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Abstract

Hyperparameter optimization is a ubiquitous challenge in
machine learning, and the performance of a trained model
depends crucially upon their effective selection. While a rich
set of tools exist for this purpose, there are currently no prac-
tical hyperparameter selection methods under the constraint
of differential privacy (DP). We study honest hyperparameter
selection for differentially private machine learning, in which
the process of hyperparameter tuning is accounted for in the
overall privacy budget. To this end, we i) show that standard
composition tools outperform more advanced techniques in
many settings, ii) empirically and theoretically demonstrate
an intrinsic connection between the learning rate and clipping
norm hyperparameters, iii) show that adaptive optimizers like
DPAdam enjoy a significant advantage in the process of hon-
est hyperparameter tuning, and iv) draw upon novel limiting
behaviour of Adam in the DP setting to design a new and
more efficient optimizer.

Introduction
Over the last several decades, the field of machine learning
has flourished. However, training machine learning models
frequently involves personal data, which leaves data con-
tributors susceptible to privacy attacks (Shokri et al. 2017;
Carlini et al. 2019; Nasr, Shokri, and Houmansadr 2019;
Fredrikson, Jha, and Ristenpart 2015; Song, Ristenpart,
and Shmatikov 2017). The leading approaches for privacy-
preserving machine learning are based on differential pri-
vacy (DP) (Dwork et al. 2006). Informally, DP rigorously
limits and masks the contribution that an individual dat-
apoint can have on an algorithm’s output. To address the
aforementioned issues, DP training procedures have been
developed (Williams and McSherry 2010; Bassily, Smith,
and Thakurta 2014; Song, Chaudhuri, and Sarwate 2013;
Abadi et al. 2016), which generally resemble non-private
gradient-based methods, but with the incorporation of gra-
dient clipping and noise injection.

In both settings, hyperparameter selection is instrumental
to achieving high accuracy. The most common methods are
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grid search or random search, both of which incur a compu-
tational overhead scaling with the number of hyperparam-
eters under consideration. In the private setting, this issue
is often magnified as most private training procedures in-
troduce new hyperparameters. More importantly, hyperpa-
rameter tuning on a sensitive dataset also costs in terms of
privacy, naively incurring a multiplicative cost which scales
as the square root of the number of candidates (based on
composition properties of differential privacy).

Most prior works on private learning choose not to ac-
count for this cost (Abadi et al. 2016; Yu et al. 2019; Tramer
and Boneh 2021), focusing instead on demonstrating the ac-
curacy achievable by private learning under idealized con-
ditions; if the best hyperparameters were somehow known
ahead of time. Recent work (Papernot and Steinke 2021)
show that non-private hyperparameter tuning can expose
outliers of the dataset. Some assume the presence of supple-
mentary public data resembling the sensitive dataset (Avent
et al. 2020; Ramaswamy et al. 2020), which may be freely
used for hyperparameter tuning. Such public data may be
scarce or nonexistent in settings where privacy is a concern,
leaving practitioners with little guidance on how to choose
hyperparameters. As explored in our paper, poor hyperpa-
rameter selection with standard private optimizers can have
catastrophic effects on model accuracy.

Hope is afforded by the success of adaptive optimiz-
ers in the non-private setting. The canonical example is
Adam (Kingma and Ba 2014), which exploits moments of
the gradients to adaptively determine the learning rate. It
often works out of the box, providing accuracy compara-
ble with tuned SGD. However, Adam has been overlooked
in the private setting since previous works show that fine-
tuned DPSGD tends to perform better than DPAdam (Paper-
not et al. 2020). This leads to several subsequent works (Yu
et al. 2021; Tramer and Boneh 2021) that limit themselves to
highlighting accuracy under ideal DPSGD hyperparameters.
We navigate the different options available to a practitioner
to solve the honest private hyperparameter tuning problem
and ask, are there optimizers that provide strong privacy,
require minimal hyperparameter tuning, and perform com-
petitively with tuned counterparts?

