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Abstract

We address the poor scalability of learning algorithms for or-
thogonal recurrent neural networks via the use of stochastic
coordinate descent on the orthogonal group, leading to a cost
per iteration that increases linearly with the number of recur-
rent states. This contrasts with the cubic dependency of typi-
cal feasible algorithms such as stochastic Riemannian gradi-
ent descent, which prohibits the use of big network architec-
tures. Coordinate descent rotates successively two columns
of the recurrent matrix. When the coordinate (i.e., indices of
rotated columns) is selected uniformly at random at each it-
eration, we prove convergence of the algorithm under stan-
dard assumptions on the loss function, stepsize and minibatch
noise. In addition, we numerically show that the Riemannian
gradient has an approximately sparse structure. Leveraging
this observation, we propose a variant of our proposed algo-
rithm that relies on the Gauss-Southwell coordinate selection
rule. Experiments on a benchmark recurrent neural network
training problem show that the proposed approach is a very
promising step towards the training of orthogonal recurrent
neural networks with big architectures.

1 Introduction
Exploding or vanishing gradients are key issues affecting
the training of deep neural networks (DNNs), and are par-
ticularly problematic when training recurrent neural net-
works (RNNs) (Bengio, Simard, and Frasconi 1994; Pas-
canu, Mikolov, and Bengio 2013), an architecture that en-
dows the network with some memory and has been proposed
for modeling sequential data (see, e.g., (Giles, Kuhn, and
Williams 1994)). In recurrent neural networks, the signal
propagation is described by the following pair of equations{

h(t+ 1) = φ(Winx(t+ 1) +Wh(t)),
y(t+ 1) = Wouth(t+ 1) + bout,

(1)

for t = 0, 1, . . . , with input x(t) ∈ Rdin , hidden state
h(t) ∈ Rd, and output y(t) ∈ Rdout . The mapping φ is
a pointwise nonlinearity, and W ∈ Rd×d, Win ∈ Rd×din ,
Wout ∈ Rdout×d and bout ∈ Rdout are model parameters.
The repeated multiplication of the hidden state by the recur-
rent matrix W makes these architectures particularly sensi-
tive to exploding or vanishing gradients.

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A recently proposed remedy against exploding and van-
ishing gradients in RNNs imposes the recurrent weight ma-
trix W to be orthogonal/unitary, see, e.g., (Arjovsky, Shah,
and Bengio 2016). However, for large models, enforcing this
constraint comes with substantial computational costs, that
prohibit the use of large architectures. Several solutions have
been proposed to alleviate these costs, typically relying on
some parametrization of the orthogonal group, see below.
Unfortunately, most of these works are focused on algorith-
mic contributions and contain no convergence results.

As the orthogonal group admits a Riemannian manifold
structure, the problem can be studied through the lens of Rie-
mannian optimization. For example, stochastic Riemannian
gradient descent has been applied to orthogonal RNN train-
ing in (Wisdom et al. 2016). This algorithm scales poorly
with architecture size; its cost per iteration evolves cubi-
cally with the number of recurrent states. We propose here
a stochastic extension of the Riemannian coordinate descent
algorithm proposed in (Shalit and Chechik 2014). For each
mini-batch, instead of updating the full matrix W , we rotate
a pair of columns of W only; this is equivalent to restricting
the update of the matrix W to one coordinate of the tangent
space to the orthogonal group per iteration, for a suitably
chosen basis. As pointed out in (Shalit and Chechik 2014),
this rotation can be efficiently implemented as a multiplica-
tion of the current iterate by a Givens matrix, at a cost that
evolves linearly with d. Moreover, as we only require a sub-
set of the partial derivatives at each iterations, the cost of the
backpropagation routine could be theoretically reduced from
a quadratic to a linear function of d. Our work is thus a ma-
jor step towards the training of high-dimensional orthogonal
recurrent neural networks. Moreover, the theory of Rieman-
nian optimization allows us to derive a convergence analysis
of our proposed algorithm.

