
Top-Down Deep Clustering with Multi-Generator GANs

Daniel P. M. de Mello 1, Renato M. Assunção 2, 1, Fabricio Murai 1

1 Universidade Federal de Minas Gerais,
2 Esri Inc.

dani-dmello@hotmail.com, rassuncao@esri.com, murai@dcc.ufmg.br

Abstract

Deep clustering (DC) leverages the representation power of
deep architectures to learn embedding spaces that are opti-
mal for cluster analysis. This approach filters out low-level
information irrelevant for clustering and has proven remark-
ably successful for high dimensional data spaces. Some DC
methods employ Generative Adversarial Networks (GANs),
motivated by the powerful latent representations these mod-
els are able to learn implicitly. In this work, we propose HC-
MGAN, a new technique based on GANs with multiple gen-
erators (MGANs), which have not been explored for cluster-
ing. Our method is inspired by the observation that each gen-
erator of a MGAN tends to generate data that correlates with a
sub-region of the real data distribution. We use this clustered
generation to train a classifier for inferring from which gener-
ator a given image came from, thus providing a semantically
meaningful clustering for the real distribution. Additionally,
we design our method so that it is performed in a top-down
hierarchical clustering tree, thus proposing the first hierarchi-
cal DC method, to the best of our knowledge. We conduct
several experiments to evaluate the proposed method against
recent DC methods, obtaining competitive results. Last, we
perform an exploratory analysis of the hierarchical clustering
tree that highlights how accurately it organizes the data in a
hierarchy of semantically coherent patterns.

Introduction
Cluster analysis is a fundamental problem in unsuper-
vised learning, with a wide range of applications, espe-
cially in computer vision (Shi and Malik 2000; Achanta and
Susstrunk 2017; Joulin, Bach, and Ponce 2010; Liu et al.
2018). Its goal is to assign similar points of the data space
to the same cluster, while ensuring that dissimilar points
are placed in different clusters. One of the main challenges
in this approach is to quantify the similarity between ob-
jects. For low-dimensional data spaces, similarity might be
straightforwardly defined as the minimization of some geo-
metric distance (e.g. euclidean distance, squared euclidean
distance, Manhattan distance). On the other hand, choosing
the distance metric becomes unfeasible for high dimensional
data distributions. Images are a clear example of this prob-
lem, since any distance metric based on raw pixel spaces

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is subject to all sorts of low-level noisy disturbances irrele-
vant for determining the similarity and suffer from a lack of
translation or rotation invariance. This motivates the need for
some dimensionality reduction technique, by which the fun-
damental relationships between objects projected onto the
resulting embedding space become more consistent with ge-
ometrical distances.

In recent years deep clustering techniques have spear-
headed the dimensionality reduction approach to cluster-
ing by employing highly non-linear latent representations
learned by deep learning models (Krizhevsky, Sutskever,
and Hinton 2012). Considering the unsupervised nature of
cluster analysis, the models that naturally arise as candidates
for deep clustering are unsupervised deep generative mod-
els, since these must learn highly abstract representations of
the data as a requirement for realistic and diverse generated
samples. One of such models are the Generative Adversar-
ial Networks (GAN) (Goodfellow et al. 2014), whose ex-
tremely realistic results in image generation, semantic inter-
polation and interpretability in the latent space, are evidence
of their capacity of learning a powerful latent representation
that captures the essential components of the data distribu-
tion. Nonetheless, very few works have proposed GAN ar-
chitectures designed for clustering. Some of these works are
(Mukherjee et al. 2019; Chen et al. 2016), where the authors
showed that, by manipulating the generator’s architecture in
a specific way, it is possible to control the class of the train-
ing data to which a generated sample belongs, even when
classes labels are not available during the training.

Some recent works employed a GAN architecture with
multiple generators (Ghosh et al. 2018; Hoang et al. 2018;
Zhang et al. 2018) to achieve greater diversity in image gen-
eration, as well as an alternative way of stabilizing the train-
ing. In these works, the authors have observed that each gen-
erator tends to specialize in generating examples belonging
to a specific class of the dataset. This suggests the organic
emergence of clusters in the generators’ representation of the
data and it is one of the main motivations of our work. The
rationale is that clustering would be possible by employing a
classifier in charge of distinguishing between the generators,
and this classifier could later be applied to the real dataset in
order to classify real examples without the use of labels. Ad-
ditionally, the problem of setting the number of generators
to be used for representing the classes of the training set is

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

7770

not addressed in these works, which could be an issue in a
real clustering task, where the number of clusters is assumed
to be unknown.

In this work, we propose Hierarchical Clustering MGAN
(HC-MGAN), a method that leverages the multi-generator
GAN for the clustering task. We employ multiple generators,
each of them specializing in representing a particular clus-
ter of the training distribution. This should lead to a stronger
representation capacity and with more meaningful clusters
than what a single generator covering multiple clusters can
provide. MGANs have not been used in the previous works
exploring GANs for clustering. Additionally, we design our
method so that it performs the clustering of the training data
in a top-down hierarchical way, creating new generators as
divisions of subsequent clusters become necessary, i.e., it
permits the user to control different clustering granularity
levels according to the task at hand. The main contributions
of this work are as follows:
• We propose HC-MGAN, a novel deep clustering method

that employs GANs with multiple generators.
• We design HC-MGAN as a top-down hierarchical clus-

tering tree introducing the first hierarchical deep cluster-
ing algorithm. Hierarchical clustering allows the user to
control different levels of cluster granularity and favors
interpretability by taxonomically organizing the clusters.