Our Contributions 1) We investigate techniques for pri-
vate hyperparameter tuning. We perform a comprehensive
empirical evaluation of the proposed theoretical method
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of Liu and Talwar (2019) and show that it can be expen-
sive depending on the hyperparameter grid size; in certain
cases, one can tune over many hyperparameters using stan-
dard composition tools such as moments accountant (Abadi
et al. 2016). This analysis extends Koskela and Honkela
(2020), in which they focus on comparing DPSGD and their
optimizer ADADP, while we analyze the overheads of hy-
perparameter tuning for any given optimizer. (Section )

2) We empirically and theoretically demonstrate that two
hyperparameters, the learning rate and clipping threshold,
are intrinsically coupled for non-adaptive optimizers. We
show that this coupling makes DPSGD sensitive to these pa-
rameter choices, which can drastically affect the validation
accuracy. While other hyperparameters and the model archi-
tecture are restricted by the scope of the task, privacy, utility
targets, and computational resources, the learning rate and
clipping norm have no a priori bounds. Since the resulting
hyperparameter grid adds up to the privacy cost while tun-
ing to achieve the model with the best utility, we explore
leveraging adaptive optimizers, DPAdam, to reduce the hy-
perparameter space. (Section )

3) We empirically show that the DPAdam optimizer (with
default values for hyperparameters), can match the perfor-
mance of tuned non-adaptive optimizers on a variety of
datasets, thus enabling private learning with honest hyper-
parameter selection. This finding complements a prior claim
of Papernot et al. (2020), which suggests that a well-tuned
DPSGD can outperform DPAdam. However, our findings
show that this difference in performance is relatively in-
significant. Furthermore, when hyperparameter tuning is ac-
counted for in privacy loss, we show that DPAdam is much
more likely to produce non-catastrophic results. (Section )

4) We show that the adaptive learning rate of DPAdam
converges to a static value. We introduce a new private op-
timizer, DPAdamWOSM that matches DPAdam in perfor-
mance without computing the second moments. (Section 6)

Related Work
Hyperparameter tuning plays a vital role in machine learn-
ing practice. In the non-private setting, ML practitioners
use grid search, random search, Bayesian optimization tech-
niques (Swersky, Snoek, and Adams 2013) or AutoML (He,
Zhao, and Chu 2021) techniques to tune their models. How-
ever, there hasn’t been much research on private hyper-
parameter tuning procedures due to the significant associ-
ated privacy costs. Each set of hyperparameter configura-
tions results in a privacy-utility tradeoff that can be cap-
tured by Pareto frontiers using multivariate Bayesian op-
timization over parameter dimensions (Avent et al. 2020).
However, this method asks the model curator to query the
dataset multiple times which requires non-private access to
the dataset. There are some end-to-end private tuning pro-
cedures (Chaudhuri, Monteleoni, and Sarwate 2011; Chaud-
huri and Vinterbo 2013; Kusner et al. 2015), that works in
restricted settings for few combinations of candidates. The
most relevant work to ours is an approach for private selec-
tion from private candidates (Liu and Talwar 2019). They
provide two methods: one outputs a candidate with accuracy
greater than a given threshold, and the other randomly stops

and outputs the best candidate seen so far. The first approach
is of limited utility in practice as it requires a prior accuracy
bound for the dataset. The second variant incurs a consider-
able overhead in privacy cost. We study the second approach
and compare it with a naive approach based on Moments Ac-
countant (Abadi et al. 2016) which would scale as the square
root of the number of candidates.