Related Works
Orthogonal/Unitary RNNs. Unitary RNNs have been
initially proposed in (Arjovsky, Shah, and Bengio 2016) to
avoid exploding or vanishing gradients. Various algorithms
have then been developed to train orthogonal RNNs. Typi-
cally, these works propose parametrizations of the orthogo-
nal/unitary group that lead to computationally cheap opera-
tions, see (Arjovsky, Shah, and Bengio 2016; Wisdom et al.
2016; Jing et al. 2017; Hyland and Rätsch 2017; Mhammedi
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et al. 2017; Helfrich, Willmott, and Ye 2018; Lezcano-
Casado and Martı́nez-Rubio 2019; Maduranga, Helfrich,
and Ye 2019). However, most of these works are focused
on algorithmic contributions and do not contain convergence
analyses. A notable exception is the work (Lezcano-Casado
and Martı́nez-Rubio 2019); their parametrization of the or-
thogonal group relies on its Lie group structure and is shown
not to create any spurious minimizer nor critical points un-
der some weak assumption on the training trajectory. In that
case, their algorithm can be seen as a stochastic Rieman-
nian gradient descent on the orthogonal group with a spe-
cific Riemannian metric different from the canonical one,
and its convergence follows from the analysis of stochas-
tic Riemannian gradient descent, see (Bonnabel 2013). Let
us finally mention two recent toolboxes extending the Py-
Torch class torch.optim to parameters constrained to lie on
some manifolds, including the orthogonal group: McTorch
(Meghwanshi et al. 2018) and GeoTorch (Lezcano-Casado
2019).

Orthogonal Constraints in Other DNN Architectures.
Orthogonal weights have also been used for other network
architectures, including fully-connected, convolutional and
residual neural networks (Ozay and Okatani 2016; Huang
et al. 2018, 2020; Bansal, Chen, and Wang 2018; Jia et al.
2020). Using orthogonal weight matrices in DNNs preserves
the energy of the signal propagated through the hidden units,
and has been shown numerically to result in a lower test error
than comparable unconstrained DNNs (Huang et al. 2018;
Jia et al. 2020). Orthogonal initialization moreover leads
to dynamical isometry (Pennington, Schoenholz, and Gan-
guli 2017), the desirable regime in which the spectrum of
the input-output Jacobian is concentrated around the value
one, shown to result in a faster training and better gener-
alization, see (Pennington, Schoenholz, and Ganguli 2017;
Hu, Xiao, and Pennington 2020; Murray, Abrol, and Tanner
2021; Abrol and Tanner 2020). For arbitrary DNN architec-
tures, note however that orthogonal regularization is some-
times preferred over strict orthogonal constraints (see, e.g.,
(Jia et al. 2017; Yoshida and Miyato 2017; Bansal, Chen,
and Wang 2018)).

Coordinate Descent Algorithms In unconstrained opti-
mization, coordinate descent (CD) is a well-studied algo-
rithm that minimizes successively the loss along a coordi-
nate, typically using a coordinate-wise variant of a first-
order method, and has been shown to achieve state-of-the-
art results on a range of high-dimensional problems (Wright
2015). In particular, CD algorithms have recently been ap-
plied to DNN training, see, e.g., (Zeng et al. 2019; Palagi
and Seccia 2019) and reference therein. When the objec-
tive is subject to orthogonality constraints, the Riemannian
counterpart of CD, Riemannian coordinate descent (RCD),
has been applied in (Ishteva, Absil, and Dooren 2013) to
low-rank tensor approximation and in (Shalit and Chechik
2014) to sparse PCA and tensor decomposition. In particu-
lar, the latter provides an efficient implementation of coordi-
nate updates in terms of multiplications by Givens matrices
that we are extensively using in this work. Note however
that these two papers consider the situation where the loss

is exactly minimized along the coordinate direction at each
iteration, an operation which is out of reach in our setting.
This assumption has been recently relaxed in (Gutman and
Ho-Nguyen 2021), where convergence results are provided
for RCD with fixed stepsizes. To our knowledge, no work
has explored the convergence of RCD with noisy gradients
yet.