• We conduct experiments with three image datasets used
in other deep clustering works as benchmarks, namely,
MNIST, Fashion MNIST and Stanford Online Products.
We obtain competitive results against recent deep clus-
tering methods, all of which are horizontal and therefore
lack the advantages of the hierarchical approach.

• We explore the clustering pattern obtained throughout the
tree, displaying how HC-MGAN is able to organize the
data in a semantically coherent hierarchy of clusters.

Related Work
We review some recent work in topics related to Deep Clus-
tering and GANs. Autoencoders (AEs) have been the most
prevalent choice in the deep clustering literature (Xie, Gir-
shick, and Farhadi 2016; Yang et al. 2017, 2019; Zhang et al.
2019b), where the clustering objective is usually optimized
on the feature representation Z resultant of the mapping
E : X → Z learned by the encoder component in AEs for a
data space X and a feature space Z . Deep Embedded Clus-
tering (DEC) (Xie, Girshick, and Farhadi 2016) pioneered
this approach, obtaining state-of-the art clustering results. It
works by pretraining an AE with a standard reconstruction
loss function, and then optimizing it with a regularizer based
on the clustering assignments modeled by a target student-
t distribution, having the cluster centers iteratively updated.
DEC’s results were surpassed by (Yang et al. 2017), which
converted DEC’s objective function into an alternated joint
optimization with K-Means loss, thus obtaining a clusteriza-
tion more suited for K-Means.

The use of GANs for clustering tasks has been influenced
by InfoGAN (Chen et al. 2016), a type of GAN whose la-
tent variable consists of, besides the usual multidimensional
variable z, a set c of one-dimensional variables c1, c2...cN

that are expected to unsupervisedly capture semantic infor-
mation in a disentangled manner (i.e., with each variable en-
coding isolated interpretable features of the real data). For
obtaining this, the authors of InfoGAN proposed an addi-
tional term in the generator’s loss function that maximized
the mutual information I(c;G(z, c)) between a generated
image G(z, c) and the latent variable c that originated it. The
variables c could be chosen to represent both categorical and
continuous features. ClusterGAN (Mukherjee et al. 2019) is
an architecture appropriate for clustering tasks based on In-
foGAN. The generator learns to generate a certain class of
the real distribution correlated with a given one-hot format
for the latent variables c. To obtain this, they proposed to
use an inference encoder network capable of performing the
mapping E : X → Z , which is the inverse of the gener-
ator’s mapping and similar to an encoder’s mapping for an
autoencoder architecture. After the training, the encoder can
be employed to classify real data samples according to the
latent variable to which it is mostly correlated, thus provid-
ing the clustering. Two key differences of our work is that
(i) we use a separate generator (not a discrete latent vari-
able) to encode a cluster, enabling our method to discover
clusters with more representation capacity, and that (ii) we
obtain hierarchical clusters, unlike the previous methods.

Kundu et al. (2019) propose the GAN-Tree framework,
which slightly resembles our approach, since it also in-
volves a hierarchical structure of independent nodes contain-
ing GANs capable of generating samples related to different
levels of a similarity hierarchy. There are several differences,
however. The most important is that the main motivation for
GAN-Tree was a framework capable of addressing the trade-
off between quality and diversity when generating samples
from multi-modal data. The authors claimed that their ap-
proach could be readily adapted for clustering tasks, but no
definitive experiments with clustering benchmarks were pro-
vided. Other important difference lies in their splitting pro-
cedure, which was performed with a latent ẑ inferred by an
encoder E for a sample image x, that is, ẑ = E(x). For each
node of the tree, they decompose their prior for ẑ into a mix-
ture of two Gaussians with shifted means. They determine
the prior Gaussian component to which ẑ is more likely re-
lated, and then train the encoder to maximize the likelihood
to this prior. For a clustering task, this approach would heav-
ily rely on the assumption that the inference made by E, as
well as the cluster encoding with the decomposed Gaussians
in Z , will be sufficient to capture semantically meaningful
clustering patterns. The split in our approach, on the other
hand, is directly embedded into the GAN training, with each
generator automatically learning to represent each cluster.
Therefore, in our work the clustering semantic quality is di-
rectly tied to the GAN’s well known representation learning
capacity, and, in particular, to the tendency of different gen-
erators in MGANs to cover different areas of the training
distribution with high semantic discrepancy.

Proposed Method: HC-MGAN
First, we provide a bird’s eye view of the proposed method.
Then we describe how its two phases – Raw Split and Re-
finement – work in detail.

7771

Figure 1: Hierarchical clustering tree overview on MNIST.
Nodes are represented by membership vectors sk. Grids
show images sampled from each distribution Pk. Each split
divides the probability masses in sk into two new nodes.

Algorithm 1: Split
Input: XData, sk
1: s

(0)
l , s

(0)
m ← raw split(XData, sk)

2: for t = 1, . . . , T do
3: s

(t)
l , s

(t)
m ← refinement(XData, s

(t−1)
l , s

(t−1)
m)

4: return sl = s
(T)
l , sm = s

(T)
m

Overview of the Hierarchical Scheme
For a given a collection of N training examples XData =
{x1, . . . ,xN}, our method constructs a binary tree of hi-
erarchical clusters, iteratively creating nodes, from top to
bottom. The k-th created node is represented by a vector
sk ∈ RN , referred to as membership vector, where each
sk,i = p(Zi = k | xi,θ) measures the probability of exam-
ple i belonging to cluster k given xi and our model’s param-
eters θ, i.e., a soft clustering approach. The initial s0 consists
of an all-ones vector. Figure 1 depicts the initial growth of
the tree with the MNIST dataset, for the first 7 nodes. The
tree grows via a split: a soft clustering operation that takes
as input a node sk, and divides its probability masses into
two new nodes represented by membership vectors sl and
sm, with sl + sm = sk. We decide which leaf to split next
by taking the node sk with the largest total mass.