Problem Setup
Consider a sensitive dataset D which lies beyond
a privacy firewall and has n points of the form
(x1, y1), (x2, y2), . . . , (xn, yn) where xi ∈ X is the fea-
ture vector of the ith point and yi ∈ Y is its desired out-
put. Though our experiments are carried out in the super-
vised setting, all results can be translated to unsupervised
setting. The dataset has been partitioned into the training set
and the validation set. A trusted curator wants to train a ML
model by making queries on the dataset with a total end-to-
end training privacy budget of (εf , δf ) such that the model
can perform with high accuracy on the validation set. The
curator wants to try multiple hyperparameter candidates for
the model to figure out which candidate gives the maximum
accuracy. However, as the model is private, each candidate
requires multiple queries made on the dataset and all of them
need to be accounted in the total privacy budget of (εf , δf ).

Note that any validation accuracy must also be measured
privately. Since this accuracy is a low-sensitivity query with
a scalar output, and must be computed once per choice of
hyperparameters, the cost of this procedure is a lower order
term versus the main training procedure. Thus for simplicity,
we do not noise these validation accuracy queries. As we
will see later, some optimizers require more candidates to
tune and hence require more privacy budget than others.

Privately Tuning DP Optimizers
Effective hyperparameter tuning is crucial in extracting good
utility from an optimizer. Unlike the non-private setting,
DP optimizers typically i) have more hyperparameters to
tune; ii) require additional privacy budget for tuning. Exist-
ing work on DP optimizers acknowledge this problem (e.g.,
(Abadi et al. 2016)), but do not address the privacy cost in-
curred during hyperparameter tuning (Abadi et al. 2016; Yu
et al. 2019; Tramer and Boneh 2021). There are two main
prior general-purpose approaches for private hyperparame-
ter selection. The first performs composition via Moments
Accountant (Abadi et al. 2016), and the second is the al-
gorithm of Liu and Talwar (2019) (LT). We investigate the
privacy cost of these two techniques in practice and discuss
situations in which each method is preferred.

Tuning cost via LT Liu and Talwar (2019) propose a
random stopping algorithm (LT) to output a ‘good’ hy-
perparameter candidate from a pool of K candidates,
{x1, . . . , xK}. They assume sampling access to a random-
ized mechanism Q(D) which samples i ∼ [K], and returns
the i-th candidate xi, and a score qi for this candidate. It is
a random stopping algorithm, in which at every iteration, a
candidate is picked from Q i.i.d. with replacement and a γ-
biased coin is flipped to randomly stop the algorithm. When
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Figure 1: Comparing the privacy cost of LT versus Moments Accountant. The minimal privacy overhead incurred by LT is at
least ≈ 5x, and increases with the dataset size (left). However, as we allow LT to sample and test more candidate hyperparam-
eters, the privacy cost barely increases (middle). Moments Accountant is able to test a significant number of candidates at the
same cost as the minimal privacy overhead of LT (right).

the algorithm stops, the candidate with the maximum score
seen so far is outputted. In the approximate DP version of
this algorithm, an extra parameter Υ is set to limit the total
of number of iterations.
Theorem 1 ((Liu and Talwar 2019), Theorem 3.4). Fix any
γ ∈ [0, 1], δ2 > 0 and let Υ = 1

γ log 1
δ2

. If Q is (ε1, δ1)-DP,
then the LT algorithm is (εf , δf )-DP for εf = 3ε1 + 3

√
2δ1

and δf =
√

2δ1Υ + δ2.
Theorem 1 expresses the privacy cost of the algorithm in

terms of the privacy cost of individual learners, and param-
eters of the algorithm itself. The δ2 parameter does not sig-
nificantly affect the final epsilon εf of the algorithm and in
practice, one can set it to a very small value (10−20). Though
a small value of δ2 has little effect on δf , it increases the hard
stopping time of the algorithm, Υ.

To understand the minimum privacy cost overhead in-
curred in the LT algorithm, we first measure its final pri-
vacy cost εf , δf budget for training a single hyperparameter
candidate (γ = 1), against the privacy cost ε1, δ1 of the un-
derlying individual learner. Later we show how the privacy
cost changes for multiple candidates (varying γ).