Contributions
We propose a stochastic Riemannian coordinate descent
(SRCD) algorithm for training orthogonal RNNs. Our pro-
posed algorithm is both scalable with the number of recur-
rent units (with cost per iteration scaling linearly with d),
and comes with convergence guarantees unlike most exist-
ing works. More precisely, we prove the convergence of
SRCD under standard assumptions on the (mini-batch) gra-
dient noise, stepsize and objective, for coordinates selected
uniformly at random at each iteration. Let us briefly mention
that our algorithm is related to the one presented in (Jing
et al. 2017); their work is mostly focused on algorithmic
contributions, and does not highlight the link between their
proposed algorithm and Riemannian coordinate descent nor
discuss its convergence.

As a second contribution, we show numerically that the
Riemannian gradient of the loss (with respect to the orthog-
onal parameter) has an approximately sparse representation
in the basis considered for the tangent space, and propose a
variant of SRCD in which the coordinate is selected using
the Gauss-Southwell rule at each iteration. We finally illus-
trate numerically the behavior of the proposed algorithms
on a benchmark problem. Implementation of the proposed
algorithms can be found online1.

2 Stochastic Riemannian Coordinate Descent
on the Orthogonal Group

In this paper, without loss of generality, we address the opti-
mization problem

min
X∈Rm×n,W∈Od

f(X,W ), (P)

whereOd := {W ∈ Rd×d : W>W = Id} is the set of d×d
orthogonal matrices. For the specific framework of RNN
training, the variable X refers to the parameters Win, Wout,
bout or any other unconstrained model parameter, while W
is the recurrent matrix. We assume throughout the paper that
the dimension of W is very large. Before introducing our
algorithm, let us first summarize properties of the set of or-
thogonal matrices that we use in the rest of the paper.

Geometry of the Manifold of Orthogonal Matrices
The set Od of orthogonal matrices is a Riemannian mani-
fold. Roughly speaking, a manifold is a topological set in
which each neighbourhood can be set in one-to-one corre-
spondence with an open set of the Euclidean space; in that
sense, manifolds are sets that “locally look flat” (see (Ab-
sil, Mahony, and Sepulchre 2008) or (Boumal 2022) for a

1https://github.com/EMassart/OrthCDforRNNs
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more formal definition). Typically, computations on mani-
folds are mostly done on the tangent space of the manifold
at a given point, a first-order approximation of the mani-
fold around that point. For the orthogonal group, the tangent
space TWOd at some point W ∈ Od is given by:

TWOd = {WΩ : Ω ∈ Rd×d,Ω = −Ω>}. (2)

This is aD-dimensional vector space, withD = d(d−1)/2;
consistently, Od is a D-dimensional manifold. Riemannian
manifolds are manifolds whose tangent spaces are endowed
with a Riemannian metric (a smoothly varying inner prod-
uct, providing tangent vectors with a notion of length). As
often for the manifold of orthogonal matrices (Absil, Ma-
hony, and Sepulchre 2008), we choose as Riemannian met-
ric the classical Euclidean metric: for each tangent space
TWOd, and for all ξW , ζW ∈ TWOd, the Riemannian metric
between ξW and ζW is given by:

〈ξW , ζW 〉 := tr
(
ξ>W ζW

)
, (3)

the usual Frobenius inner product. In this paper, we therefore
use the notation 〈·, ·〉 to refer both to the Riemannian metric,
and the Euclidean inner product. Considering this metric, it
can easily be checked that the tangent space TWOd is gen-
erated by the orthonormal basis (Shalit and Chechik 2014):

BW := {ηi}Di=1,where ηi := WHj,l, (4)

with j, l two indices2 such that 1 ≤ j < l ≤ d and i =∑j−1
k=1(d−k)+(l−j), and where the set of matrices {Hj,l},

with 1 ≤ j < l ≤ d is an orthonormal basis for the vector
space of d× d skew-symmetric matrices:

Hj,l :=
1√
2

(
eje
>
l − ele>j

)
, (5)

with ej ∈ Rd the vector whose elements are all zero, except
the jth component that is equal to one. Let us emphasize
that each tangent space is thus endowed with a norm func-
tion, and that this norm function coincides with the Frobe-
nius norm:

‖ξW ‖ = 〈ξW , ξW 〉
1
2 = (tr

(
ξ>W ξW

)
)

