem 1. Assume Assumptions 1 and 2 hold. Also assume
as input a confidence bound B(h, n) of the form z(h)

nη with
0 < η < 1

2 and z(h) satisfying the following two conditions:
(i) z(h) is non-decreasing and (ii) O(z(h)1/η) < O(h).
Let Tk(h) be the number of times RL learner lk has been
selected at episode h. Then for at least one k∗ ∈ K∗,
Tk∗(h) > Tk(h) for all k /∈ K∗ as h→∞

The proof of theorem 1 is provided in the appendix.
When the base algorithm has convergence guarantees,

such as UCRL, we can additionally provide guarantees on
the rate of convergence. We provide these rates and a discus-
sion of the UCRL case in the appendix: our analysis draws
upon the analysis of convergence rates for Monte Carlo Tree
Search from Shah et al. (Shah, Xie, and Xu 2020).

Algorithm Instantiations
We discuss specific instantiations of CSRL with various base
RL algorithms.
CSRL-UCRL. UCRL (Auer, Jaksch, and Ortner 2009) is an
influential strategic RL algorithm with good regret bounds
this is based on optimism under uncertainty for tabular set-
tings. It is simple to incorporate action constraints during the
value iteration steps:

V t+1
h (s)← max

a∈Ch(s)
(R̃(s, a) +

∑
s′

P̃ (s′|s, a)γV th(s′))

All observed (s, a, r) tuples are used to update an estimated
model of transitions and rewards that is shared across all
RL learners. Equation 1 is used to track convergence in the
estimated value function.
CSRL-DQN, CSRL-DDQN and CSRL-Rainbow Deep
reinforcement learning has shown powerful results across a
wide variety of complex domains. Our CSRL-DQN, CSRL-
DDQN, and CSRL-Rainbow implementation uses a sepa-
rate DQN (Mnih et al. 2015), DDQN (van Hasselt, Guez,
and Silver 2016), or Rainbow (Hessel et al. 2018) learner
for each restriction5. We used epsilon greedy exploration
with epsilon decay. Experience is shared across learners in
the form of a shared replay buffer. The UpdateLearners
function places the tuples from the most recent trajectory in
the shared replay buffer. Each learner lk is then updated, us-
ing only samples from the buffer that satisfy the associated
restriction Ck. The learner lk is updated using a constrained
Q loss (Kalweit et al. 2020) (see Equation 3).

Experiments
We briefly introduce the evaluation environments and the
constraints used and then discuss our results. Due to space
constraints, we defer detailed descriptions of the environ-
ments and constraint constructions to the appendix.

5We explored sharing some model weights but found that re-
sulted in worse performance
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(a) (b)

Figure 1: (a) A visualization of the policy space for the RS
env. For example, every policy allowed under the exactly 2
variability constraint (’e2’) is also allowed under the at least
2 variability (’l2’) constraint. (b) An example curriculum
graph in the education domain. Each directed edge indicates
the source node is a prerequisite of the sink node.

Environments and Constraints
Recommendation System Environment The movie rec-
ommendations environment is a slighlty modified environ-
ment from prior work (Warlop, Lazaric, and Mary 2018) fit
with the Movielens 100K dataset (Harper and Konstan 2015)
which contains 100K user-movie ratings across 1000 users
with |A| = 5 and |S| = 625. Each action is a movie genre
and the state space encodes recently seen movies. The re-
wards correspond to the ratings of the recommended movies.
The episode length is random and each state-action pair has
some probability of leading to the terminal state.

Following prior work that suggests diversity is correlated
with system usage (Nilashi et al. 2016), we design a set of 12
constraints using a variability factor, which we define as the
number of unique actions in recent history. Our constraints
require the policy to maintain a level of variability. A par-
tial visualization of the structure between some constraints
in the set is given in Figure 1a. Because our state space con-
tains the history of past actions, these high level constraint
specification are easily translated programmatically.