To use LT, one needs to figure out the ε1, δ1 via Theo-
rem 1 from the εf , δf values. Theorem 1 implies that δ1
needs to be much smaller than δf . This change in δ1 results
in a blowup of ε1 and hence, the final privacy cost of the LT
algorithm (3ε1 + 3

√
2δ1), is much larger than what it would

have been for learning one candidate without LT. We call this
increase the blowup of privacy. We report this blowup in Fig-
ure 1(left), for the setting of σ = 4, L=250, T=10, 000 with
varying dataset sizes (n). It can be seen that for n=5, 000,
the blowup is 4.8x whereas for for n=950, 000, the blowup
is almost 7.3x. Qualitatively similar trends persist for other
choices of noise multiplier, lot size and iterations.

Furthermore, we show that although LT entails a privacy
blowup, decreasing γ (corresponding to training more in-
dividual learners with ε1, δ1) doesn’t result in a significant
difference in the final epsilon guaranteed by LT. In Fig-
ure 1(middle), we show the final epsilon cost for different
dataset sizes and varying values of γ ∈ [0.001, 0.01, 0.1, 1].
It is interesting to note here that with smaller γ values, one
can train many candidates (in expectation, 1

γ ) for negligi-

ble additional privacy cost. The blowup to train 1 candidate
(γ = 1) versus 1, 000 candidates (γ = 0.001) increases from
33 to 39 for n = 5, 000 and increases from 0.49 to 0.69, for
n = 950, 000. This increase is minimal in comparison to ad-
vanced composition, which grows proportional to O(

√
k).

In summary, the LT algorithm is effective if an analyst has
the privacy budget to afford the initial blowup, as the privacy
cost of testing additional hyperparameters is insignificant.

Tuning cost via MA We now compare LT with tuning us-
ing Moments Accountant (MA); for tuning via MA, each hy-
perparameter candidate is trained by adding necessary Gaus-
sian noise at each iteration, and the best hyperparameter can-
didate is selected at the end. MA is used for arriving at the
final privacy cost of this process. We notice that with the
same initial privacy blowup of the LT algorithm, MA is able
to compose a considerable number of hyperparameter candi-
dates. In Figure 1(right), we show the number of candidates
that can be composed using MA with the minimum privacy
cost for running the LT algorithm (γ=1), for the setting of
σ=4, L=250, T=10, 000 and varying dataset size (n). As T
and L are set constant, bigger n values in this graph corre-
spond to fewer epochs of training and hence, worse utility.
MA can compose 14 candidates for n=5000 and up to 175
candidates when n=105. It is surprising how well a standard
composition technique performs versus LT. This informa-
tion can be highly valuable to a practitioner who has limited
privacy budget. Qualitatively similar trends persist for other
choices of batch size, noise multiplier, and iterations. We
note that both MA and LT can leverage the recent PRV ac-
countant (Gopi, Lee, and Wutschitz 2021), which is faster
and estimates a tighter bound for the final privacy cost.

From these experiments, we conclude that while tuning
with LT entails an initial privacy blowup, the additional pri-
vacy cost for trying more candidates (smaller γ) is minimal.
Even though this has an additional computation cost, it can
be appealing when an analyst wants to try numerous hyper-
parameters. On the other hand, for the same overall privacy
cost, MA can be used to compose a significant number of hy-
perparameter candidates. Additionally, MA allows access to
all intermediate learners, whereas LT allows access to only
the final output parameters. In the sequel, this conclusion
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will be useful in making the naive MA approach a more ap-
pealing tool for some settings (e.g., tighter privacy budgets).

Tuning DP Optimizers
We detail aspects of tuning both non-adaptive and adaptive
optimizers. We start with tuning non-adaptive optimizers.
While prior work (Andrew et al. 2021) hints at the existence
of a relationship between clip and optimal learning rate, they
provide no evidence of it. We theoretically and empirically
demonstrate this connection between the learning rate and
clipping threshold. We also establish that non-adaptive opti-
mizers inevitably require searching over a large LR-clip grid
to extract performant models. Adaptive optimizers forego
this problem as they do not need to tune the hyperparam-
eter dimension of learning rate. However, they introduce
other hyperparameters that have known good choices in the
non-private setting, and later we empirically show that these
choices perform well in the private setting as well.