1
2 . (6)

The Riemannian gradient is the counterpart of the Euclidean
gradient on manifolds. Given an arbitrary function h : Od →
R, the Riemannian gradient of h at W ∈ Od is the unique
vector ∇h(W ) ∈ TWOd that satisfies:

〈ξW ,∇h(W )〉 = Dh(W )[ξW ] ∀ξW ∈ TWOd,

i.e., its inner product with any tangent vector ξW gives the
directional derivative of h along the direction spanned by the
tangent vector ξW , written here Dh(W )[ξW ]. On the orthog-
onal group, the Riemannian gradient is simply computed3 as

∇h(W ) = PTWOd
(∇eh(W )),

2The following simply characterizes our numbering of the basis
elements: the first coordinate vector is associated to the pair (j =
1, l = 2), the second to the pair (j = 1, l = 3) etc until (j =
d− 1, l = d).

3This follows from the fact that the orthogonal group is an em-
bedded submanifold of Rd×d, see (Absil, Mahony, and Sepulchre
2008, Chap. 3) for more information.

𝑀

𝑊𝑘+1 = Exp𝑊𝑘(−α𝑘𝛻ℎ 𝑊𝑘 )

−α𝑘𝛻ℎ(𝑊𝑘)
𝑇𝑊𝑘𝑀

𝑊𝑘

Figure 1: Graphical illustration of a Riemannian gradient de-
scent iteration on a manifold M . At each iteration, we first
compute the Riemannian gradient at the current iterate W k

and then update the iterate by “moving on the manifold in
the direction opposite to the gradient”, using the exponential
map.

where ∇eh(W ) is the Euclidean gradient of h, where h is
seen as a function from Rd×d to R, and PTWOd

(·) is the
orthogonal projection on the tangent space TWOd:

PTWOd
(M) = W

(
W>M −M>W

2

)
(7)

for all M ∈ Rd×d. Given the basis (4), one has a Rieman-
nian counterpart to the notion of partial derivative. We define
the ith Riemannian partial derivative of h, for the basis (4)
of the tangent space TWOd, by:

∇ih(W ) = 〈∇h(W ), ηi〉, (8)

where ηi is the ith coordinate vector of the basis (4). This
Riemannian partial derivative can be obtained easily from
the Euclidean gradient ∇eh(W ) (typically computed using
backpropagation in DNN training):

∇ih(W ) = tr
(
H>j,lW

>∇h(W )
)

= tr
(
H>j,lW

>∇eh(W )
)
,

(9)
where j, l ∈ {1, . . . , d} are defined after (4), and where the
second equality comes from the fact that the Frobenius inner
product of a skew-symmetric matrix (Hj,l) and a symmetric
matrix (W>(∇h(W )−∇eh(W ))) is zero.

A last tool that is required in this work is the exponen-
tial map, an operator that allows to move on the manifold in
a given direction. The exponential map ExpW (ξW ) returns
the point obtained by evaluating at time t = 1 the geodesic
(curve with no acceleration, i.e., straight lines in the Eu-
clidean space), starting at W , with initial velocity ξW . For
the manifold of orthogonal matrices, the exponential map is
given by

ExpW (ξW ) = W expm
(
W>ξW

)
, ∀ξW ∈ TWOd, (10)

with expm () the matrix exponential. Figure 1 provides an
abstract representation of a Riemannian gradient descent it-
eration.
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Algorithm 1: SRGD: Stochastic Riemannian Gradient De-
scent

1: Let {αk} be a sequence of stepsizes. Set k = 0, and ini-
tialize the unconstrained and orthogonal variablesX0 ∈
Rm×n,W 0 ∈ Od.