Education: Deep Knowledge Tracing Student. Our new
educational activities sequencing environment uses a pop-
ular student learning model, the Deep Knowledge Tracing
(DKT) model (Piech et al. 2015), to simulate students. The
model is trained with the ASSISTment 2009-2010 (Feng,
Heffernan, and Koedinger 2009) dataset of algebra learn-
ing, containing data from 3274 students over 407K student-
problem interactions. Each action (|A| = 51) corresponds
to presenting a different problem to the student. The horizon
is length H = 100. The state space is a continuous R58 and
encodes the current proficiency (the predicted probability of
mastery by the DKT model) on each problem and the bi-
nary encoded timestep. The reward corresponds to a signal
of mastery and is 1 when the proficiency of a problem first
exceeds a threshold mt = 0.85 and 0 otherwise.

In education, curriculum or prerequisite graphs are com-
mon; however, setting the correct granularity to model
knowledge can be difficult. We create a constraint set con-
sisting of different graphs: Figure 1b shows an example us-

ing automatic curriculum generation methods that requires
hand specifying a hyperparameter to adjust the number of
edges (Piech et al. 2015). We construct a constraint set con-
taining 13 different graphs. Given a graph, we only allow un-
mastered problems that have all prerequisites mastered (this
information is encoded in the state space) to be selected.

HIV treatment Simulator The HIV treatment simula-
tor (Adams et al. 2004; Ernst et al. 2006) simulates a pa-
tient’s response to different types of treatments. The action
space is discrete with size 4 and represents various treat-
ment actions. The state space is continuous R6, where each
dimension represents a marker of the patient’s health. Each
episode is 200 timesteps and the reward encourages patients
to transition to and maintain a healthy state while penalizing
drug related actions.

We created a simulator for multiple heterogeneous pa-
tient groups by perturbing the internal hidden parameters
of the system following Killian, Konidaris, and Doshi-Velez
(2017). We learn an optimal decision policy for 3 different
groups, and then use the known optimal policies as con-
straints to learn in a new group which may or may not be
similar to a group with a known policy. We create a con-
straint set of 7 constraints.

Lunar Lander The Lunar Lander environment from
Open AI Gym (Brockman et al. 2016) simulates landing an
aircraft. The action space is discrete with 4 actions which
correspond to firing different actuators. The state space is
continuous R8 and gives position and velocity information.
Positive reward is given for safely landing and negative re-
ward is given for firing the actuators and crashing.

We generate different policies with differing performance
levels to mimic access to policy information from multiple
human pilots. We create a constraint set of 10 constraints
each of which limits the available action to that of one or a
mixture of the ”pilot” policies.

Results and Discussion
We compare CSRL against 4 baselines: unrestricted rein-
forcement learning, reinforcement learning with the oracle-
constraint which is the best constraint (but unknown in real
situations), reinforcement learning under a non-oracle con-
straint, and SSBAS (Laroche and Feraud 2018), a prior al-
gorithm for selecting across learners with different hyperpa-
rameters or models that uses a UCB selection approach but
does not eliminate learners. We used UCRL as a base learner
for our Recommendation System experiments, DDQN for
Education and HIV Treatment, and Rainbow for Lunar Lan-
der. In each experiment, the same base learning model pa-
rameters (model architecture, learning rates, exploration rate
scheduling, etc) were used for all algorithms: see appendix
for details. For CSRL and SSBAS, total episode return was
scaled to the range [0, 1] for the adaptive learner selection

and we used the confidence boundB(h, s) = c

√
log(t)

s1/2
. This

bound satisfies the conditions of B(h, s) required for The-
orem 1 to hold. We did not tune c and used c = 1 for both
CSRL and SSBAS for all experiments. We later present a
discussion of sensitivity to different values of c. For CSRL,
Tn was set to 20 and Tl was set to 0.05 for all experiments.
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(a) Training Returns

(b) Lunar: Rate of optimal (c) Lunar: c sweep (d) Education: Tl sweep

Figure 2: We plot all values with 95% confidence intervals. Top Row: We plot episode returns during training from the Edu-
cation, Lunar Lander and HIV domains. We plot our algorithm CSRL, as well as the SSBAS (Laroche and Feraud 2018) and
unconstrained (labelled No-Const) baselines. In the educational domain, a misspecified constraint, labelled Over-Const, is also
shown. The Oracle-Const plots the performance of following the oracle best constraint in the set which is not known before-
hand. Bottom Row: we provide further experiments and visualizations used to illustrate various properties of our algorithm for
our discussion section. Additional plots are provided in the Appendix.