Tuning DP non-adaptive optimizers While many hyper-
parameters are restricted due to computational and priva-
cy/utility targets, the learning rate α and the clipping thresh-
old C have no a priori bounds. In the following theorem,
we show an interplay between these parameters by first the-
oretically analyzing the convergence of DPSGD. We derive
a bound on the expected excess risk of DPSGD and while
doing so, show that the optimal learning rate, αopt, is pro-
portional to the inverse of C. We provide the proof in our
full version (Mohapatra et al. 2021).

Theorem 2. Let f be a convex and β-smooth function,
and let x∗ = arg min

x∈S
f(x). Let x0 be an arbitrary point

in S , and xt+1 = ΠS(xt − α(gt + zt)), where gt =
min(1, C

‖∇f(x)‖2 )∇f(x) and zt ∼ N (0, σ2C2) is the noise
due to privacy. After T iterations, the optimal learning rate
is αopt = R

CT
√
1+σ2

, where E[f( 1
T

∑T
i xt) − f(x∗)] ≤

RC
√
1+σ2
√
T

and R = E[‖x0 − x∗‖].

Though Theorem 2 gives a closed-form expression for the
optimum learning rate for the convergence bound to hold, it
is a function of the parameter R, which is unknown a priori
to the analyst. Given constant T and σ, the optimal learning
rate αopt is inversely proportional to the clipping norm C.
This is crucial information in practice because these parame-
ters vary among datasets and are unbounded. This unbound-
edness requires us to search over very large ranges of C and
α when we have no prior knowledge of the dataset. It is nat-
ural to ask if we can fix the clipping norm C and search only
over a wide range for the learning rate α (or vice versa). We
explore this relationship experimentally via simulations on a
synthetic dataset as well as on the ENRON dataset, showing
that fixing one of these two hyperparameters may often but
not always result in an optimal model.

We train a linear regression model on a 10-dimensional
synthetic dataset of input-label pairs (x, y) sampled from a
distribution D as follows: x1, . . . , xd ∼ U(0, 1), y = x ·
w∗, w∗ = 10 · 1d. We use the initialization w0 = 0d and

train for 100 iterations. In the non-private setting, this model
converges quickly with any reasonable learning rate, but in
the private setting, we notice that the training loss depends
heavily on the choice of α and C. Figure 2(a) shows a heat
map for the log training loss when trained on (α,C) pairs
taken from a large grid consisting of [1, 2, 4, 5, 8] at scales
of [10−4, 10−3, 10−2, 10−1, 100, 101]. The best training is
observed when the loss is close to 0 (white pixels).

From Figure 2(a), We first observe that to achieve the best
accuracy, α and C need to be tuned on a large grid spanning
several orders of magnitude for each of these parameters.
Second, multiple (α,C) pairs achieve the best accuracy and
all lie on the same diagonal, validating our theory for an in-
verse relation between α and C. However, it is not possible
to set the clipping norm C constant and tune α (correspond-
ing to a vertical line in Figure 2(c)) or vice versa in order
to eliminate a tuning hyperparameter, because not all C or
α values can obtain the lowest loss. This phenomenon is ev-
ident by noticing that not all vertical or horizontal lines on
this figure have white pixels. This happens, for example, at
the extremes (e.g., at the top-right corner), but also for sev-
eral intermediate and standard choices (e.g., C = 0.1 or
0.2). Again, the analyst has no way of knowing this a priori.

Figure 2(b) details the results for the same simulation ex-
periment with DPAdam (with default Adam hyperparame-
ters) as the underlying optimizer. There we notice that the
inverse relation between α and C no longer hold as we in-
tuited earlier. Moreover, for a given choice of α, there are
several clip choices that result in lowest losses. We repeat
the same experiment over the ENRON dataset and observe
similar trends (Figures 2(c) and 2(d)). We conclude that pri-
vately tuning non-adaptive optimizers, requires a larger grid
of hyperparameter options than their adaptive counterparts.