2: while not converged do
3: Compute the (stochastic) gradients g̃kX and g̃kW
4: Update the unconstrained variable: Xk+1 = Xk −
αkg̃kX

5: Update the constrained variable: W k+1 =
ExpWk(−αkg̃kW )

6: k := k + 1
7: end while
8: return solution

Stochastic Riemannian Gradient Descent (SRGD)
Building on the previous discussion, we now recall in
Algorithm 1 the celebrated stochastic Riemannian gradi-
ent descent algorithm, initially proposed and analysed in
(Bonnabel 2013), that we apply here to (P). We use this algo-
rithm as a comparison point throughout this paper. Slightly
departing from the notation introduced above, and in order
to simplify the notation, we use hereafter the notation gkX
and gkW to refer respectively to the gradient of f with re-
spect to the unconstrained variable X and the (Riemannian)
gradient of f with respect to W at iteration k, and g̃kX and
g̃kW for their stochastic counterparts. In other words, the full
exact and stochastic (Riemannian) gradient of f are simply

gk =

(
gkX
gkW

)
and g̃k =

(
g̃kX
g̃kW

)
.

In the case when f is a sum of a large number of func-
tions, as in our RNN training application, g̃kX and g̃kW can
be seen as the approximations of gkX and gkW computed over
a mini-batch. At each iteration, the stochastic gradients g̃kX
and g̃kW are computed, and the iterates Xk, W k are updated.
Note that we evaluate the exponential map (10) at each it-
eration, involving a matrix exponential whose cost evolves
cubically with d (PyTorch matrix exponential implementa-
tion currently relies on Taylor/ Padé approximants and the
scaling-squaring trick, see (Bader, Blanes, and Casas 2019)).

Proposed Algorithm: Stochastic Riemannian
Coordinate Descent (SRCD)
Algorithm 2 presents our proposed SRCD algorithm. At
each iteration, the unconstrained parameters are updated us-
ing stochastic gradient descent, exactly as in Algorithm 1;
the modification is in the update rule for the orthogonal pa-
rameter. Here, the iterate is only updated along one coordi-
nate of the tangent space, for the basis (4). This amounts to
rotating a pair of columns of the iterate W k of an angle that
depends on the stepsize and the component of the gradient
along that coordinate. The stochastic gradient g̃kW is thus re-
placed by the following tangent vector, which is aligned with
the ikth coordinate vector ηik of the tangent space TWkOd:

g̃kW,ik = 〈g̃kW , ηik〉ηik , (11)

Algorithm 2: SRCD: Stochastic Riemannian Coordinate De-
scent

1: Let {αk} be a sequence of stepsizes. Set k = 0, and ini-
tialize the unconstrained and orthogonal variablesX0 ∈
Rm×n,W 0 ∈ Od.

2: while not converged do
3: Compute the (stochastic) gradient g̃kX
4: Update the unconstrained variable: Xk+1 = Xk −
αkg̃kX

5: Select a coordinate ik ∈ {1, . . . , D} of the tangent
space TWk(Od)

6: Compute the (stochastic) partial derivative g̃kW,ik
us-

ing (9)
7: Update the orthogonal variable: W k+1 =

ExpWk(−αkg̃kW,ik
). Due to the structure of g̃kW,ik

,
this step simply involves the multiplication of W k by a
Givens matrix, see (12), and has a computational cost
evolving linearly with d.

8: k := k + 1
9: end while

where ηik = W kHjk,lk for some given jk, lk defined below
(4).

Note that, since the matrixHjk,lk has a very special struc-
ture, see (5), the exponential map in Line 7 can be writ-
ten as a multiplication by a Givens matrix. Indeed, writing
θk = 〈g̃kW , ηik〉, there holds

ExpWk(θkηik) = ExpWk(θkW kHjk,lk) = W kGjk,lk(θk),
(12)

with

Gjk,lk(θk) :=

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · cos(θk) · · · sin(θk)
... 0

...
...

. . .
...

...

0 · · · − sin(θk) · · · cos(θk)
... 0

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · 1


(13)

a Givens matrix (Shalit and Chechik 2014). Right-
multiplying the iterate W k with Gjk,lk(θk) has the effect of
rotating clockwise the jkth and lkth columns of W k, with
rotation angle θk. In particular, since Givens matrices are
sparse (having only 4 nonzero elements), the evaluation of
the right-hand side of (12) has a cost of about 6d flops, which
is much lower than the cost of the matrix exponential that is
used when updating the W variable in SRGD.