The split mechanism consists of two phases: (i) raw split
and (ii) refinement phase, as shown in Algorithm 1. Be-
fore we obtain the final sl and sm vectors, vector sk un-
dergoes a raw split, which outputs the initial membership
vectors s

(0)
l and s

(0)
m . In most cases, s(0)l and s

(0)
m are just

rough estimates of how to split sk in two clusters. Hence,
we use the refinement phase to get them progressively closer
to what we expect the ideal soft clustering assignment to
be. In Algorithm 1, we can see how the refinement trans-
forms s

(0)
l and s

(0)
m into two new membership vectors s

(1)
l

and s
(1)
m . This process is repeated for T refinement opera-

tions to yield the final result sl = s
(T)
l and sm = s

(T)
m . Note

that s(t)m + s
(t)
l = sk for every t.

Figure 2 shows the progressive improvement resulting
from the refinement phase with a grid of 25 MNIST samples,
for an sk used as a running example. Samples of each mem-
bership vector are shown below its label and color-coded
(gray scale) according to their probability mass. In this ex-
ample, 3’s and 5’s are the classes mostly associated with sk.
We expect the final split result (sl and sm) to be a separa-

1st refinement

wrong: this
3 resembles
a 5, so it got
less prob
than in correct

1st refinement

2nd refinmt.

2nd refinmt.

wrong: this
5 resembles
a 3, so it got
less prob
than in

unsure

raw
split

probs in

unsure

correct

unsure

unsure

Figure 2: (Best viewed in color) Split mechanism applied
to running example sk from MNIST. Grids show samples
color-coded (gray scale) according to their probability mass
in each membership vector (white: 100%). sk is mostly as-
sociated with 3’s and 5’s. Raw split roughly separates both
classes. Refinement iterations enhance the separation.

tion of the probability mass of 3’s and 5’s. After the raw
split of sk, the probability mass of 3’s and 5’s is roughly di-
vided between s

(0)
l and s

(0)
m , but the most ambiguous exam-

ples received low probability mass in the membership vector
mostly associated to its class. After the first refinement, we
observe that s(1)l and s

(1)
m provide a better separation of 3’s

and 5’s. After another iteration, most of the probability mass
of the 3’s (5’s) samples is in s

(2)
l (s(2)m).

Raw Split
For the raw split, we use a two-generator MGAN architec-
ture, which we adapt for binary clustering by leveraging the
fact that each generator learns to specialize in generating
samples from one sub-region of the real data distribution,
typically correlated with a specific set of classes of the data.

Figure 3 (Top) depicts the training of this MGAN for our
running example. The MGAN components are: generators
Gαk, Gβk, discriminator Dk and classifier Ck. We need
each generator to specialize in sub-regions of sk. Hence, real
data samples used for training them must reflect the sample
distribution given by sk (in the example, these are mostly 3’s
and 5’s). We define distribution Psk over the real examples
by (sum-to-one) normalizing sk, and use it to sample the
training batches. We train the MGAN with the usual adver-
sarial game between generators Gαk, Gβk and the discrim-
inator Dk, while Ck is trained to distinguish between gen-
erators. After a few epochs, we observe that one generator
is generating mostly 3’s while the other, mostly 5’s. An im-
portant detail is that we also train the generators to minimize
Ck’s classification loss, increasing the incentive for Gαk and
Gβk to generate samples from different sub-regions. More-
over, we share some parameters between Dk and Ck, since
it is more desirable for Ck to perform its classification in a
higher-level feature space, such as the one learned by Dk.

After training the MGAN for enough epochs, we can clus-
ter the data as shown in Figure 3 (Bottom). We use Ck

to perform the clustering on the real data according to the
two generated distributions it learned to identify, and which

7772

z

z

Train this MGAN for some epochs...

Each generator
specializes in a
sub-region of

minibatch has mostly 3’s and
5’s (dominant mass in)

Raw Split: Training

probs in

fake

 images

real
images

Shared parameters

=

=

Raw Split: Clustering
 After training, clusterizes

the real data according to the
two generated distributions

probs in probs in

probs in

unsure

correct

unsure

correct

wrong: this
3 resembles
a 5, so it got
less prob
than in

wrong: this
5 resembles
a 3, so it got
less prob
than in

probs in

Figure 3: (Top) Training the Raw Split Components: gen-
erators Gαk, Gβk, discriminator Dk and classifier Ck. Psk
draws real samples in proportion to their mass in sk. (Bot-
tom) Clustering the dataset with the raw split classifier.

we expect to correlate with different classes of the dataset.
In this example, the first generated distribution resembled
3’s, while the other resembled 5’s. Hence, we expect Ck to
mostly assign real 3’s probability mass to the first soft cluster
and real 5’s probability mass to the second. As seen in Fig-
ure 3 (Bottom), Ck does manage to roughly assign the 3’s
(resp. 5’s) mass to the cluster related to Gαk’s (resp. Gβk).

Note that Ck must be used to perform inference for all
examples of every class in the dataset, regardless if they
were present in the generated distributions, with p(G =
Gαk|x) + p(G = Gβk|x) = 1. While Ck can be seen
as classifying examples conditioned on them belonging to
node’s sk subtree, membership vectors actually correspond
to estimates for unconditional probabilities. To enforce the
condition that, for each example, the sum of its probability
masses in the membership vectors of sk’s children equals
vector sk, we multiply the probabilities of each example pre-
dicted by Ck by its probability in sk.