Tuning DP adaptive optimizers Adaptive optimizers au-
tomatically adapt over the learning rate α, requiring us to
tune only over the clipping norm C. But recall our key ques-
tion: can we train models that perform competitively with
the fine-tuned counterparts from DPSGD?

Adam introduces two new hyperparameters, first and sec-
ond moment exponential decay parameters (β1 and β2). In
the non-private setting, these parameters are relatively insen-
sitive, and default values of α=0.001, β1=0.9, and β2=0.999
are recommended based on empirical findings. Hence be-
fore we compare DPAdam and DPSGD, we first find and
establish such recommended values for this hyperparameter
triple in the DP setting next, and then show that DPAdam
with a small hyperparameter space performs competitively
with DPSGD in Section .

To establish default choices of α, β1, and β2 for DPAdam,
we evaluate this private optimizer over four diverse datasets
and two learning models including logistic regression and a
neural network with one 100 neurons hidden layer (TLNN).
These selected datasets include both low-dimensional data
(where the number of samples greatly outnumbers the di-
mensionality) and high-dimensional data (where the num-
ber of samples and dimensionality are at same scale). Since
we still have a large hyperparameter space to tune over, for
the rest of this work, we fix a constant lot size (L=250),
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(a) Simulation DPSGD (b) Simulation DPAdam (c) ENRON DPSGD (d) ENRON DPAdam

Figure 2: Log of training loss with σ = 4. In the DPSGD experiments (a,c) the white pixels mark the points with training losses
below the 1st percentile. Note that best loss values lie on a diagonal expressing the inverse connection between α and C for
DPSGD experiments . Meanwhile white pixels in the DPAdam experiments (b,d) correspond to points that have lower losses
than the 1 percentile threshold of the DPSGD counterpart experiments. We see that DPAdam is robust to a wide range of C for
a select range of initial α.

(a) σ = 2 (b) σ = 4 (c) σ = 8

Figure 3: Ranking hyperparameter candidates across datasets. The black points refer to the candidates with α = 0.001 (with all
permutations of β1, β2 from our searchgrid); the gold refers to the candidate with α = 0.001, β1 = 0.9, β2 = 0.999

and consider tuning over three different noise levels, σ ∈
[2, 4, 8], so that we can study the effects of tuning the other
hyperparameters more thoroughly. All experiments are re-
peated three times and averaged before reporting. Addi-
tionally, in this particular experiment since we focus on
α, β1, and β2, we also fix the clipping threshold C=0.5,
and T=2500 iterations of training. For each dataset and
model, we run DPAdam three times with hyperparameters
(α, β1, β2) from the grids, α ∈ [0.001, 0.05, 0.01, 0.2, 0.5],
β1, β2 ∈ [0.8, 0.85, 0.9, 0.95, 0.99.0.999].

Figure 3 shows the boxplots of testing accuracies of
DPAdam over the different hyperparameter choices. When α
is 0.001 (same as in the non-private setting), all the datasets
and models have final testing accuracies (marked in black)
close to the best possible (and in most cases it is the best)
accuracy. Furthermore, we also highlight the accuracy of the
suggested default choice of Adam (α = 0.001, β1 = 0.9,
β2 = 0.999) using gold dots, which also work well for
DPAdam. Hence, we suggest the non-private default values
for these parameters in the private setting.

Optimizer Parameter Values

DPSGD α
0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1

DPMomentum
α

0.001, 0.002, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1

C 0.1, 0.2, 0.5, 1
m 0.5, 0.6, 0.7, 0.8, 0.9, 0.99

DPAdam C 0.1, 0.2, 0.5, 1

Table 1: Hyperparameter Grid

Advantages of Tuning Using DPAdam
In the non-private setting, adaptive optimizers like Adam en-
joy a smaller hyperparameter tuning space than SGD. We
ask two questions here. First, can DPAdam (with little tun-
ing) achieve accuracy comparable to a well-tuned DPSGD?
Second, what is the privacy-accuracy tradeoff one incurs
when using either of the two hyperparameter selection meth-
ods detailed in Section .