Algorithm 2 also requires a strategy for selecting the co-
ordinate at each iteration. Two well-known strategies in the
Euclidean setting are uniform sampling, where ik is sampled
independently and uniformly among {1, . . . , D} at each it-
eration (with D = d(d − 1)/2 the dimension of the mani-
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fold), and the Gauss-Southwell rule, where ik is the coordi-
nate associated to the fastest local variation of the objective:

ik = argmax
i∈{1,...,D}

‖gkW,i‖. (14)

We compare both strategies numerically in Section 3.

Convergence Analysis
Our convergence analysis heavily relies on the convergence
analysis of stochastic gradient descent in the Euclidean set-
ting (see (Bottou, Curtis, and Nocedal 2018, Chap. 4)). The
main contribution of the convergence analysis is a careful
extension to the Riemannian setting, and to coordinates up-
dates for one of the variables. First, let us introduce the fol-
lowing smoothness assumption on the function f , following
(Boumal, Absil, and Cartis 2018).

Assumption 1 The function f : Rm×n × Od → R is L-
smooth, i.e., satisfies for all (X,W ) ∈ Rm×n × Od and
(ν, µ) ∈ Rm×n × TWOd:

|f(X + ν,ExpW (µ))− f(X,W )− 〈gX(X,W ), ν〉

− 〈gW (X,W ), µ〉| ≤ L

2

(
‖ν‖2 + ‖µ‖2

)
.

Assumption 1 is guaranteed to be satisfied if the Euclidean
gradient of the function f (when the latter is seen as a func-
tion on Rm×n×Rd×d) is Lipshitz-continuous, with Lipshitz
constant L. This follows from Lemma 7 in (Boumal, Absil,
and Cartis 2018), noticing that the proof of that lemma still
holds when the manifold is a product manifold of a com-
pact manifold (here the orthogonal group) and a Euclidean
space4.

Our second assumption is classical when analysing
stochastic gradient descent in the Euclidean setting, see, e.g.,
(Bottou, Curtis, and Nocedal 2018, Chap. 4). Let us write
hereafter Fk = {g̃0X , g̃0W , i0, . . . , g̃k−1X , g̃k−1W , ik−1}, the σ-
algebra generated by the random variables before iteration
k.

Assumption 2 The gradients and iterates of the algorithm
satisfy the conditions:
1. The sequence of iterates {(Xk,W k)}k∈N is contained

in an open set over which the value of the function f is
lower bounded by some finf ,

2. There exist µX , µW > 0 such that for all k ∈ N and
Z ∈ {X,W},

〈gkZ ,E
[
g̃kZ |Fk

]
〉 ≥ µZ‖gkZ‖2.

3. There exists CX , CW ≥ 0 and MX ,MW ≥ 0 such that,
for all k ∈ N and for Z ∈ {X,W},

E
[
‖g̃kZ‖2|Fk

]
≤ CZ +MZ‖gkZ‖2.

Under these assumptions, we prove the following result,
which is analogous to (Bottou, Curtis, and Nocedal 2018,
Thm. 4.10).

4Actually, we just need the gradient of the function to be Lip-
shitz continuous on Rm×n×Conv(Od) ⊂ Rm×n×Rd×d, where
Conv(Od) is the convex hull of Od.

Theorem 1 (Convergence result) Under Assumptions 1
and 2, the sequence of iterates {(Xk,W k)} generated by
Algorithm 2, with coordinate ik selected for each k uni-
formly at random among {1, . . . , D}, with D = d(d− 1)/2
the dimension of Od, and using a sequence of stepsizes αk

that satisfies the Robbins-Monro conditions (Robbins and
Monro 1951):

lim
k→∞

k∑
i=0

αk =∞ lim
k→∞

k∑
i=0

(αk)2 <∞ (15)

satisfies

E

[
1∑K

k=0 α
k

K∑
k=0

αk‖gk‖2
]
→ 0 as K →∞, (16)

where gk = [gk>X gk>W ]> is the (Riemannian) gradient of the
objective at iterate (Xk,W k).

Proof 1 See supplementary material.