Finally, by noting that some samples in the running exam-
ple were not well separated in s

(0)
l and s

(0)
m by classifier Ck,

we conclude that the two distributions obtained from a raw
split may not be sufficiently diverse or have enough quality
to account for the entire set of 3’s and 5’s the MGAN had
access to. This underlines the need for the refinement phase,
which will be covered in the next section.

We now formalize the MGAN game in the raw split phase.
Dropping the subscript k to avoid clutter, we define the ob-
jective function of the two-generator MGAN a sum of two
cost functions Ladv and Lcls,

min
Gα,Gβ,C

max
D
L = Ladv(Gα,Gβ,D)+λLcls(Gα,Gβ,C), (1)

where Ladv is the cost for the adversarial minimax game

Algorithm 2: Raw Split
Input: XData, sk
1: Creates Components Gαk, Gβk, Ck, Dk

2: for training iterations do
3: sample x, x̂α, x̂β from Psk ,PGαk ,PGβk

4: Get L(real)
Dk

using Dk criterion on x with real labels

5: Get L(fake)
Dk

using Dk criterion on x̂α, x̂β w/ fake labels

6: Update θDk with Adam(∇θDk
(L(real)

Dk
+ L(fake)

Dk
))

7: Get LCk using Ck criterion on x̂α, x̂β , with categorical la-
bels for Gα,Gβ

8: Update θCk with Adam (∇θCk
(LCk))

9: Get L(disc)
Gk

using Dk criterion on x̂α, x̂β with real labels

10: Get L(clasf)
Gk

using Ck criterion on x̂α, x̂β with categorical
labels for Gα,Gβ

11: Update θGαk,Gβk w/ Adam(∇θGk
(L(disc)

Gk
+ λL(clasf)

Gk
))

12: for xi in XData do
13: sl,i ← C

(α out)
k (xi) · sk,i, sm,i ← C

(β out)
k (xi) · sk,i

14: return sl, sm

between generators and discriminator, given by
Ladv(Gα,Gβ,D) = Ex∼Ps [logD(x)]

+ Ex∼PGα [log(1−D(x))] + Ex∼PGβ [log(1−D(x))]
(2)

and Lcls is the classification cost that is minimized by both
generators and classifier, given by
Lcls(Gα,Gβ,C) = Ex∼PGα [log(C(x))]+Ex∼PGβ [log(C(x))].

(3)
Note that we multiply Lcls by a regularization parameter λ
to weight its impact on the total cost.

Algorithm 2 lists the steps involved in training the MGAN
for the raw split and the clustering performed with Ck.

Refinement
The refinement phase comes right after the raw split. During
this phase, some of the probability mass in the two mem-
bership vectors obtained by the raw split, s(0)l and s

(0)
m , is

exchanged so as to iteratively improve the clustering quality
(see Figure 2). Each iteration is referred to as a refinement
sub-block. Without loss of generality, consider the first re-
finement sub-block, whose components are depicted in Fig-
ure 4 (Top), for our running example. The components are
divided in two “refinement groups”, l and m (each formed
by a generator Gj , a discriminator Dj and a classifier Cj ,
j ∈ {l,m}). Each group j takes s

(0)
j as input, and has its

own independent GAN game occurring between Gj and Dj .
This scheme with two separated GANs is designed to ob-

tain a more focused generative representation of each sub-
region of sk than we were able to obtain at the raw split
phase using a single MGAN’s discriminator to learn to dis-
criminate the entire region described by sk. By providing a
more focused view of one sub-region to one discriminator,
it encounters less variance among the real examples it re-
ceives, and thus its discriminative task becomes easier. We
expect its adversarial generator’s response to be a more
diverse and convincing generation of examples associated
with that particular sub-region.

7773

z

z

Refinement: Training

Shrd. paramt.

real
images

fake
images

probs in

probs in

minb. has
mostly 3’s

Each discriminator now
has a more focused view
of each sub-region, so
the generators become
more realistic/diverse

Alternatingly train these 2 GANs...

=

Refinement: Clustering Re-estimation
 Previous clusters are refined by

re-estimating the membership
probs. with the classifiers
trained on the new higher
quality gen. distributions

 unsure

correct

correct

fake
images

real
images

minb. has
mostly 5’s Shrd. paramt.

unsure

probs in

probs in probs in

probs in

=

Figure 4: (Top) Refinement Training: generators Gl, Gm,
discriminators Dl, Dm and classifiers Cl, Cm. (Bottom)
Clustering the dataset with the refinement classifiers.

As shown in Figure 4 (Top), each GAN in groups j ∈
{l,m} draws real samples from its corresponding distribu-
tion Psj over XData, which is equal to the (sum-to-one) nor-
malized vector sj (analogously to Psk). As a result, the mini-
batches passed to each group’s GAN reflect the probability
mass in their respective membership vectors, e.g.: in our run-
ning example, Psl draws mostly 3’s, since 3’s have more
probability mass in s

(0)
l , but it might eventually draw some

5’s as well, since there’s still some mass for 5’s in s
(0)
l .

The role of classifiers Cl and Cm in these two separated
GAN games is similar to the single classifier Ck used in the
raw split phase: learn to distinguish samples from Gl and
Gm, thereby providing a way to cluster the real data. How-
ever, instead of using a single classifier (as in the raw split),
we found that using two separate classifiers which share pa-
rameters with the respective discriminators forces the clas-
sification to occur in a higher-level feature space, achieving
better clustering. Furthermore, we also train Gl and Gm to
minimize both classifiers’ losses, thus providing incentive
for each generator to generate samples more strongly corre-
lated with each sub-region (we did something similar for the
2 generators in the MGAN of the raw split).