To answer both questions, we compare DPSGD and
DPAdam over the same set of datasets and models and
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Figure 4: Comparing the testing accuracy curves of DPAdam, DPSGD and DPMomentum models across their hyperparameter
tuning grids with σ = 4. The limits for y-axis are adjusted based on the dataset while maintaining a 15% range for all.

the hyperparameter grids learned in Section . The grids for
each optimizer are shown in Table 1, where DPSGD has
40 candidates to tune over and DPAdam has 4 with fixed
α = 0.001, β1 = 0.9, β2 = 0.999. This is because Sec-
tion shows that DPSGD needs a wide grid to obtain the best
accuracy when data distributions are unknown. Additionally,
we consider the DPMomentum optimizer. Similar to how we
searched for default tuning choices for DPAdam in Section ,
we investigate if there exists a qualitatively good choice for
the momentum hyperparameter, and unfortunately our re-
sults show that there is no such choice.

To compare the privacy-accuracy tradeoffs of the three op-
timizers, we show i) their privacy cost when extracting the
best accuracy from these optimizers, and ii) the accuracy one
would obtain from them under the tight privacy constraints.

Prioritizing Accuracy For brevity, we show experiments
for σ = 4 in Figure 4. Results for other values of σ are in the
full version (Mohapatra et al. 2021). For each dataset and
model, we train each hyperparameter candidate thrice and
report the max accuracy every 100 iterations, corresponding
to the dark lines for each optimizer. We note that their max
accuracies are extremely similar. However, Table 2 shows
the final privacy costs incurred by each of these max accu-
racy lines, and reflects our claims from Section that using
fewer hyperparameter candidates and composing privacy via
MA gives a much tighter privacy guarantee.

Prioritizing Privacy Additionally in Figure 4, DPSGD
and DPMomentum have pastel dotted lines corresponding to
their mean accuracy attained using the MA composition that
provides the tightest privacy guarantees for DPAdam. These
pastel lines are the mean accuracy (with 95% CI) from 100
repetitions of this experiment. Since DPAdam has only 4 hy-
perparameter candidates, for this experiment, we randomly
sample 4 candidates for DPSGD and DPMomentum so that
they all incur the same privacy cost. Since the candidate pool

Dataset DPSGD DPMomentum DPAdam
Adult 5.01 5.23 1.91
ENRON 30.86 32.31 12.80
Gisette 26.40 27.64 10.76
MNIST 3.01 3.14 1.14

Table 2: Final ε (at δ = 10−6) for optimizers for the LR
Models (Figure 4). DPSGD and DPMomentum use LT for
privacy accounting; DPAdam uses MA.

is significantly larger for DPSGD and DPMomentum, we
additionally scrutinize their parameter grids and prune learn-
ing rates that perform poorly. Our pruning process 1 is quite
generous, and favours minimizing the hyperparameter space
of DPSGD and DPMomentum, but these optimizers perform
subpar than DPAdam when constrained with privacy.

DPAdamWOSM
Besides a decaying average of past gradient updates,
DPAdam maintains a decaying average of their second mo-
ments. In this section, we design DPAdamWOSM (DPAdam
Without Second Moments), a new DP optimizer that oper-
ates only using a decaying average of past gradients and
eliminates the need to tune the learning rate. We achieve
this by analyzing the convergence behavior of the second-
moment decaying average in DPAdam in regimes where
the scale of noise added is much higher than the scale
of the clipped gradients. Setting the effective step size
(ESS) of DPAdam to the converged constant and remov-
ing all computations related to the second-moment up-

1Note, pruning itself is unfair; the intent was to design a DP
optimizer for any datasets with unknown prior distributions. To do
so with DPSGD one would have to consider a significantly wide
range of (α,C) to cover ‘good’ candidates as illustrated in Section .
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Figure 5: Comparing the testing accuracy curves of DPAdam, ADADP and DPAdamWOSM models across hyperparameter
tuning grid from Table 1 with σ = 4. The y-axes limits are adjusted based on the dataset while maintaining a 15% range for all.

dates, results in DPAdamWOSM. We empirically show that
DPAdamWOSM matches the utility of DPAdam while re-
quiring less computation than DPAdam.