3 Numerical Experiments
We consider in this paper the copying memory task, which
consists in remembering a sequence of letters from some al-
phabet A = {ak}Nk=1. The model is given a sequence

(as1 , as2 , . . . , asK︸ ︷︷ ︸
Sequence to remember

, b, b, . . . , b︸ ︷︷ ︸
L blank symbols

, c︸︷︷︸
Start symbol

, b, . . . , b︸ ︷︷ ︸
K-1 blank symbols

),

with asi ∈ A for all i ∈ {1, . . . ,K}, and b, c two additional
letters that do not belong to the alphabet (respectively the
“blank” and “start” symbols). The whole input sequence has
total length L + 2K; the first K elements are the elements
to remember. Once the model reads the “start” symbol, it
should start replicating the sequence it has memorized. For
the input sequence given above, the output of the network
should thus be the sequence (b, . . . , b, as1 , as2 , . . . , asK ),
made of L + K replications of the blank letter followed
by the sequence the model was asked to memorize. We rely
on https://github.com/Lezcano/expRNN for the PyTorch im-
plementation of the model architecture and of the copying
memory task. In particular, the alphabet A comprises of 9
different elements, L = 1000, K = 10, the batchsize is
equal to 128, and the recurrent matrix is an orthogonal ma-
trix of size 190×190. The loss for this problem is the cross-
entropy.

Almost Sparsity of the Recurrent Gradient. Let us first
illustrate that the gradient of the loss with respect to the or-
thogonal parameter (the recurrent weight matrix) has an ap-
proximately sparse representation in the basis (4). Figure 2
illustrates the repartition of the Riemannian partial deriva-
tives (8) (in absolute value, and computed over a minibatch),
both at the initialization and after 500 training iterations.
This figure indicates that a few partial derivatives have abso-
lute value about two orders of magnitude larger than the bulk
of partial derivatives. This observation supports the choice of
the Gauss-Southwell coordinate selection strategy proposed
in this paper. In this experiment, at initialization, 0.1% (resp.
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Figure 2: Histograms of the magnitude of the partial deriva-
tives of the loss for the copying memory problem, both at
initialization (blue) and after 500 iterations (orange). Note
that a few partial derivatives are dominating by a couple of
orders of magnitude.

4.2%) of the coordinates represent 95% (resp. 99%) of the
norm of the Riemannian gradient. After 500 iterations, 9%
(resp. 28.4%) of the coordinates represent 95% (resp. 99%)
of the norm of the Riemannian gradient.

Comparison of the Algorithms. To illustrate further the
benefits of our approach, we compare here SRGD (as a base-
line) with two variants of SRCD; selecting the coordinate ei-
ther uniformly at random (SRCD-U) at each iteration, or ac-
cording to the Gauss-Southwell rule (SRCD-GS), see (14).
For the sake of completeness, we also consider a block ver-
sion of SRCD-GS, in which a few coordinates are selected
at each iteration (the block size was here set to 0.5% of the
total number of coordinates in the tangent space).5 Though
typically state-of-the-art algorithms addressing this problem
rely on adaptive stepsizes, we compare here these algorithms
using a fixed stepsize, so that the gap between the training
loss of SRGD and SRCD-GS or SRCD-U gives us a measure
of how harmful the restriction of the gradient to one/some
coordinates is for the optimization. Figure 3 shows the evo-
lution of the loss for the different algorithms, using a fixed
stepsize set to 2 · 10−4. Overall, our numerical experiments
illustrate a good initial behavior of our proposed algorithms
compared to SRGD, with a fast decrease of the loss over
the first iterations. Though SRCD-GS outperforms SRCD-
U over the first iterations, these two methods perform simi-
larly over a larger number of iterations (the curve for SRCD-
U has been averaged over ten runs). Updating at each itera-
tion a block of coordinates improves significantly the perfor-
mance, and provides a decrease of the loss that is very close
to SRGD. Note also that, following our discussion on the

5Note that, in order for the update rule of the orthogonal pa-
rameter to be expressible in terms of Givens matrices, the selected
coordinates have to correspond to disjoint pairs of columns. As this
experiment simply aims to compare the methods in terms of accu-
racy, the matrix exponential was used to avoid here this constraint.
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Figure 3: Comparison of stochastic Riemannian gradient
descent (SRGD) and stochastic Riemannian coordinate de-
scent (SRCD) on the copying memory problem. Note that a
decrease of the loss comparable to SRGD can be obtained by
restricting the update to one/some coordinates in the tangent
space, resulting in a cost per iteration that evolves linearly
with d, instead of cubically for SRGD.

approximately sparse representation of the stochastic Rie-
mannian gradient in the basis (4), it might be interesting to
increase progressively the number of coordinates during the
optimization; this is left for future research.