90% Of Max 97% Of Max
SSBAS Unconst SSBAS Unconst

Edu 3.0 ± 0.3 20+ 4.54 ± 0.6 20+
Mov. 1.0 ± 0.07 1.5 ± 0.1 1.7 ± 0.3 2.1 ± 0.2
HIV 27 ± 0.8 5.5 ±2.4 20+ 15.3± 0.7
LL 5.2± 0.6 2.7± 0.5 3.4± 0.7 1.6 ± 0.3

Table 1: The sample complexity speedup of CSRL over
baselines in terms of the factor of episodes more required
by baselines to achieve returns 90% and 97% of the maxi-
mum observed value compared to CSRL.

We did not tune either parameter and we later present a dis-
cussion of robustness to different values of Tl. For each ex-
periment, the results were averaged over multiple random
seeds, with 200, 20, 20, and 40 seeds for the recommenda-
tions, education, HIV treatment, and Lunar Lander experi-
ments respectively.

Results Across all domains CSRL learned a good pol-
icy faster than non-oracle baselines, and often significantly
faster. In Table 1 we list the speedup of CSRL over the SS-
BAS and Unrestrained (Unconst) baselines in terms of the
factor of episodes more compared to CSRL needed by the
baselines to achieve mean returns 90% and 97% of the ob-
served maximum return. In most cases, we observe CSRL

can achieve a high level of performance significantly faster
than baselines, often at least 1.5 times as fast and occasion-
ally much more. In the appendix we give a table of the raw
number of episodes needed to reach these performances for
each environment. In Figure 2a we plot the returns through
training along with 95% confidence intervals for the Edu-
cation, HIV treatment and Lunar Lander domains. These
plots for the other domains are presented in the appendix.
We observe CSRL is able to utilize the constraints to avoid
the extended initial poor performance compared to the un-
constrained condition. Additionally the elimination mecha-
nism allows the algorithm to eliminate suboptimal learners
to quickly achieve near-oracle performance. We investigate
adaptive selection and elimination in depth in the discussion.

Discussion
Importance of Adaptive Selection It is expected that fol-
lowing a single good constraint can lead to quick learning by
reducing the policy space that needs to be explored. We see
this is indeed true as the oracle-constraint performs best for
most cases. However the best constraint is not known before-
hand, and following a single constraint that is misspecified
can lead to suboptimal performance. We demonstrate this in
the education domain, shown in Figure 2a where we addi-
tionally plot the tightest restriction in the set, labeled Over-
Const (which stands for Over-Constrained). Over-Const also
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quickly converges but to a return much lower than optimal.
We see the adaptive selection mechanism of CSRL and SS-
BAS over the set can leverage the constraints to learn faster
than the unrestricted baseline while avoiding this potential
misspecification. Additionally the benefit of adaptive selec-
tion has over standard unrestricted RL increases with ac-
tion space size as larger action spaces are harder to explore.
This is illustrated by comparing the speed of learning un-
restrained in our Education (|A| = 51) and Lunar Lander
(|A| = 4) environments (Fig 2a).

Importance of Elimination In our setting where we ex-
pect some constraints to be misspecified, we found elimi-
nating suboptimal learners to be very important for robust-
ness against performance decreases due to missspecifica-
tion. This is illustrated in the HIV experiments shown in
Figure 2a. In this case, all constraints are suboptimal and
the unconstrained option is optimal. We notice that CSRL
is able to quickly use elimination to approach the uncon-
strained performance compared to SSBAS. In Figure 2b we
plot the rate of selecting the optimal constraint in the lunar
lander experiment for CSRL and SSBAS through learning.
We see that elimination allows the algorithm to achieve high
rates of selecting the optimal policy much faster.

When is elimination not important? We expect elimina-
tion to not be important when the performance gap between
the optimal and suboptimal constraints is large. Intuitively a
large difference is easier for the UCB mechanism to distin-
guish the best item so CSRL and the SSBAS baseline learn
quickly to choose the best item and achieve nearly identical
performance. We demonstrate a case of this in the appendix.