After training the two refinement groups alternately for
enough epochs, we perform a clustering re-estimation, as
shown in Figure 4 (Bottom). This is similar to the way Ck

was used to cluster the real data in the raw split (Figure 3
(Bottom)). Now, both classifiers estimate the probability that
a sample xi ∈ XData came from Gl (or its complement,
Gm), hereby denoted by C

(l out)
j (xi), for j ∈ {l,m}. We

take the average probability (C
(l out)
l (xi) +C

(l out)
m (xi))/2

as the proportion of the mass associated with xi in sk that
should go into s

(1)
l (complement to s

(1)
m). By using this “two-

classifier ensemble”, we aim to increase the quality of the

clustering, since the generators’ distributions are expected to
be more representative of each sub-region of the dataset than
the two generated distributions obtained during the raw split.
In the running example, Gl’s (Gm’s) distributions resembled
3’s (5’s), so the classifiers assign more of the 3’s (5’s) prob-
ability mass to the cluster associated with Gl (Gm’s).

For the subsequent refinement, we expect that using s
(1)
l

and s
(1)
m to train new refinement groups l and m can yield

generated distributions that are even more representative of
the sub-regions encoded by these membership vectors, pro-
viding, in turn, even more information for the classifiers to
perform the clustering and to obtain improved membership
vectors s(2)l and s

(2)
m (recall Figure 2). Therefore, by repeat-

ing the process over T refinements, it is expected that the
initial sub-regions captured by sk are increasingly more as-
sociated with either of the refinement groups.

We now formalize the two simultaneous GAN games for
the refinement training. From the perspective of refinement
group l, the training can be defined as an optimization of a
sum of two cost functions Ladv and Lcls,
min
Gl,Cl

max
Dl

L(Gl, Dl, Cl) = Ladv(Gl, Dl)+λLcls(Gl, Cl), (4)

where Ladv describes the cost function for the adversarial
minimax game between generator Gl and discriminator Dl,
that only involves group l components, and is given by
Ladv(Gl, Dl) = Ex∼Pdata [logDl(x)]+Ex∼PGl

[log(1−Dl(x))]
(5)

and Lcls is classification cost that is minimized with respect
to Gl’s parameters and Cl’s parameters, but also involves
Gm and Cm for computing the cost, given by
Lcls(Gl, Cl) = Ex∼PGl

[logCl(x)] + Ex∼PGl
[logCm(x)]

+ Ex∼PGm
[logCl(x)].

(6)
We multiply Lcls by a regularization parameter λ to weight
its impact on the total cost. The corresponding equations for
refinement group m follow analogously.

Algorithms 3 and 4 respectively list the steps involved
in the external training loop that coordinates the alternated
training of refinement groups l and m, and in the function
called by Algorithm 3 that performs an update for the com-
ponents of a given refinement group isolatedly.

Experiments
As unsupervised tasks forbid hyperparameter tuning, we
used only slightly different tunings for each dataset,
none of which required labeled supervision, merely
aiming to stabilize the generators and avoid overfit-
ting the classification of generators. Code available at
github.com/dmdmello/HC-MGAN and supplementary/im-
plementation details at arxiv.org/abs/2112.03398.

We consider three datasets: MNIST (LeCun et al. 1998),
Fashion MNIST (FMNIST) (Xiao, Rasul, and Vollgraf
2017) and Stanford Online Products (SOP) (Oh Song et al.
2016). Following a common practice in DC works, we used
all available images for each dataset. MNIST: This dataset
consists of grayscale images of hand-written digits with
28x28 resolution, with 10 classes and approximately 7k im-

7774

Algorithm 3: Refinement

Input: XData, s
(t)
l s

(t)
m

1: Creates Gl, Dl, Cl for group l and Gm, Dm, Cm for group m
2: for T iterations do
3: sample xl,xm, x̂l, x̂m from P

s
(t)
l

,P
s
(t)
m

,PGl ,PGm

4: TrainRefinGroup(Gint = {Gl, Dl, Cl,xl, x̂l},Gext =
{Cm, x̂m}) {trains l with needed external data/components
from m}

5: TrainRefinGroup(Gint = {Gm, Dm, Cm,xm, x̂m},
Gext = {Cl, x̂l}) {trains m with needed external data/com-
ponents from l}

6: for xi in XData do
7: s

(t+1)
i,l ← (C

(l out)
l (xi) + C

(l out)
m (xi)) · (s(t)i,l + s

(t)
i,m)/2

8: s
(t+1)
i,m ← (C

(m out)
l (xi)+C

(m out)
m (xi)) · (s(t)i,l + s

(t)
i,m)/2

9: return s
(t+1)
l , s(t+1)

m

Algorithm 4: TrainRefinGroup
Input: Gint = {Gint, Dint, Cint,x, x̂int},Gext = {Cext, x̂ext}
#Gint receives internal data/components from the current refine-
ment group being trained, Gext receives external data/components
from the neighbor refin. group needed to train the current group

1: Get L(real)
Dint

using Dint criterion on x with real labels

2: Get L(fake)
Dint

using Dint criterion on x̂int with fake labels

3: Updates θDint with Adam(∇θDint
(L(real)

Dint
+ L(fake)

Dint
))

4: Get LCint using Cint criterion on x̂int, x̂ext, with categorical
labels for internal and external generated data

5: Updates θCint with Adam(∇θCint
(LCint))

6: Get L(disc)
Gint

using Dint criterion on x̂int with real labels

7: Get L(clasf)
Gint

using Cint criterion on x̂int, x̂ext with categori-
cal labels for internal and external generated data

8: Updates θGint with Adam(∇θGint
(L(disc)

Gint
+ λL(clasf)

Gint
))

ages available for each class. FMNIST: This dataset con-
sists of gray scale pictures of clothing-related objects with
28x28 resolution, with 10 classes and exactly 7k images
available for each class. SOP: This dataset consists of color
pictures of products with varying resolution sizes, with 12
classes, and a varied number of examples per class, roughly
ranging from 6k examples to 13k. SOP, in particular, is de-
signed for supervised tasks, and is very hard for cluster-
ing due to high intra-class variance. We follow the practice
adopted for SOP in (Zhang et al. 2019b), i.e., we convert the
images to grayscale, resize them to 32x32, and remove the
classes “kettle” and “lamp”.