Comparison in Terms of Computational Cost. Table 1
presents the cost per iteration/update (with CUDA synchro-
nization) using different optimizers for the copying mem-
ory problem (see supplementary material for experimental
details). Though we would have expected SRCD to be sig-
nificantly faster than SRGD, the computational cost of both
methods is actually very close. Table 1 indicates that the cost
per iteration is indeed dominated by the cost of the back-
propagation step (computing the Euclidean gradients with
respect to the parameters) and that the cost of the parame-
ter update is negligible in comparison. Actually, we didn’t
even notice any significant increase of computational time
when imposing orthogonal constraints on the recurrent ma-
trix via stochastic Riemannian gradient descent, compared
to vanilla stochastic gradient descent. Though this might
seem surprising given the large amount of literature aiming
to decrease the computational cost required to preserve or-
thogonality, this is in line with a discussion in (Lezcano-
Casado and Martı́nez-Rubio 2019). Writing b the batch-
size and l the length of the input sequence, the authors of
(Lezcano-Casado and Martı́nez-Rubio 2019) mention that
the cost of backpropagation (restricted to the recurrent ma-
trix) isO(bld2) instead ofO(d3) for approximating to a sat-
isfactory accuracy a matrix exponential using the scaling-
squaring trick and/or Padé approximants. There follows that,
when bl > d, backpropagation dominates the cost per it-
eration. As expected, further experiments indicate that the
cost of the matrix exponential evaluation and the cost of
the backpropagation become more and more comparable as
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Process Optimizer
SGD SRGD SRCD-

GS
SRCD-
U

loss.backward()
+ optim.step()

0.3125 0.3311 0.3191 0.3429

optim.step() .00164 .00197 .00177 .00223

Table 1: Average run-time cost per iteration/update of the
iterates for the copying memory problem using the different
optimizers considered in this paper

the size of the recurrent matrix increases, when keeping the
batchsize and length of the sequence fixed, so that, for very
large architectures, the use of SRGD would become pro-
hibitive. Note also that, while in our implementations we run
the full backpropagation algorithm (as standard deep learn-
ing libraries face difficulties to compute a subset of partial
derivatives instead of the whole gradient), theoretically the
cost of backpropagation could be decreased from O(bld2)
toO(bld), reducing substantially the computational cost per
iteration of our proposed approach compared to the numbers
given in Table 1.

To conclude, the proposed algorithm is very promising
for big architectures (large number of recurrent states), since
the gap in accuracy per iteration between SRGD and SRCD
illustrated on Fig. 3 is expected to be largely compensated
by the computational cost savings per iteration. A detailed
study is out of the scope of this paper and we defer it to
future work.

4 Conclusions
We have proposed SRCD, a new algorithm for orthogonal
RNN training with computational cost per iteration inO(d),
in contrast with the O(d3) cost of SRGD. We proved the
convergence of our proposed algorithm under typical as-
sumptions on the training problem (Lipshitz smoothness of
the objective, classical assumptions on the gradient noise
and stepsizes satisfying the Robbins-Monro conditions), for
coordinates selected uniformly at random in {1, . . . , D},
with D = d(d − 1)/2 the manifold dimension. We have
also shown numerically that the Riemannian gradient has
an approximately sparse representation in the basis (4), and
leveraged this observation by proposing a Gauss-Southwell
coordinate selection rule. Future research could aim to en-
dow the proposed optimizer with an adaptive stepsize such
as Adam or RMSProp, following the recent attempts (Kasai,
Jawanpuria, and Mishra 2019; Bécigneul and Ganea 2019;
Lezcano-Casado 2020) for developing adaptive stepsizes on
manifolds.
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