The confidence bound parameter In Figure 2c, we plot
performance for various values of c, the multiplier on the
confidence bound of the UCB constraint selection mecha-
nism in the lunar lander environment. For both algorithms,
we see that a low value, c = 0.05, results in higher initial
performance but a much slower rate of learning which is
a poor outcome for both algorithms. On the other hand, a
higher value, c = 3 leads to significantly worse performance
for SSBAS while CSRL’s elimination mechanism protects
the performance from suffering. The uncertainty over the
value of the multiplier naturally comes in when the maxi-
mum reward is unknown. It is undesirable to underestimate
the maximum reward as it may lead to a slow rate of learn-
ing. In these cases CSRL along with a high estimate of max-
imum reward can lead to good performance.

The effect of the loss threshold Tl: In Figure 2d we plot
the performance for various values of Tl, the model change
threshold for the elimination mechanism, in the education
environment. We demonstrate that even for Tl set to large
values (Tl = 0.25, 5 times greater than initial used value),
the performance does not decrease (in fact it increases due
to faster elimination). This shows our robust elimination pro-
cedure is able to maintain performance when the algorithm
incorrectly hypothesizes a constraint as suboptimal. When
Tl is set to low values (Tl = 0.00125, 40 times less than
initial), the elimination of constraints slow and we approach
the performance of the SSBAS baseline.

Summary Overall when there is a good constraint in the
set, we demonstrate our algorithm is (1) able to achieve a

good policy quickly, often significantly faster than baselines
(2) this performance improvement is due to CSRL’s robust-
ness against both misspecified constraints and hyperparam-
eters such as the confidence bound parameter.

Related Work
We discuss some additional areas of related work not previ-
ously mentioned.

Constrained RL Our work is related to work in con-
strained RL. Most prior work considers learning under a
single constraint that is always enforced. Constrained RL
has been studied under various combinations of what is
known and unknown about the components of the model (the
constraints, rewards, and transition dynamics). It has been
studied in cases where all components are known (Altman
1999), as well as cases where one or more of them need to
be learned online (Efroni, Mannor, and Pirotta 2020; Zheng
and Ratliff 2020; Achiam et al. 2017; Wachi and Sui 2020;
Bhatnagar and Lakshmanan 2012). This work spans a vari-
ety of different algorithms including tabular (Efroni, Man-
nor, and Pirotta 2020), policy search (Achiam et al. 2017),
and actor-critic (Bhatnagar and Lakshmanan 2012) RL al-
gorithms. Contrary to this work that focuses on learning to
satisfy a single constraint, we consider a set of weak con-
straints, which may or may not be compatible with the ac-
tion selections of the unknown optimal policy. We addition-
ally note our method is separate from the constraint sam-
pling algorithms for solving unconstrained dynamic pro-
gramming problems approximately using linear program-
ming (De Farias and Van Roy 2004).

Inferring Constraints/Rules There has been prior work
on inferring constraints or rules from demonstrations (Tay-
lor, Suay, and Chernova 2011). In two papers (Noothigattu
et al. 2019; Balakrishnan et al. 2019) a single constraint is
inferred from demonstrations, and a 2-armed bandit learns
if the inferred constraint should be followed. Our work dif-
fers in that we consider utilizing domain knowledge instead
of demonstrations and we consider multiple potential con-
straints as opposed to a single constraint. We additionally
differ in considering a method for RL learner elimination.

Conclusion
There often exists domain expertise for real world systems
that can be leveraged in RL algorithms to speed learning. In
this work we propose a method, CSRL, to incorporate this
knowledge in the form of constraints. As it is often difficult
to create a single constraint the algorithm designer is confi-
dent is correct, our work takes as input a set of potential con-
straints the algorithm designer hypothesizes, but does not
have to be certain will speed learning. We provide a brief
theoretical discussion on our upper confidence with elimina-
tion selection algorithm and focus on showing strong empiri-
cal results. We show this simple approach is compatible with
deep RL methods and that CSRL can learn a good policy
substantially faster than state-of-the-art baselines, suggest-
ing its potential for increasing the range of applications with
RL is feasible by leveraging imperfect human guidance.
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