Evaluation Metrics We consider two of the most com-
mon clustering metrics for benchmarks with each dataset:
clustering accuracy (ACC) and normalized mutual informa-
tion (NMI). As usual, these metrics are computed on the re-
sults obtained when setting the number of clusters C to the
number of classes in the data. For a direct comparison, we
let HC-MGAN’s tree grow until it reaches C leaves. Addi-
tionally, we convert the final soft clustering outputs to hard
assignments by attributing each example to the highest prob-
ability group, and then compute the evaluation metrics.

Baselines and SOTA methods We present the baselines
and state-of-the-art methods used in the comparison. We
consider five groups of methods: (i) classical, non Deep
Learning (DL)-based based: K-Means (MacQueen 1967),
SC (Zelnik-Manor and Perona 2004), AC (Gowda and Kr-
ishna 1978), NMF (Cai et al. 2009); (ii) Varied DC: DEC
(Xie, Girshick, and Farhadi 2016), DCN (Yang et al. 2017),
JULE (Yang, Parikh, and Batra 2016), VaDE (Jiang et al.
2017), DEPICT (Ghasedi Dizaji et al. 2017), SpectralNET,
DAC (Chang et al. 2017), (Shaham et al. 2018), DualAE
(Yang et al. 2019); (iii) Subspace Clustering (either DL-
based or not): NCSC (Zhang et al. 2019b), SSC (Elhamifar
and Vidal 2013), LLR (Liu et al. 2013), KSSC (Patel and
Vidal 2014), DSC-Net (Ji et al. 2017), k-SCN (Zhang et al.
2019a); (iv) GAN-based DC: ClusterGAN (Mukherjee et al.
2019), InfoGAN (Chen et al. 2016), DLS-Clustering (Ding
and Luo 2019);(v) DC w/ data augumentation: (Zhang et al.
2019b), IIC (Ji, Henriques, and Vedaldi 2019), DCCM (Wu
et al. 2019) and DCCS (Zhao et al. 2020). None of the DC
methods we found in the literature are hierarchical. Most re-
sults are transcribed from either (Zhao et al. 2020), (Zhang
et al. 2019b) or (Mukherjee et al. 2019).

Results Table 1 shows the performance comparison be-
tween traditional baselines, state-of-the-art DC methods
without and with data augumentation, and our method. In
order to check the effectiveness of the refinements, we also
display results obtained only with raw splits.
MNIST Our method outperforms the traditional baselines
by a large margin. In terms of ACC, it is not among the
top 5 presented methods, but it performs reasonably close
to them, even outperforming, in either NMI or ACC, some
DC methods like ClusterGAN, InfoGAN, DEC, DCN. This
result was obtained by employing the same architecture we
used for FMNIST, which might be of excessive capacity for
MNIST and even harm the clustering result by making it
trivial for a single generator to represent all the data, instead
of a cluster of similar data points, during the raw split. This
dataset was the one for which the refinements showed the
greatest improvement over the raw split only experiment.
FMNIST Only DCCS is able to surpass our method’s ACC
and NMI performance. We emphasize that using data aug-
mentation in DCCS causes a significant improvement, since
selecting the right type of augmentations for a specific
dataset can reduce much of the intra-class variance. How-
ever, augmentation with GANs is challenging (Karras et al.
2020), so we leave this for future work. The refinements still
had a positive impact over the raw split only experiment.
SOP The results for existing methods were transcribed from
the NCSC work (Zhang et al. 2019b). There the authors state
that they handpicked 1k examples per class to create a man-
ageable dataset for clustering, but did not specify how or
which examples were selected. Their choice was made in the
context of competing subspace clustering methods to which
their model was being compared, many of which are not able
to scale to larger datasets due to the memory constraints in-
volved in computing a similarity matrix necessary for their
methods. We tried without success to contact the authors to
obtain the same subset of the data. Therefore, we decided to

7775

Dataset MNIST FMNIST SOP
Metrics ACC NMI ACC NMI ACC NMI
K-meansi .572 .500 .474 .512 - -
SCi .696 .663 .508 .575 - -
ACi .695 .609 .500 .564 - -
NMFi .545 .608 .434 .425 - -
DECii .843 .772 .590 .601 .229 .121
DCNii .833 .809 .587 .594 .213 .084
JULEii .964 .913 .563 .608 - -
VaDEii .945 .876 .578 .630 - -
SpectralNetii .971 .924 .533 .552 - -
DualAEii .978 .941 .662 .645 - -
DACii .966 .967 .615 .632 .231 .098
SSCiii .430 .568 .359 .181 .127 .007
LLRiii .552 .665 .345 .254 .224 .173
DSC-Netiii .659 .730 .606 .617 .269 .146
KSSCiii .585 .677 .382 .197 .268 .152
k-SCNiii .871 .782 .638 .620 .229 .166
NCSCiii .941 .861 .721 .686 .275 .138
ClustGANiv .950 .890 .630 .640 - -
InfoGANiv .890 .860 .610 .590 .198 .082
DLS-Clstiv .975 .936 .693 .669 - -
IICv .992 .978 .657 .637 - -
DCCMv - - .657 .637 - -
DCCSv .989 .970 .756 .704 - -
Ours .943 .905 .721 .691 .229 .072
Ours (raw) .877 .856 .704 .690 .204 .063