Observe that removing the second-moment updates from
DPAdam reduces it to DPMomentum with one additional
feature: bias-correction to the first-moment decaying aver-
age, which DPAdam does to account for its initialization at
the origin. While the resulting optimizer still requires tuning
the learning rate and other hyperparameters like the clipping
threshold, DPAdamWOSM can be viewed as self-tuning the
learning rate by fixing it to the converged ESS in DPAdam.

Effective step size (ESS) in DPAdam DPAdam results
have less variance than DPSGD due to its adaptive learn-
ing rate. To understand this phenomenon better, we inspect
DPAdam’s update step. DPAdam being an adaptive opti-
mizer picks per-parameter ESS as α√

v̂t+ξ
, which is the base

learning rate α scaled by the second moment of the individ-
ual parameter gradients. We notice that when g → 0, the
ESS for DPAdam converges for the first moment gradient,
which innately accounts for the clip bound one is training
with. This may happen at later iterations, when the model is
close to its minima and the gradients get close to zero.

Theorem 3. The effective step size (ESS) for DPAdam with
g → 0 converges to ESS∗ = α

(σC/L)+ξ .

The proof for Theorem 3 and the pseudo-code for
DPAdamWOSM are provided in our full version (Moha-
patra et al. 2021). Theorem 3 gives the converged ESS a
closed form expression that can be used in place of α√

v̂t+ξ
in

the update step from the inception of the learning. Since the
second-moment updates (e.g., v̂t) are not used anymore, re-
moving them results in our new optimizer DPAdamWOSM.

Comparing Adaptive Optimizers The new optimizer is
compared with DPAdam and ADADP. For brevity, we show

experiments on σ = 4 and others appear in the full ver-
sion (Mohapatra et al. 2021). In Figure 5, we show the maxi-
mum and median accuracy curves for all the optimizers. The
median accuracy curves (in dotted) are displayed as a qual-
ity indicator over the entire hyperparameter grid for a given
optimizer; which in this case is strictly over the choices of
clip. The max lines for ADADP lies beneath DPAdam and
DPAdamWOSM for all dataset except Adult. Also, the max
accuracy line for DPAdamWOSM runs alongside DPAdam,
implying it can perform as good as DPAdam throughout
training. The median line for DPAdamWOSM also performs
alongside DPAdam and in some cases is able to beat it
(e.g, the median for DPAdamWOSM for MNIST-LR and
MNIST-TLNN lies above the median line of DPAdam).

Conclusion
We thoroughly investigated honest hyperparameter selection
for DP optimizers. We compared two existing private meth-
ods (LT and MA) to search for hyperparameter candidates,
and showed that LT incurs a significant privacy cost but
can compose over many candidates, while MA is effective
when the number of candidates is small. Next, we explored
connections between the clipping norm and the step size to
show an inverse relationship between them. Additionally,
we compared non-adaptive and adaptive optimizers, demon-
strating that the latter typically achieves more consistent per-
formance over a variety of hyperparameter settings. Finally,
we brought to light that DPAdam converges to a static learn-
ing rate when the noise dominates the gradients. This insight
allowed us to derive a novel optimizer DPAdamWOSM, a
variant of DPAdam which avoids the second-moment com-
putation and enjoys better accuracy especially at earlier it-
erations. Future work remains to investigate further implica-
tions of these results to provide tuning-free end-to-end pri-
vate ML optimizers.
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