Table 1: Clustering performance results on 3 datasets w.r.t.
ACC and NMI (top 5 in bold). “Ours” indicates HC-MGAN,
with (raw) indicating no refinement operations performed. i:
non-deep. ii: varied DC methods. iii: Subspace Clustering.
iv: GAN-based DC. v: DC w/ data augmentation.

evaluate our results on the entire data. Due to the class im-
balance, we compute both the mean ACC over classes (re-
ported in the table) and the overall ACC achieved by HC-
MGAN, which are, respectively, 0.229 and 0.221. NMI is
invariant to class imbalance. On this dataset, our model does
not perform as well as the subspace clustering group, espe-
cially NCSC, KSSC and DSC-Net, even though it was on
par with NCSC and greatly surpassed the KSSC and DSC-
Net on other datasets. But for other DC methods reported
from (Zhang et al. 2019b), our method performs closely,
even outperforming DCN and InfoGAN in accuracy.

Qualitative Analysis Figure 5 shows a visualization of the
clustering tree for FMNIST. For each node k in the tree, it
displays a grid of 25 real examples sampled from a multi-
national distribution over the dataset with weights for the
i-th example given by sk,i, yielding a representative view
of sk’s soft cluster. Moreover, a color coded bar graph be-
side each grid displays the % of the global probability mass
for each class A in sk, given by 100 ·

∑N
i sk,i · 1(ci =

A)/
∑N

i 1(ci = A), where 1 is an indicator function and ci
is the class of the i-th example. Through a quick inspection,
we observe that the 1st split (s0) occurred with almost perfect
precision, with examples of the same class having their prob-

coat

9th split

pullover

s17 s18 s13 s14

3rd split 2nd split

s11 s12 s16 s9 s10 s7 s8 s15
6th split 8th split 5th split 4th split

s0

s1 s2

s5 s6

1st split

s3 s4

7th split

tshirt
pants
pullover
dress
coat
sandal
shirt
sneakers
bag
ank. boot

100%0%

tshirt shirt

pants dresssandalsneakersbagank. boot

Figure 5: FMNIST cluster tree. Grids show sampled im-
ages; bar graphs beside k-th node’s grid represent % of total
probability mass for each class in that node (best viewed in
color).

ability mass nearly entirely allocated to either s1 or s2. We
begin to notice some imprecision at the 2nd split (s2), with
a small portion of the probability mass of classes coat and
t-shirt being assigned to s3 while the largest portion went to
s4, and at the 3rd split (s1), with a small portion of the sneak-
ers’ mass being assigned to s5 and the largest portion going
to s6. The most imprecise splits occurred during the 4th, 7th

and 9th splits (i.e., s4, s7 and s8), but the classes involved
in these splits (t-shirt, pullover, coat and shirt) are the most
visually similar in the dataset, thus being the hardest to accu-
rately separate into clusters. The other classes are relatively
well separated. One fact that can explain why our method
performed very well w.r.t. NMI on FMNIST is that most of
the probability mass of each class for which our method ex-
hibited low accuracy was assigned to at most two clusters.
For the NMI metric, having the wrongfully assigned classes
concentrated on fewer clusters provides better mutual infor-
mation than having them spread throughout more clusters.

Conclusion
We proposed a method for hierarchical clustering, leverag-
ing the representation capacity of GANs/MGANs. To the
best of our knowledge, this is the first hierarchical DC
method. It creates a tree of clusters from top to bottom,
where each leaf node defines a cluster. Clusters are divided
in binary splits, performed in two phases: a raw split and a
refinement. We have shown how well our method compares
to other DC methods, which lack the advantages of hierar-
chical clustering, obtaining competitive benchmark results.

7776

Acknowledgments
The authors thank the partial support from Brazilian re-
search supporting agencies: CNPq (grant PQ 313582/2018-
1), FAPEMIG (grant CEX - PPM-00598-17, grant APQ-
02337-21), and CAPES (grant 88887.506739/2020-00).

References
Achanta, R.; and Susstrunk, S. 2017. Superpixels and Poly-
gons Using Simple Non-Iterative Clustering. In Conference
on Computer Vision and Pattern Recognition (CVPR).
Cai, D.; He, X.; Wang, X.; Bao, H.; and Han, J. 2009. Local-
ity Preserving Nonnegative Matrix Factorization. In Interna-
tional Jont Conference on Artifical Intelligence (IJCAI).
Chang, J.; Wang, L.; Meng, G.; Xiang, S.; and Pan, C. 2017.
Deep Adaptive Image Clustering. In IEEE International
Conference on Computer Vision (ICCV).
Chen, X.; Duan, Y.; Houthooft, R.; Schulman, J.; Sutskever,
I.; and Abbeel, P. 2016. InfoGAN: Interpretable Represen-
tation Learning by Information Maximizing Generative Ad-
versarial Nets. In Advances in Neural Information Process-
ing Systems (NeurIPS).
Ding, F.; and Luo, F. 2019. Clustering by Directly Disentan-
gling Latent Space. arXiv:1911.05210.
Elhamifar, E.; and Vidal, R. 2013. Sparse subspace cluster-
ing: Algorithm, theory, and applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI).
Ghasedi Dizaji, K.; Herandi, A.; Deng, C.; Cai, W.; and
Huang, H. 2017. Deep Clustering via Joint Convolutional
Autoencoder Embedding and Relative Entropy Minimiza-
tion. In IEEE International Conference on Computer Vision
(ICCV).
Ghosh, A.; Kulharia, V.; Namboodiri, V.; Torr, P. H. S.; and
Dokania, P. K. 2018. Multi-agent Diverse Generative Ad-
versarial Networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative Adversarial Net. In Advances in Neural
Information Processing Systems (NeurIPS).
Gowda, K. C.; and Krishna, G. 1978. Agglomerative clus-
tering using the concept of mutual nearest neighbourhood.
Pattern Recognition.
Hoang, Q.; Nguyen, T.; Le, T.; and Phung, D. 2018. MGAN:
training generative adversarial nets with multiple generators.
In International Conference on Learning Representations
(ICLR).
Ji, P.; Zhang, T.; Li, H.; Salzmann, M.; and Reid, I.
2017. Deep Subspace Clustering Networks. In Interna-
tional Conference on Neural Information Processing Sys-
tems (NeurIPS).
Ji, X.; Henriques, J. F.; and Vedaldi, A. 2019. Invariant In-
formation Clustering for Unsupervised Image Classification
and Segmentation. In IEEE/CVF International Conference
on Computer Vision (ICCV).

Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; and Zhou, H. 2017.
Variational Deep Embedding: An Unsupervised and Gener-
ative Approach to Clustering. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Joulin, A.; Bach, F.; and Ponce, J. 2010. Discriminative clus-
tering for image co-segmentation. In Conference on Com-
puter Vision and Pattern Recognition (CVPR).
Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.;
and Aila, T. 2020. Training Generative Adversarial Net-
works with Limited Data. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS).
Kundu, J. N.; Gor, M.; Agrawal, D.; and Babu, R. V. 2019.
GAN-Tree: An Incrementally Learned Hierarchical Gener-
ative Framework for Multi-Modal Data Distributions. In
IEEE/CVF International Conference on Computer Vision
(ICCV).
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11): 2278–2324.
Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; and Ma, Y. 2013.
Robust Recovery of Subspace Structures by Low-Rank Rep-
resentation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI).
Liu, Z.; Lin, G.; Yang, S.; Feng, J.; Lin, W.; and Goh, W. L.
2018. Learning Markov Clustering Networks for Scene Text
Detection. In Conference on Computer Vision and Pattern
Recognition (CVPR).
MacQueen, J. 1967. Some methods for classification and
analysis of multivariate observations. In Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume
1: Statistics.
Mukherjee, S.; Asnani, H.; Lin, E.; and Kannan, S. 2019.
ClusterGAN: Latent Space Clustering in Generative Adver-
sarial Networks. AAAI Conference on Artificial Intelligence
(AAAI).
Oh Song, H.; Xiang, Y.; Jegelka, S.; and Savarese, S. 2016.
Deep Metric Learning via Lifted Structured Feature Embed-
ding. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Patel, V. M.; and Vidal, R. 2014. Kernel sparse subspace
clustering. In IEEE International Conference on Image Pro-
cessing (ICIP).
Shaham, U.; Stanton, K. P.; Li, H.; Basri, R.; Nadler, B.;
and Kluger, Y. 2018. SpectralNet: Spectral Clustering us-
ing Deep Neural Networks. In International Conference on
Learning Representations (ICLR).
Shi, J.; and Malik, J. 2000. Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelligence
(PAMI).
Wu, J.; Long, K.; Wang, F.; Qian, C.; Li, C.; Lin, Z.; and
Zha, H. 2019. Deep Comprehensive Correlation Mining for
Image Clustering. In IEEE/CVF International Conference
on Computer Vision (ICCV).

7777

Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747.
Xie, J.; Girshick, R.; and Farhadi, A. 2016. Unsupervised
Deep Embedding for Clustering Analysis. In International
Conference on Machine Learning (ICML).
Yang, B.; Fu, X.; Sidiropoulos, N. D.; and Hong, M.
2017. Towards K-Means-Friendly Spaces: Simultaneous
Deep Learning and Clustering. In International Conference
on Machine Learning (ICML).
Yang, J.; Parikh, D.; and Batra, D. 2016. Joint Unsupervised
Learning of Deep Representations and Image Clusters. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
Yang, X.; Deng, C.; Zheng, F.; Yan, J.; and Liu, W. 2019.
Deep Spectral Clustering Using Dual Autoencoder Network.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Zelnik-Manor, L.; and Perona, P. 2004. Self-Tuning Spectral
Clustering. In Advances in Neural Information Processing
Systems (NeurIPS).
Zhang, H.; Xu, S.; Jiao, J.; Xie, P.; Salakhutdinov, R.; and
Xing, E. P. 2018. Stackelberg GAN: Towards Provable
Minimax Equilibrium via Multi-Generator Architectures.
arXiv:1811.08010.
Zhang, T.; Ji, P.; Harandi, M.; Hartley, R.; and Reid, I.
2019a. Scalable Deep k-Subspace Clustering. In Asian Con-
ference on Computer Vision (ACCV) 2018.
Zhang, T.; Ji, P.; Harandi, M.; Huang, W.; and Li, H. 2019b.
Neural Collaborative Subspace Clustering. In International
Conference on Machine Learning (ICML).
Zhao, J.; Lu, D.; Ma, K.; Zhang, Y.; and Zheng, Y. 2020.
Deep Image Clustering with Category-Style Representation.
In European Conference on Computer Vision (ECCV).

7778

